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Chapter 1

Introduction

In this chapter we give a brief introduction to multiagent systems, discuss
their differences with single-agent systems, and outline possible applications
and challenging issues for research.

1.1 Multiagent systems and distributed AI

The modern approach to artificial intelligence (AI) is centered around
the concept of a rational agent. An agent is anything that can perceive
its environment through sensors and act upon that environment through
actuators (Russell and Norvig, 2003). An agent that always tries to opti-
mize an appropriate performance measure is called a rational agent. Such a
definition of a rational agent is fairly general and can include human agents
(having eyes as sensors, hands as actuators), robotic agents (having cam-
eras as sensors, wheels as actuators), or software agents (having a graphical
user interface as sensor and as actuator). From this perspective, AI can
be regarded as the study of the principles and design of artificial rational
agents.

However, agents are seldom stand-alone systems. In many situations
they coexist and interact with other agents in several different ways. Ex-
amples include software agents on the Internet, soccer playing robots (see
Fig. 1.1), and many more. Such a system that consists of a group of agents
that can potentially interact with each other is called a multiagent system
(MAS), and the corresponding subfield of AI that deals with principles and
design of multiagent systems is called distributed AI.

1.2 Characteristics of multiagent systems

What are the fundamental aspects that characterize a MAS and distinguish
it from a single-agent system? One can think along the following dimensions:

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A robot soccer team is an example of a multiagent system.

Agent design

It is often the case that the various agents that comprise a MAS are designed
in different ways. A typical example is software agents, also called softbots,
that have been implemented by different people. In general, the design dif-
ferences may involve the hardware (for example soccer robots based on dif-
ferent mechanical platforms), or the software (for example software agents
running different operating systems). We often say that such agents are het-
erogeneous in contrast to homogeneous agents that are designed in an
identical way and have a priori the same capabilities. However, this distinc-
tion is not clear-cut; agents that are based on the same hardware/software
but implement different behaviors can also be called heterogeneous. Agent
heterogeneity can affect all functional aspects of an agent from perception
to decision making, while in single-agent systems the issue is simply nonex-
istent.

Environment

Agents have to deal with environments that can be either static (time-
invariant) or dynamic (nonstationary). Most existing AI techniques for
single agents have been developed for static environments because these are
easier to handle and allow for a more rigorous mathematical treatment. In
a MAS, the mere presence of multiple agents makes the environment appear
dynamic from the point of view of each agent. This can often be problematic,
for instance in the case of concurrently learning agents where non-stable
behavior can be observed. There is also the issue which parts of a dynamic
environment an agent should treat as other agents and which not. We will
discuss some of these issues in chapter 8.
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Perception

The collective information that reaches the sensors of the agents in a MAS
is typically distributed: the agents may observe data that differ spatially
(appear at different locations), temporally (arrive at different times), or even
semantically (require different interpretations). This automatically makes
the world state partially observable to each agent, which has various con-
sequences in the decision making of the agents. An additional issue is sensor
fusion, that is, how the agents can optimally combine their perceptions in
order to increase their collective knowledge about the current state. We will
discuss distributed perception and its consequences in chapter 5.

Control

Contrary to single-agent systems, the control in a MAS is typically dis-
tributed (decentralized). This means that there is no central process that
collects information from each agent and then decides what action each agent
should take. The decision making of each agent lies to a large extent within
the agent itself. The general problem of multiagent decision making is the
subject of game theory which we will cover in chapter 3. In a cooperative
or team MAS1, distributed decision making results in asynchronous compu-
tation and certain speedups, but it also has the downside that appropriate
coordination mechanisms need to be additionally developed. Coordina-
tion ensures that the individual decisions of the agents result in good joint
decisions for the group. Chapter 4 is devoted to the topic of coordination.

Knowledge

In single-agent systems we typically assume that the agent knows its own
actions but not necessarily how the world is affected by its actions. In a
MAS, the levels of knowledge of each agent about the current world state
can differ substantially. For example, in a team MAS involving two homo-
geneous agents, each agent may know the available action set of the other
agent, both agents may know (by communication) their current perceptions,
or they can infer the intentions of each other based on some shared prior
knowledge. On the other hand, an agent that observes an adversarial team
of agents will typically be unaware of their action sets and their current
perceptions, and might also be unable to infer their plans. In general, in a
MAS each agent must also consider the knowledge of each other agent in its
decision making. A crucial concept here is that of common knowledge,
according to which every agent knows a fact, every agent knows that every

1We will interchangeably use the terms ‘cooperative’ or ‘team’ MAS to refer to agents
that share the same interests. We note, however, that the game-theoretic use of the term
‘cooperative’ is different, referring to agents that are freely allowed to communicate and
enforce agreements prior to taking decisions (Harsanyi and Selten, 1988).
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other agent knows this fact, and so on. We will discuss common knowledge
in detail in chapter 5.

Communication

Interaction is often associated with some form of communication. Typ-
ically we view communication in a MAS as a two-way process, where all
agents can potentially be senders and receivers of messages. Communica-
tion can be used in several cases, for instance, for coordination among co-
operative agents or for negotiation among self-interested agents (we will
discuss the latter case in some detail in chapter 7). Moreover, communica-
tion additionally raises the issues of what network protocols to use in order
for the exchanged information to arrive safely and timely, and what lan-
guage the agents must speak in order to understand each other (especially
if they are heterogeneous). We will address communication in chapter 6.

1.3 Applications

Just as with single-agent systems in traditional AI, it is difficult to anticipate
the full range of applications where MASs can be used. Some applications
have already appeared, especially in software engineering where MAS tech-
nology is viewed as a novel and promising software building paradigm. A
complex software system can be treated as a collection of many small-size
autonomous agents, each with its own local functionality and properties, and
where interaction among agents enforces total system integrity. Some of the
benefits of using MAS technology in large software systems are (Sycara,
1998):

• Speedup and efficiency, due to the asynchronous and parallel compu-
tation.

• Robustness and reliability, in the sense that the whole system can
undergo a ‘graceful degradation’ when one or more agents fail.

• Scalability and flexibility, since it is easy to add new agents to the
system.

• Cost, assuming that an agent is a low-cost unit compared to the whole
system.

• Development and reusability, since it is easier to develop and maintain
a modular software than a monolithic one.

A very challenging application domain for MAS technology is the Inter-
net. Today the Internet has developed into a highly distributed open system
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where heterogeneous software agents come and go, there are no well estab-
lished protocols or languages on the ‘agent level’ (higher than TCP/IP),
and the structure of the network itself keeps on changing. In such an envi-
ronment, MAS technology can be used to develop agents that act on behalf
of a user and are able to negotiate with other agents in order to achieve
their goals. Auctions on the Internet and electronic commerce are such ex-
amples (Noriega and Sierra, 1999; Sandholm, 1999). One can also think
of applications where agents can be used for distributed data mining and
information retrieval.

MASs can also be used for traffic control where agents (software or
robotic) are located in different locations, receive sensor data that are geo-
graphically distributed, and must coordinate their actions in order to ensure
global system optimality (Lesser and Erman, 1980). Other applications are
in social sciences where MAS technology can be used for simulating inter-
activity and other social phenomena (Gilbert and Doran, 1994), in robotics
where a frequently encountered problem is how a group of robots can lo-
calize themselves within their environment (Roumeliotis and Bekey, 2002),
and in virtual reality and computer games where the challenge is to build
agents that exhibit intelligent behavior (Terzopoulos, 1999).

Finally, an application of MASs that has recently gained popularity is
robot soccer. There, teams of real or simulated autonomous robots play
soccer against each other (Kitano et al., 1997). Robot soccer provides a
testbed where MAS algorithms can be tested, and where many real-world
characteristics are present: the domain is continuous and dynamic, the be-
havior of the opponents may be difficult to predict, there is uncertainty in
the sensor signals, etc.

1.4 Challenging issues

The transition from single-agent systems to MASs offers many potential
advantages but also raises challenging issues. Some of these are:

• How to decompose a problem, allocate subtasks to agents, and syn-
thesize partial results.

• How to handle the distributed perceptual information. How to enable
agents to maintain consistent shared models of the world.

• How to implement decentralized control and build efficient coordina-
tion mechanisms among agents.

• How to design efficient multiagent planning and learning algorithms.

• How to represent knowledge. How to enable agents to reason about
the actions, plans, and knowledge of other agents.
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• How to enable agents to communicate. What communication lan-
guages and protocols to use. What, when, and with whom should an
agent communicate.

• How to enable agents to negotiate and resolve conflicts.

• How to enable agents to form organizational structures like teams or
coalitions. How to assign roles to agents.

• How to ensure coherent and stable system behavior.

Clearly the above problems are interdependent and their solutions may
affect each other. For example, a distributed planning algorithm may re-
quire a particular coordination mechanism, learning can be guided by the
organizational structure of the agents, and so on. In the following chapters
we will try to provide answers to some of the above questions.

1.5 Notes and further reading

The review articles of Sycara (1998) and Stone and Veloso (2000) provide
concise and readable introductions to the field. The textbooks of Huhns
(1987), Singh (1994), O’Hare and Jennings (1996), Ferber (1999), Weiss
(1999), and Wooldridge (2002) offer more extensive treatments, emphasizing
different AI and software engineering aspects. A website on multiagent
systems is: www.multiagent.com



Chapter 2

Rational agents

In this chapter we describe what a rational agent is, we investigate some
characteristics of an agent’s environment like observability and the Markov
property, and we examine what is needed for an agent to behave optimally
in an uncertain world where actions do not always have the desired effects.

2.1 What is an agent?

Following Russell and Norvig (2003), an agent is anything that can be
viewed as perceiving its environment through sensors and acting upon
that environment through actuators.1 Examples include humans, robots, or
software agents. We often use the term autonomous to refer to an agent
whose decision making relies to a larger extent on its own perception than
to prior knowledge given to it at design time.

In this chapter we will study the problem of optimal decision making
of an agent. That is, how an agent can choose the best possible action at
each time step, given what it knows about the world around it. We will say
that an agent is rational if it always selects an action that optimizes an
appropriate performance measure, given what the agent knows so far.
The performance measure is typically defined by the user (the designer of
the agent) and reflects what the user expects from the agent in the task at
hand. For example, a soccer robot must act so as to maximize the chance
of scoring for its team, a software agent in an electronic auction must try
to minimize expenses for its designer, and so on. A rational agent is also
called an intelligent agent.

In the following we will mainly focus on computational agents, that
is, agents that are explicitly designed for solving a particular task and are
implemented on some computing device.

1In this chapter we will use ‘it’ to refer to an agent, to emphasize that we are talking
about computational entities.

7
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2.2 Agents as rational decision makers

The problem of optimal decision making of an agent was first studied in
optimal control (Bellman, 1961). For the purpose of our discussion, we
will assume a discrete set of time steps t = 1, 2, . . ., in each of which the
agent must choose an action at from a finite set of actions A that it has
available. Intuitively, in order to act rationally, an agent should take both
the past and the future into account when choosing an action. The past
refers to what the agent has perceived and what actions it has taken until
time t, and the future refers to what the agent expects to perceive and do
after time t.

If we denote by oτ the perception of an agent at time τ , then the above
implies that in order for an agent to optimally choose an action at time t, it
must in general use its complete history of perceptions oτ and actions aτ

for τ ≤ t. The function

π(o1, a1, o2, a2, . . . , ot) = at (2.1)

that in principle would require mapping the complete history of perception-
action pairs up to time t to an optimal action at is called the policy of the
agent.

As long as we can find a function π that implements the above mapping,
the part of optimal decision making that refers to the past is solved. How-
ever, defining and implementing such a function is problematic; the complete
history can consist of a very large (even infinite) number of perception-
action pairs, which can vary from one task to another. Merely storing all
perceptions would require very large memory, aside from the computational
complexity for actually computing π.

This fact calls for simpler policies. One possibility is for the agent to
ignore all its percept history except for the last perception ot. In this case
its policy takes the form

π(ot) = at (2.2)

which is a mapping from the current perception of the agent to an action.
An agent that simply maps its current perception ot to a new action at, thus
effectively ignoring the past, is called a reflex agent, and its policy (2.2) is
called reactive or memoryless. A natural question to ask now is: how
successful such a reflex agent can be? As we will see next, for a particular
class of environments a reflex agent can do pretty well.

2.3 Observable worlds and the Markov property

From the discussion above it is clear that the terms ‘agent’ and ‘environment’
are coupled, so that one cannot be defined without the other. In fact, the
distinction between an agent and its environment is not always clear, and it
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is sometimes difficult to draw a line between these two (Sutton and Barto,
1998, ch. 3).

To simplify things we will assume hereafter the existence of a world in
which one or more agents are embedded, and in which they perceive, think,
and act. The collective information that is contained in the world at any
time step t, and that is relevant for the task at hand, will be called a state
of the world and denoted by st. The set of all states of the world will be
denoted by S. As an example, in a robot soccer game a world state can be
characterized by the the soccer field layout, the positions and velocities of
all players and the ball, what each agent knows about each other, and other
parameters that are relevant to the decision making of the agents like the
elapsed time since the game started, etc.

Depending on the nature of problem, a world can be either discrete
or continuous. A discrete world can be characterized by a finite number
of states. Examples are the possible board configurations in a chess game.
On the other hand, a continuous world can have infinitely many states. For
example, for a mobile robot that translates and rotates freely in a static
environment and has coordinates (x, y, θ) with respect to a fixed Cartesian
frame holds S = IR3. Most of the existing AI techniques have been developed
for discrete worlds, and this will be our main focus as well.

Observability

A fundamental property that characterizes a world from the point of view of
an agent is related to the perception of the agent. We will say that the world
is (fully) observable to an agent if the current perception ot of the agent
completely reveals the current state of the world, that is, st = ot. On the
other hand, in a partially observable world the current perception ot of
the agent provides only partial information about the current world state in
the form of a conditional probability distribution P (st|ot) over states. This
means that the current perception ot does not fully reveal the true world
state, but to each state st the agent assigns probability P (st|ot) that st is
the true state (with 0 ≤ P (st|ot) ≤ 1 and

∑

st∈S P (st|ot) = 1). Here we
treat st as a random variable that can take all possible values in S.

Partial observability can in principle be attributed to two factors. First,
it can be the result of noise in the agent’s sensors. For example, due to
sensor malfunction, the same state may ‘generate’ different perceptions to
the agent at different points in time. That is, every time the agent visits a
particular state it may perceive something different. Second, partial observ-
ability can be related to an inherent property of the environment referred to
as perceptual aliasing: different states may produce identical perceptions
to the agent at different time steps. In other words, two states may ‘look’
the same to an agent, although the states are different from each other. For
example, two identical doors along a corridor will look exactly the same to
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the eyes of a human or the camera of a mobile robot, no matter how accurate
each sensor system is.

Partial observability is much harder to handle than full observability, and
algorithms for optimal sequential decision making in a partially observable
world can easily become intractable (Russell and Norvig, 2003, sec. 17.4).
Partial observability is of major concern especially in multiagent systems
where, as it will also be clearer in chapter 5, it may affect not only what each
agent knows about the world state, but also what each agent knows about
each other’s knowledge. We will defer partial observability until chapter 5.

The Markov property

Let us consider again the case of a reflex agent with a reactive policy π(ot) =
at in a fully observable world. The assumption of observability implies
st = ot, and therefore the policy of the agent reads

π(st) = at. (2.3)

In other words, in an observable world the policy of a reflex agent is a
mapping from world states to actions. The gain comes from the fact that
in many problems the state of the world at time t provides a complete
description of the history before time t. Such a world state that summarizes
all the relevant information about the past in a particular task is said to be
Markov or to have the Markov property. As we conclude from the above,
in a Markov world an agent can safely use the memoryless policy (2.3) for its
decision making, in place of the theoretically optimal policy function (2.1)
that in principle would require very large memory.

So far we have discussed how the policy of an agent may depend on
its past experience and the particular characteristics of the environment.
However, as we argued at the beginning, optimal decision making should
also take the future into account. This is what we are going to examine
next.

2.4 Stochastic transitions and utilities

As mentioned above, at each time step t the agent chooses an action at from
a finite set of actions A. When the agent takes an action, the world changes
as a result of this action. A transition model (sometimes also called world
model) specifies how the world changes when an action is executed. If the
current world state is st and the agent takes action at, we can distinguish
the following two cases:

• In a deterministic world, the transition model maps a state-action
pair (st, at) to a single new state st+1. In chess for example, every move
changes the configuration on the board in a deterministic manner.
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• In a stochastic world, the transition model maps a state-action pair
(st, at) to a probability distribution P (st+1|st, at) over states. As in
the partial observability case above, st+1 is a random variable that
can take all possible values in S, each with corresponding probability
P (st+1|st, at). Most real-world applications involve stochastic transi-
tion models, for example, robot motion is inaccurate because of wheel
slip and other effects.

We saw in the previous section that sometimes partial observability can
be attributed to uncertainty in the perception of the agent. Here we see
another example where uncertainty plays a role; namely, in the way the
world changes when the agent executes an action. In a stochastic world,
the effects of the actions of the agent are not known a priori. Instead,
there is a random element that decides how the world changes as a result
of an action. Clearly, stochasticity in the state transitions introduces an
additional difficulty in the optimal decision making task of the agent.

From goals to utilities

In classical AI, a goal for a particular task is a desired state of the world.
Accordingly, planning is defined as a search through the state space for an
optimal path to the goal. When the world is deterministic, planning comes
down to a graph search problem for which a variety of methods exist, see
for example (Russell and Norvig, 2003, ch. 3).

In a stochastic world, however, planning can not be done by simple
graph search because transitions between states are nondeterministic. The
agent must now take the uncertainty of the transitions into account when
planning. To see how this can be realized, note that in a deterministic world
an agent prefers by default a goal state to a non-goal state. More generally,
an agent may hold preferences between any world states. For example, a
soccer agent will mostly prefer to score, will prefer less (but still a lot) to
stand with the ball in front of an empty goal, and so on.

A way to formalize the notion of state preferences is by assigning to
each state s a real number U(s) that is called the utility of state s for that
particular agent. Formally, for two states s and s′ holds U(s) > U(s′) if and
only if the agent prefers state s to state s′, and U(s) = U(s′) if and only if
the agent is indifferent between s and s′. Intuitively, the utility of a state
expresses the ‘desirability’ of that state for the particular agent; the larger
the utility of the state, the better the state is for that agent. In the world
of Fig. 2.1, for instance, an agent would prefer state d3 than state b2 or d2.
Note that in a multiagent system, a state may be desirable to a particular
agent and at the same time be undesirable to an other agent; in soccer, for
example, scoring is typically unpleasant to the opponent agents.
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4

3 +1

2 −1 −1

1 start

a b c d

Figure 2.1: A world with one desired (+1) and two undesired (−1) states.

Decision making in a stochastic world

Equipped with utilities, the question now is how an agent can efficiently use
them for its decision making. Let us assume that the world is stochastic
with transition model P (st+1|st, at), and is currently in state st, while an
agent is pondering how to choose its action at. Let U(s) be the utility
of state s for the particular agent (we assume there is only one agent in
the world). Utility-based decision making is based on the premise that the
optimal action a∗

t of the agent should maximize expected utility, that is,

a∗t = arg max
at∈A

∑

st+1

P (st+1|st, at)U(st+1) (2.4)

where we sum over all possible states st+1 ∈ S the world may transition to,
given that the current state is st and the agent takes action at. In words,
to see how good an action is, the agent has to multiply the utility of each
possible resulting state with the probability of actually reaching this state,
and sum up the resulting terms. Then the agent must choose the action a∗

t

that gives the highest sum.

If each world state has a utility value, then the agent can do the above
calculations and compute an optimal action for each possible state. This
provides the agent with a policy that maps states to actions in an optimal
sense. In particular, given a set of optimal (i.e., highest attainable) utilities
U∗(s) in a given task, the greedy policy

π∗(s) = arg max
a

∑

s′

P (s′|s, a)U ∗(s′) (2.5)

is an optimal policy for the agent.

There is an alternative and often useful way to characterize an optimal
policy. For each state s and each possible action a we can define an optimal
action value (or Q-value) Q∗(s, a) that measures the ‘goodness’ of action a
in state s for that agent. For this value holds U ∗(s) = maxa Q∗(s, a), while
an optimal policy can be computed as

π∗(s) = arg max
a

Q∗(s, a) (2.6)
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4 0.818 (→) 0.865 (→) 0.911 (→) 0.953 (↓)

3 0.782 (↑) 0.827 (↑) 0.907 (→) +1

2 0.547 (↑) −1 0.492 (↑) −1

1 0.480 (↑) 0.279 (←) 0.410 (↑) 0.216 (←)

a b c d

Figure 2.2: Optimal utilities and an optimal policy of the agent.

which is a simpler formula than (2.5) and moreover it does not require a
transition model. In chapter 8 we will see how we can compute optimal
utilities U ∗(s) and action values Q∗(s, a) in a stochastic observable world.

Example: a toy world

Let us close the chapter with an example, similar to the one used in (Russell
and Norvig, 2003, chap. 21). Consider the world of Fig. 2.1 where in any
state the agent can choose one of the actions {Up, Down, Left, Right }. We
assume that the world is fully observable (the agent always knows where it
is), and stochastic in the following sense: every action of the agent to an
intended direction succeeds with probability 0.8, but with probability 0.2 the
agent ends up perpendicularly to the intended direction. Bumping on the
border leaves the position of the agent unchanged. There are three terminal
states, a desired one (the ‘goal’ state) with utility +1, and two undesired
ones with utility −1. The initial position of the agent is a1.

We stress again that although the agent can perceive its own position
and thus the state of the world, it cannot predict the effects of its actions on
the world. For example, if the agent is in state c2, it knows that it is in state
c2. However, if it tries to move Up to state c3, it may reach the intended
state c3 (this will happen in 80% of the cases) but it may also reach state
b2 (in 10% of the cases) or state d2 (in the rest 10% of the cases).

Assume now that optimal utilities have been computed for all states, as
shown in Fig. 2.2. Applying the principle of maximum expected utility, the
agent computes that, for instance, in state b3 the optimal action is Up. Note
that this is the only action that avoids an accidental transition to state b2.
Similarly, by using (2.5) the agent can now compute an optimal action for
every state, which gives the optimal policy shown in parentheses.

Note that, unlike path planning in a deterministic world that can be
described as graph search, decision making in stochastic domains requires
computing a complete policy that maps states to actions. Again, this is
a consequence of the fact that the results of the actions of an agent are
unpredictable. Only after the agent has executed its action can it observe
the new state of the world, from which it can select another action based on
its precomputed policy.
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2.5 Notes and further reading

We have mainly followed chapters 2, 16, and 17 of the book of Russell and
Norvig (2003) which we strongly recommend for further reading. An il-
luminating discussion on the agent-environment interface and the Markov
property can be found in chapter 3 of the book of Sutton and Barto (1998)
which is another excellent text on agents and decision making, and is elec-
tronically available: www-anw.cs.umass.edu/~rich/book/the-book.html



Chapter 3

Strategic games

In this chapter we study the problem of multiagent decision making,
where a group of agents coexist in an environment and take simultaneous de-
cisions. We use game theory to analyze the problem, in particular, strategic
games, where we examine two main solution concepts, iterated elimination
of strictly dominated actions and Nash equilibrium.

3.1 Game theory

As we saw in chapter 2, an agent will typically be uncertain about the effects
of its actions to the environment, and it has to take this uncertainty into
account in its decision making. In a multiagent system, where many agents
take decisions at the same time, an agent will also be uncertain about the
decisions of the other participating agents. Clearly, what an agent should
do depends on what the other agents will do.

Multiagent decision making is the subject of game theory (Osborne
and Rubinstein, 1994). Although originally designed for modeling econom-
ical interactions, game theory has developed into an independent field with
solid mathematical foundations and many applications. The theory tries
to understand the behavior of interacting agents under conditions of uncer-
tainty, and is based on two premises. First, that the participating agents
are rational. Second, that they reason strategically, that is, they take
into account the other agents’ decisions in their decision making.

Depending on the way the agents choose their actions, we can distinguish
two types of games. In a strategic game, each agent chooses his strategy
only once at the beginning of the game, and then all agents take their
actions simultaneously. In an extensive game, the agents are allowed to
reconsider their plans during the game. Another distinction is whether the
agents have perfect or imperfect information about aspects that involve
the other agents. In this chapter we will only consider strategic games of
perfect information.

15
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3.2 Strategic games

A strategic game (also called game in normal form) is the simplest game-
theoretic model of agent interactions. It can be viewed as a multiagent
extension of the decision-theoretic model of chapter 2, and is characterized
by the following elements:

• There are n > 1 agents in the world.1

• Each agent i can choose an action ai (also called a strategy) from
his own action set Ai. The vector (a1, . . . , an) of individual actions is
called a joint action or an action profile, and is denoted by a or
(ai). We will use the notation a−i to refer to the actions of all agents
except i, and (a−i, ai) to refer to a joint action where agent i takes a
particular action ai.

• The game is ‘played’ on a fixed world state s (thus we will not deal
with dubious state transitions). The state can be defined as consisting
of the n agents, their action sets Ai, and their payoffs (see next).

• Each agent i has his own action value function Q∗
i (s, a) that measures

the goodness of the joint action a for the agent i. Note that each agent
may give different preferences to different joint actions. Since s is fixed,
we drop the symbol s and instead use ui(a) ≡ Q∗

i (s, a) which is called
the payoff function of agent i. We assume that the payoff functions
are predefined and fixed. (We will deal with the case of learning the
payoff functions in chapter 8.)

• The state is fully observable to all agents. That is, all agents know
(i) each other, (ii) the action sets of each other, and (iii) the payoffs
of each other. More strictly, the primitives (i)-(iii) of the game are
common knowledge among agents. That is, all agents know (i)-
(iii), they all know that they all know (i)-(iii), and so on to any depth.
(We will discuss common knowledge in detail in chapter 5).

• Each agent chooses a single action; it is a single-shot game. Moreover,
all agents choose their actions simultaneously and independently; no
agent is informed of the decision of any other agent prior to making
his own decision.

In summary, in a strategic game, each agent chooses a single action and
then he receives a payoff that depends on the selected joint action. This joint
action is called the outcome of the game. The important point to note is
that, although the payoff functions of the agents are common knowledge,

1In this chapter we will use ‘he’ or ‘she’ to refer to an agent, following the convention
in the literature (Osborne and Rubinstein, 1994, p. xiii).
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Not confess Confess

Not confess 3, 3 0, 4

Confess 4, 0 1, 1

Figure 3.1: The prisoner’s dilemma.

an agent does not know in advance the action choices of the other agents.
The best he can do is to try to predict the actions of the other agents. A
solution to a game is a prediction of the outcome of the game using the
assumption that all agents are rational and strategic.

In the special case of two agents, a strategic game can be graphically
represented by a payoff matrix, where the rows correspond to the actions of
agent 1, the columns to the actions of agent 2, and each entry of the matrix
contains the payoffs of the two agents for the corresponding joint action.
In Fig. 3.1 we show the payoff matrix of a classical game, the prisoner’s
dilemma, whose story goes as follows:

Two suspects in a crime are independently interrogated. If they
both confess, each will spend three years in prison. If only one
confesses, he will run free while the other will spend four years in
prison. If neither confesses, each will spend one year in prison.

In this example each agent has two available actions, Not confess or
Confess. Translating the above story into appropriate payoffs for the agents,
we get in each entry of the matrix the pairs of numbers that are shown
in Fig. 3.1 (note that a payoff is by definition a ‘reward’, whereas spending
three years in prison is a ‘penalty’). For example, the entry 4, 0 indicates
that if the first agent confesses and the second agent does not, then the first
agent will get payoff 4 and the second agent will get payoff 0.

In Fig. 3.2 we see two more examples of strategic games. The game
in Fig. 3.2(a) is known as ‘matching pennies’; each of two agents chooses
either Head or Tail. If the choices differ, agent 1 pays agent 2 a cent; if they
are the same, agent 2 pays agent 1 a cent. Such a game is called strictly
competitive or zero-sum because u1(a) + u2(a) = 0 for all a. The game
in Fig. 3.2(b) is played between two car drivers at a crossroad; each agent
wants to cross first (and he will get payoff 1), but if they both cross they
will crash (and get payoff −1). Such a game is called a coordination game
(we will extensively study coordination games in chapter 4).

What does game theory predict that a rational agent will do in the above
examples? In the next sections we will describe two fundamental solution
concepts for strategic games.
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Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1

Cross Stop

Cross −1,−1 1, 0

Stop 0, 1 0, 0

(a) (b)

Figure 3.2: A strictly competitive game (a), and a coordination game (b).

3.3 Iterated elimination of strictly dominated ac-

tions

The first solution concept is based on the assumption that a rational agent
will never choose a suboptimal action. With suboptimal we mean an action
that, no matter what the other agents do, will always result in lower payoff
for the agent than some other action. We formalize this as follows:

Definition 3.3.1. We will say that an action ai of agent i is strictly dom-
inated by another action a′

i of agent i if

ui(a−i, a
′
i) > ui(a−i, ai) (3.1)

for all actions a−i of the other agents.

In the above definition, ui(a−i, ai) is the payoff the agent i receives if he
takes action ai while the other agents take a−i. In the prisoner’s dilemma, for
example, Not confess is a strictly dominated action for agent 1; no matter
what agent 2 does, the action Confess always gives agent 1 higher payoff
than the action Not confess (4 compared to 3 if agent 2 does not confess,
and 1 compared to 0 if agent 2 confesses). Similarly, Not confess is a strictly
dominated action for agent 2.

Iterated elimination of strictly dominated actions (IESDA) is a
solution technique that iteratively eliminates strictly dominated actions from
all agents, until no more actions are strictly dominated. It is solely based
on the following two assumptions:

• A rational agent would never take a strictly dominated action.

• It is common knowledge that all agents are rational.

As an example, we will apply IESDA to the prisoner’s dilemma. As we
explained above, the action Not confess is strictly dominated by the action
Confess for both agents. Let us start from agent 1 by eliminating the action
Not confess from his action set. Then the game reduces to a single-row
payoff matrix where the action of agent 1 is fixed (Confess ) and agent 2
can choose between Not confess and Confess. Since the latter gives higher
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L M R

U 1, 0 1, 2 0, 1

D 0, 3 0, 1 2, 0

L M R

U 1, 0 1, 2 0, 1

D 0, 3 0, 1 2, 2

(a) (b)

Figure 3.3: Examples where IESDA predicts a single outcome (a), or predicts
that any outcome is possible (b).

payoff to agent 2 (4 as opposed to 3 if she does not confess), agent 2 will
prefer Confess to Not confess. Thus IESDA predicts that the outcome of
the prisoner’s dilemma will be (Confess, Confess ).

As another example consider the game of Fig. 3.3(a) where agent 1 has
two actions U and D and agent 2 has three actions L, M , and R. It is easy
to verify that in this game IESDA will predict the outcome (U , M) by first
eliminating R, then D, and finally L. However, IESDA may sometimes pro-
duce very inaccurate predictions for a game, as in the two games of Fig. 3.2
and also in the game of Fig. 3.3(b) where no actions can be eliminated. In
these games IESDA essentially predicts that any outcome is possible.

A characteristic of IESDA is that the agents do not need to maintain
beliefs about the other agents’ strategies in order to compute their opti-
mal actions. The only thing that is required is the common knowledge
assumption that each agent is rational. Moreover, it can be shown that the
algorithm is insensitive to the speed and the elimination order; it will always
give the same results no matter how many actions are eliminated in each
step and in which order. However, as we saw in the examples above, IESDA
can sometimes fail to make accurate predictions for the outcome of a game.

3.4 Nash equilibrium

A Nash equilibrium (NE) is a stronger solution concept than IESDA,
in the sense that it produces more accurate predictions in a wider class of
games. It can be formally defined as follows:

Definition 3.4.1. A Nash equilibrium is a joint action a∗ with the property
that for every agent i holds

ui(a
∗
−i, a

∗
i ) ≥ ui(a

∗
−i, ai) (3.2)

for all actions ai ∈ Ai.

In other words, a NE is a joint action from where no agent can unilater-
ally improve his payoff, and therefore no agent has any incentive to deviate.
Note that, contrary to IESDA that describes a solution of a game by means
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of an algorithm, a NE describes a solution in terms of the conditions that
hold at that solution.

There is an alternative definition of a NE that makes use of the so-called
best-response function. This is defined as

Bi(a−i) = {ai ∈ Ai : ui(a−i, ai) ≥ ui(a−i, a
′
i) for all a′i ∈ Ai} (3.3)

where Bi(a−i) can be a set containing many actions. In the prisoner’s
dilemma, for example, when agent 2 takes the action Not confess, the best-
response of agent 1 is the action Confess (because 4 > 3). Similarly, we can
compute the best-response function of each agent:

B1(Not confess ) = Confess,

B1(Confess ) = Confess,

B2(Not confess ) = Confess,

B2(Confess ) = Confess.

In this case, the best-response functions are singleton-valued. Using the
definition of a best-response function, we can now formulate the following:

Definition 3.4.2. A Nash equilibrium is a joint action a∗ with the property
that for every agent i holds

a∗i ∈ Bi(a
∗
−i). (3.4)

That is, at a NE, each agent’s action is an optimal response to the
other agents’ actions. In the prisoner’s dilemma, for instance, given that
B1(Confess ) = Confess, and B2(Confess ) = Confess, we conclude that
(Confess, Confess ) is a NE. Moreover, we can easily show the following:

Proposition 3.4.1. The two definitions 3.4.1 and 3.4.2 of a NE are equiv-
alent.

Proof. Suppose that (3.4) holds. Then, using (3.3) we see that for each
agent i, the action a∗

i must satisfy ui(a
∗
−i, a

∗
i ) ≥ ui(a

∗
−i, a

′
i) for all a′i ∈ Ai.

But this is precisely the definition of a NE according to (3.2). Similarly for
the converse.

The definitions 3.4.1 and 3.4.2 suggest a brute-force method for finding
the Nash equilibria of a game: enumerate all possible joint actions and
then verify which ones satisfy (3.2) or (3.4). Note that the cost of such an
algorithm is exponential in the number of agents.

It turns out that a strategic game can have zero, one, or more than one
Nash equilibria. For example, (Confess, Confess ) is the only NE in the
prisoner’s dilemma. We also find that the zero-sum game in Fig. 3.2(a) does
not have a NE, while the coordination game in Fig. 3.2(b) has two Nash
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equilibria (Cross, Stop ) and (Stop, Cross ). Similarly, (U , M) is the only
NE in both games of Fig. 3.3.

We argued above that a NE is a stronger solution concept than IESDA
in the sense that it produces more accurate predictions of a game. For
instance, the game of Fig. 3.3(b) has only one NE, but IESDA predicts
that any outcome is possible. In general, we can show the following two
propositions (the proof of the second is left as an exercise):

Proposition 3.4.2. A NE always survives IESDA.

Proof. Let a∗ be a NE, and let us assume that a∗ does not survive IESDA.
This means that for some agent i the component a∗

i of the action profile
a∗ is strictly dominated by another action ai of agent i. But then (3.1)
implies that ui(a

∗
−i, ai) > ui(a

∗
−i, a

∗
i ) which contradicts the definition 3.4.1

of a NE.

Proposition 3.4.3. If IESDA eliminates all but a single joint action a, then
a is the unique NE of the game.

Note also that in the prisoner’s dilemma, the joint action (Not confess,
Not confess ) gives both agents payoff 3, and thus it should have been the
preferable choice. However, from this joint action each agent has an incentive
to deviate, to be a ‘free rider’. Only if the agents had made an agreement
in advance, and only if trust between them was common knowledge, would
they have opted for this non-equilibrium joint action which is optimal in the
following sense:

Definition 3.4.3. A joint action a is Pareto optimal if there is no other
joint action a′ for which ui(a

′) > ui(a) for all agents i.

In the above discussion we implicitly assumed that when the game is
actually played, each agent i will choose his action deterministically from
his action set Ai. This is however not always true. In many cases there
are good reasons for the agent to introduce randomness in his behavior.
In general, we can assume that an agent i chooses actions ai with some
probability distribution pi(ai) which can be different for each agent. This
gives us the following definition:

Definition 3.4.4. A mixed strategy for an agent i is a probability distri-
bution pi(ai) over the actions ai ∈ Ai.

In his famous theorem, Nash (1950) showed that a strategic game with
a finite number of agents and a finite number of actions always has an
equilibrium in mixed strategies. Osborne and Rubinstein (1994, sec. 3.2)
give several interpretations of such a mixed strategy Nash equilibrium.
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3.5 Notes and further reading

The book of von Neumann and Morgenstern (1944) and the half-page long
article of Nash (1950) are classics in game theory. Our discussion was mainly
based on the book of Osborne and Rubinstein (1994) which is the standard
textbook on game theory (and is rather technical). The book of Gibbons
(1992) and the (forthcoming) book of Osborne (2003) offer a readable in-
troduction to the field, with several applications. Russell and Norvig (2003,
ch. 17) also include an introductory section on game theory.



Chapter 4

Coordination

In this chapter we take a closer look at the problem of coordination, that is,
how the individual decisions of the agents can result in good joint decisions
for the group. We analyze the problem using the framework of strategic
games that we studied in chapter 3, and we describe several practical tech-
niques like social conventions, roles, and coordination graphs.

4.1 Distributed decision making

As we already discussed in chapter 1, a distinguishing feature of a multiagent
system is the fact that the decision making of the agents can be distributed.
This means that there is no central controlling agent that decides what each
agent must do at each time step, but each agent is to a certain extent ‘re-
sponsible’ for its own decisions. The main advantages of such a decentralized
approach over a centralized one are efficiency, due to the asynchronous com-
putation, and robustness, in the sense that the functionality of the whole
system does not rely on a single agent.

In order for the agents to be able to take their actions in a distributed
fashion, appropriate coordination mechanisms must be additionally devel-
oped. Coordination can be regarded as the process by which the individual
decisions of the agents result in good joint decisions for the group. A typi-
cal situation where coordination is needed is among cooperative agents that
form a team, and through this team they make joint plans and pursue com-
mon goals. In this case, coordination ensures that the agents do not obstruct
each other when taking actions, and moreover that these actions serve the
common goal. Robot soccer is such an example, where a team of robots at-
tempt to score goals against an opponent team. Here, coordination ensures
that, for instance, two teammate robots will never try to kick the ball at the
same time. In robot soccer there is no centralized controlling agent that can
instruct the robots in real-time whether or not to kick the ball; the robots
must decide for themselves.

23
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Thriller Comedy

Thriller 1, 1 0, 0

Comedy 0, 0 1, 1

Figure 4.1: A coordination game.

4.2 Coordination games

A way to describe a coordination problem is to model it as a strategic
game and solve it according to some solution concept, for example, Nash
equilibrium. We have already seen an example in Fig. 3.2(b) of chapter 3
where two cars meet at a crossroad and the drivers have to decide what
action to take. If they both cross they will crash, and it is not of either’s
interest to stop. Only one driver is allowed to cross and the other driver must
stop. Who is going to cross then? This is an example of a coordination
game that involves two agents and two possible solutions: (Cross, Stop)
and (Stop, Cross). As we saw in chapter 3, these two joint actions are Nash
equilibria of the game. Moreover, they are both Pareto optimal.

In the case of fully cooperative agents, all n agents in the team share the
same payoff function u1(a) = . . . = un(a) ≡ u(a) in the corresponding coor-
dination game. Figure 4.1 shows an example of a coordination game between
two cooperative agents. The agents want to go to the movies together. Each
agent has a choice between two types of movies, either a thriller or a com-
edy. Each agent has no prior information what movie the other agent will
choose, and the agents choose independently and simultaneously. Choosing
the same movie gives them payoff 1, otherwise they get payoff 0. In this
game the agents have to coordinate their actions in order to maximize their
payoff. As in the previous example, the two joint actions where the agents
choose the same movie are two Pareto optimal Nash equilibria of the coor-
dination game. Generalizing from the above examples we can formulate the
following:

Definition 4.2.1. Coordination is the process in which a group of agents
choose a single Pareto optimal Nash equilibrium in a strategic game.

An equilibrium that is Pareto optimal is also said to payoff-dominate
all other equilibria (Harsanyi and Selten, 1988). Note that in chapter 3 we
described a Nash equilibrium in terms of the conditions that hold at the
equilibrium point, and disregarded the issue of how the agents can actually
reach this point. The above definition shows that coordination is a more
earthy concept: it asks how the agents can actually agree on a single equi-
librium in a strategic game that involves more than one such equilibria. For
simplicity, in the rest of the chapter, by ‘equilibrium’ we will always mean
‘Pareto optimal Nash equilibrium’, unless otherwise stated.
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Reducing coordination to the problem of equilibrium selection in a strate-
gic game allows for the application of existing techniques from game the-
ory (Harsanyi and Selten, 1988). In the rest of this chapter we will focus
on some simple coordination techniques that can be readily implemented in
practical systems. We will throughout assume that the agents are coopera-
tive (they share the same payoff function), and they have perfect information
about the game primitives (see section 3.2).

4.3 Social conventions

As we saw above, in order to solve a coordination problem, a group of agents
are faced with the problem how to choose their actions in order to select
the same equilibrium in a game. Clearly, there can be no recipe to tell the
agents which equilibrium to choose in every possible game they may play in
the future. Nevertheless, we can devise recipes that will instruct the agents
how to choose a single equilibrium in any game. Such a recipe will be able
to guide the agents in their action selection procedure.

A social convention (or social law) is such a recipe that places con-
straints on the possible action choices of the agents. It can be regarded as
a rule that dictates how the agents should choose their actions in a coor-
dination game in order to reach an equilibrium. Moreover, given that the
convention has been established and is common knowledge among agents,
no agent can benefit from not abiding by it.

Boutilier (1996) has proposed a general convention that achieves coordi-
nation in a large class of systems and is very easy to implement. The con-
vention assumes a unique ordering scheme of joint actions that is common
knowledge among agents. In a particular game, each agent first computes
all equilibria of the game, and then selects the first equilibrium according
to this ordering scheme. For instance, a lexicographic ordering scheme can
be used in which the agents are ordered first, and then the actions of each
agent are ordered. In the coordination game of Fig. 4.1, for example, we
can order the agents lexicographically by 1 � 2 (meaning that agent 1 has
‘priority’ over agent 2), and the actions by Thriller � Comedy. The first
equilibrium in the resulting ordering of joint actions is (Thriller, Thriller)
and this will be the unanimous choice of the agents.

Given that a single equilibrium has been selected, each agent can easily
choose his individual action as the corresponding component of the selected
equilibrium. The complete algorithm, which we will refer to as coordina-
tion by social conventions, is shown in Fig. 4.2. Note that the algorithm
is executed identically by each agent in parallel. Clearly, since the order-
ing scheme is common knowledge among agents, all agents must necessarily
agree on the same equilibrium. The time and space requirements of the
algorithm are dominated by the computation and storage of all equilibria of
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For each agent i in parallel
Compute all equilibria of the game.
Order these equilibria based on a unique ordering scheme.
Select the first equilibrium a∗ = (a∗−i, a

∗
i ) in the ordered list.

Choose action a∗
i .

End

Figure 4.2: Coordination by social conventions.

the game.

When the agents can perceive more aspects of the world state than just
the primitives of the game (actions and payoffs), one can think of more
elaborate ordering schemes for coordination. Consider the traffic game of
Fig. 3.2(b), for example, as it is ‘played’ in the real world. Besides the game
primitives, the state now also contains the relative orientation of the cars in
the physical environment. If we assume that the perception of the agents
fully reveals the state (full observability), then a simple convention is that
the driver coming from the right will always have priority over the other
driver in the lexicographic ordering. If we also order the actions by Cross �
Stop, then coordination by social conventions implies that the driver from
the right will cross the road first. Similarly, if traffic lights are available, then
the state also includes the color of the light, in which case the established
convention is that the driver who sees the red light must stop.

4.4 Roles

Coordination by social conventions relies on the assumption that an agent
can compute all equilibria in a game before choosing a single one. However,
computing equilibria can be expensive when the action sets of the agents
are large, therefore one would like to reduce the size of the action sets first.
Such a reduction can have computational advantages in terms of speed, but
more importantly, it can simplify the equilibrium selection problem. In some
cases, in the resulting subgame there is only one equilibrium left which is
trivial to find.

A natural way to reduce the action sets of the agents is by assigning
roles to the agents. Formally, a role can be regarded as a masking operator
on the action set of an agent, given a particular state. In practical terms,
if an agent is assigned a role at a particular state, then some of the agent’s
actions are deactivated at this state. In soccer for example, an agent that is
currently in the role of defender cannot attempt to Score.

A role can facilitate the solution of a coordination game by reducing



4.4. ROLES 27

For each agent in parallel
I = {}.
For each role j = 1, . . . , n

For each agent i = 1, . . . , n with i /∈ I
Compute the potential rij of agent i for role j.

End
Assign role j to agent i∗ = arg maxi{rij}.
Add i∗ to I.

End
End

Figure 4.3: Role assignment.

it to a subgame where the equilibria are easier to find. For example, in
Figure 4.1, if agent 2 is assigned a role that forbids him to select the action
Thriller (e.g., he is under 16), then agent 1, assuming he knows the role
of agent 2, can safely choose Comedy resulting in coordination. Note that
there is only one equilibrium left in the subgame formed after removing the
action Thriller from the action set of agent 2.

In general, suppose that there are n available roles (not necessarily dis-
tinct), that the state is fully observable to the agents, and that the following
facts are common knowledge among agents:

• There is a fixed ordering {1, 2, . . . , n} of the roles. Role 1 must be
assigned first, followed by role 2, etc.

• For each role j there is a function that assigns to each agent i a po-
tential rij that reflects how appropriate agent i is for the role j given
the current state.

• Each agent can be assigned only one role.

Then, role assignment can be carried out by the algorithm shown
in Fig. 4.3. Each role is assigned to the agent that has the highest potential
for that role. This agent is eliminated from the role assignment process, a
new role is assigned to another agent, and so on, until all agents have been
assigned a role.

The algorithm runs in time polynomial in the number of agents and roles,
and is executed identically by each agent in parallel. Note that we have
assumed full observability of the state, and that each agent can compute
the potential of each other agent. After all roles have been assigned, the
original coordination game is reduced to a subgame that can be further
solved using coordination by social conventions. Recall from Fig. 4.2 that
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the latter additionally requires an ordering scheme of the joint actions that
is common knowledge.

Like in the traffic example of the previous section, roles typically apply
on states that contain more aspects than only the primitives of the strategic
game; for instance, they may contain the physical location of the agents in
the world. Moreover, the role assignment algorithm applies even if the state
is continuous; the algorithm only requires a function that computes poten-
tials, and such a function can have a continuous state space as domain. To
give an example, suppose that in robot soccer we want to assign a particular
role j (e.g., attacker) to the robot that is closer to the ball than any other
teammate. In this case, the potential rij of a robot i for role j can be given
by a function of the form

rij = −||xi − xb||, (4.1)

where xi and xb are the locations in the field of the robot i and the ball,
respectively.

4.5 Coordination graphs

As mentioned above, roles can facilitate the solution of a coordination game
by reducing the action sets of the agents prior to computing the equilibria.
However, computing equilibria in a subgame can still be a difficult task when
the number of involved agents is large; recall that the joint action space is
exponentially large in the number of agents. As roles reduce the size of
the action sets, we also need a method that reduces the number of agents
involved in a coordination game.

Guestrin et al. (2002a) introduced the coordination graph as a frame-
work for solving large-scale coordination problems. A coordination graph
allows for the decomposition of a coordination game into several smaller
subgames that are easier to solve. Unlike roles where a single subgame is
formed by the reduced action sets of the agents, in this framework various
subgames are formed, each typically involving a small number of agents.

In order for such a decomposition to apply, the main assumption is that
the global payoff function u(a) can be written as a linear combination of
k local payoff functions fj, each involving only few agents. For example,
suppose that there are n = 4 agents, and k = 3 local payoff functions, each
involving two agents:

u(a) = f1(a1, a2) + f2(a1, a3) + f3(a3, a4). (4.2)

Here, f2(a1, a3) for instance involves only agents 1 and 3, with their actions
a1 and a3. Such a decomposition can be graphically represented by a graph
(hence the name), where each node represents an agent and each edge cor-
responds to a local payoff function. For example, the decomposition (4.2)
can be represented by the graph of Fig. 4.4.
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Figure 4.4: A coordination graph for a 4-agent problem.

Let us now see how this framework can be used for coordination. Recall
that a solution to a coordination problem is a Pareto optimal Nash equilib-
rium in the corresponding strategic game. By definition, such an equilibrium
is a joint action a∗ that maximizes u(a). The key idea in coordination graphs
is that the linear decomposition of u(a) allows for an iterative maximization
procedure in which agents are eliminated one after the other.

We will illustrate this on the above example. We start by eliminating
agent 1 in (4.2). We collect all local payoff functions that involve agent 1,
these are f1 and f2. The maximum of u(a) can then be written

max
a

u(a) = max
a2,a3,a4

{

f3(a3, a4) + max
a1

[

f1(a1, a2) + f2(a1, a3)
]

}

. (4.3)

Next we perform the inner maximization over the actions of agent 1. For
each combination of actions of agents 2 and 3, agent 1 must choose an
action that maximizes f1 +f2. This essentially involves computing the best-
response function B1(a2, a3) of agent 1 (see section 3.4) in the subgame
formed by agents 1, 2, and 3, and the sum of payoffs f1 + f2. The function
B1(a2, a3) can be thought of as a conditional strategy for agent 1, given the
actions of agents 2 and 3.

The above maximization and the computation of the best-response func-
tion of agent 1 define a new payoff function f4(a2, a3) = maxa1

[f1(a1, a2) +
f2(a1, a3)] that is independent of a1. Agent 1 has been eliminated. The
maximum (4.3) becomes

max
a

u(a) = max
a2,a3,a4

[

f3(a3, a4) + f4(a2, a3)
]

. (4.4)

We can now eliminate agent 2 as we did with agent 1. In (4.4), only f4

involves a2, and maximization of f4 over a2 gives the best-response function
B2(a3) of agent 2 which is a function of a3 only. This in turn defines a new
payoff function f5(a3), and agent 2 is eliminated. Now we can write

max
a

u(a) = max
a3,a4

[

f3(a3, a4) + f5(a3)
]

. (4.5)
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For each agent in parallel
F = {f1, . . . , fk}.
For each agent i = 1, 2, . . . , n

Find all fj(a−i, ai) ∈ F that involve ai.
Compute Bi(a−i) = arg maxai

∑

j fj(a−i, ai).

Compute fk+i(a−i) = maxai

∑

j fj(a−i, ai).

Remove all fj(a−i, ai) from F and add fk+i(a−i) in F .
End
For each agent i = n, n− 1, . . . , 1

Choose a∗i ∈ Bi(a
∗
−i) based on a fixed ordering of actions.

End
End

Figure 4.5: Coordination by variable elimination.

Agent 3 is eliminated next, resulting in B3(a4) and a new payoff function
f6(a4). Finally, maxa u(a) = maxa4

f6(a4), and since all other agents have
been eliminated, agent 4 can simply choose an action a∗

4 that maximizes f6.

The above procedure computes an optimal action only for the last elimi-
nated agent (assuming that the graph is connected). For the other agents it
computes only conditional strategies. A second pass in the reverse elimina-
tion order is needed so that all agents compute their optimal (unconditional)
actions from their best-response functions. Thus, in the above example,
plugging a∗4 into B3(a4) gives the optimal action a∗

3 of agent 3. Similarly,
we get a∗2 from B2(a

∗
3) and a∗1 from B1(a

∗
2, a

∗
3), and thus we have computed

the joint optimal action a∗ = (a∗1, a
∗
2, a

∗
3, a

∗
4). Note that one agent may have

more than one best-response actions, in which case the first action can be
chosen according to an a priori ordering of the actions of each agent that
must be common knowledge.

The complete algorithm, which we will refer to as coordination by
variable elimination, is shown in Fig. 4.5. Note that the notation −i
that appears in fj(a−i, ai) refers to all agents other than agent i that are
involved in fj, and it does not necessarily include all n−1 agents. Similarly,
in the best-response functions Bi(a−i) the action set a−i may involve less
than n− 1 agents. The algorithm runs identically for each agent in parallel.
For that we require that all local payoff functions are common knowledge
among agents, and that there is an a priori ordering of the action sets of the
agents that is also common knowledge. The latter assumption is needed so
that each agent will finally compute the same joint action.

The main advantage of this algorithm compared to coordination by social
conventions in Fig. 4.2 is that here we need to compute best-response func-
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tions in subgames involving only few agents, while computing all equilibria
in Fig. 4.2 requires computing best-response functions in the complete game
involving all n agents. When n is large, the computational gains of variable
elimination over coordination by social conventions can be significant.

For simplicity, in the above algorithm we have fixed the elimination order
of the agents as 1, 2, . . . , n. However, this is not necessary. Each agent run-
ning the algorithm can choose a different elimination order, and the resulting
joint action a∗ will always be the same. The total runtime of the algorithm,
however, will not be the same. Different elimination orders produce differ-
ent intermediate payoff functions, and thus subgames of different size. It
turns out that computing the optimal elimination order (that minimizes the
execution cost of the algorithm) is NP-complete.

In all algorithms in this chapter the agents can coordinate their actions
without the need to communicate with each other. As we saw, in all cases
each agent runs the same algorithm identically and in parallel, and coordi-
nation is guaranteed as long as certain facts are common knowledge among
agents. In chapter 6 we will relax some of the assumptions of common
knowledge, and show how the above algorithms can be modified when the
agents can explicitly communicate with each other.

4.6 Notes and further reading

The problem of multiagent coordination has been traditionally studied in
distributed AI, where typically some form of communication is allowed
among agents (Jennings, 1996). (See also chapter 6.) The framework of
‘joint intentions’ of Cohen and Levesque (1991) provides a formal charac-
terization of multiagent coordination through a model of joint beliefs and
intentions of the agents. Social conventions were introduced by Shoham
and Tennenholtz (1992), as constraints on the set of allowed actions of a
single agent at a given state (similar to roles as in section 4.4). Boutilier
(1996) extended the definition to include also constraints on the joint ac-
tion choices of a group of agents, and proposed the idea of coordination by
lexicographic ordering. A version of role assignment (that relies on com-
munication) similar to Fig. 4.3 has been used by Castelpietra et al. (2000).
Coordination graphs are due to Guestrin et al. (2002a). An application of
roles and coordination graphs in robot soccer can be found in (Kok et al.,
2003).
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Chapter 5

Common knowledge

In the previous chapters we generally assumed that the world state is fully
observable to the agents. Here we relax this assumption and examine the
case where parts of the state are hidden to the agents. In such a partially
observable world an agent must always reason about his knowledge, and the
knowledge of the others, prior to making decisions. We formalize the notions
of knowledge and common knowledge in such domains, and demonstrate
their implications by means of examples.

5.1 Thinking interactively

In order to act rationally, an agent must always reflect on what he knows
about the current world state. As we saw in chapter 2, if the state is fully
observable, an agent can perform pretty well without extensive deliberation.
If the state is partially observable, however, the agent must first consider
carefully what he knows and what he does not know before choosing an
action. Intuitively, the more an agent knows about the true state, the better
the decisions he can make.

In a multiagent system, a rational agent must also be able to think
interactively, that is, to take into account the knowledge of the other agents
in his decision making. In addition, he needs to consider what the other
agents know about him, and also what they know about his knowledge. In
the previous chapters we have often used the term common knowledge
to refer to something that every agent knows, that every agent knows that
every other agent knows, and so on. For example, the social convention that
a driver must stop in front of a red traffic light is supposed to be common
knowledge among all drivers.

In this chapter we will define common knowledge more formally, and
illustrate some of its strengths and implications through examples. One
of its surprising consequences, for instance, is that it cannot be common
knowledge that two rational agents would ever want to bet with each other!

33
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5.2 The puzzle of the hats

We start with a classical puzzle that illustrates some of the implications of
common knowledge. The story goes as follows:

Three agents (say, girls) are sitting around a table, each wearing
a hat. A hat can be either red or white, but suppose that all
agents are wearing red hats. Each agent can see the hat of the
other two agents, but she does not know the color of her own
hat. A person who observes all three agents asks them in turn
whether they know the color of their hats. Each agent replies
negatively. Then the person announces “At least one of you is
wearing a red hat”, and then asks them again in turn. Agent 1
says No. Agent 2 also says No. But when he asks agent 3, she
says Yes.

How is it possible that agent 3 can finally figure out the color of her
hat? Before the announcement that at least one of them is wearing a red
hat, no agent is able to tell her hat color. What changes then after the
announcement? Seemingly the announcement does not reveal anything new;
each agent already knows that there is at least one red hat because she can
see the red hats of the other two agents.

Given that everyone has heard that there is at least one red hat, agent 3
can tell her hat color by reasoning as follows: “Agent’s 1 No implies that
either me or agent 2 is wearing a red hat. Agent 2 knows this, so if my hat
had been white, agent 2 would have said Yes. But agent 2 said No, so my
hat must be red.”

Although each agent already knows (by perception) the fact that at least
one agent is wearing a red hat, the key point is that the public announce-
ment of the person makes this fact common knowledge among the agents.
Implicitly we have also assumed that it is common knowledge that each
agent can see and hear well, and that she can reason rationally. The puzzle
is instructive because it shows the implications of interactive reasoning and
the strength of the common knowledge assumption.

5.3 Partial observability and information

Now we will try to formalize some of the concepts that appear in the puzzle
of the hats. The starting point is that world state is partially observable to
the agents. Recall that in a partially observable world the perception of an
agent provides only partial information about the true state, in the form of
a conditional probability distribution over states (see section 2.3). In the
puzzle of the hats this distribution is uniform over subsets of the state space,
as we show next.
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World states
a b c d e f g h

1 R R R R W W W W
Agents 2 R R W W R R W W

3 R W R W R W R W

Figure 5.1: The eight world states in the puzzle of the hats.

In general, let S be the set of all states and s ∈ S be the current (true)
state of the world. We assume that the perception of an agent i provides
information about the state s through an information function

Pi : s 7→ Pi(s), (5.1)

where Pi(s) is a nonempty subset of S called the information set of agent i
in state s. The interpretation of the information set is that when the true
state is s, agent i thinks that any state in Pi(s) could be the true state. The
set Pi(s) will always contain s, but essentially this is the only thing that
agent i knows about the true state. In the case of multiple agents, each
agent can have a different information function.

In the puzzle of the hats, a state is a three-component vector containing
the colors of the hats. Let R and W denote red and white. There are in total
eight states S = {a, b, c, d, e, f, g, h}, as shown in Fig. 5.1. By assumption,
the true state is s = a. From the setup of the puzzle we know that the
state is partially observable to each agent; only two of the three hat colors
are directly perceivable by each agent. In other words, in any state s the
information set of each agent contains two equiprobable states, those in
which the only difference is in her own hat color. For instance, in state
s = a the information set of agent 2 is P2(s) = {a, c}, a two-state subset
of S.

As we mentioned above, the information set Pi(s) of an agent i contains
those states in S that agent i considers possible, if the true state is s. In
general, we assume that the information function of an agent divides the
state space into a collection of mutually disjoint subsets, called cells, that
together form a partition Pi of S. The information set Pi(s) for agent i in
true state s is exactly that cell of Pi that contains s, while the union of all
cells in Pi is S.

Based on the information functions, we can compute the partitions of
the agents in the puzzle of the hats:

Pt
1 = {{a, e}, {b, f}, {c, g}, {d, h}}, (5.2)

Pt
2 = {{a, c}, {b, d}, {e, g}, {f, h}}, (5.3)

Pt
3 = {{a, b}, {c, d}, {e, f}, {g, h}}, (5.4)
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where t refers to the time step before any announcement took place. Clearly,
in the true state s = a = RRR no agent knows her hat color, since the
corresponding cell of each partition contains two equiprobable states. Thus,
agent 1 considers a and e possible, agent 2 considers a and c possible, and
agent 3 considers a and b possible. (Note again that we know that the true
state is a but the agents in our puzzle do not.)

Now we make the additional assumption that all partitions are common
knowledge among the agents. In the case of homogeneous agents, for in-
stance, this is not an unrealistic assumption; typically each agent will be
aware of the perception capabilities of each other. In the puzzle of the hats,
for example, it is reasonable to assume that all agents can see and hear well
and that they are all rational. Then, simply the positioning of the agents
around the table makes the above partitions common knowledge.

If the partitions are common knowledge, then in state a agent 1 thinks
that agent 2 may think that agent 3 might think that h = WWW is possible!
Why is that? Note from (5.2) that in state a agent 1 thinks that either a
or e could be the true state. But if e is the true state, then from (5.3)
we see that agent 2 may consider g to be the true state. But then we see
from (5.4) that agent 3 may consider h to be the true state. Note how the
above analytical framework allows for a fairly straightforward formulation
of otherwise complicated statements.

Now the announcement of the person reveals that the true state is not h.
This automatically changes the partitions of the agents:

Pt+1
1 = {{a, e}, {b, f}, {c, g}, {d}, {h}},

Pt+1
2 = {{a, c}, {b, d}, {e, g}, {f}, {h}},

Pt+1
3 = {{a, b}, {c, d}, {e, f}, {g}, {h}}.

(5.5)

Note that h has been disambiguated from d, f , and g, in the three partitions.
The person then asks each agent in turn whether she knows the color of her
hat. Agent 1 says No. In which case would agent 1 have said Yes? As we
see from the above partitions, only in state d would agent 1 have known her
hat color. But the true state is a, and in this state agent 1 still considers e
possible. (Compare this analysis with the logical reasoning of section 5.2.)

The reply of agent 1 eliminates state d from the set of candidate states.
This results in a refinement of the partitions of agents 2 and 3:

Pt+2
1 = {{a, e}, {b, f}, {c, g}, {d}, {h}},

Pt+2
2 = {{a, c}, {b}, {d}, {e, g}, {f}, {h}},

Pt+2
3 = {{a, b}, {c}, {d}, {e, f}, {g}, {h}}.

(5.6)

Next agent 2 is asked. From her partition P t+2
2 we see that she would

have known her hat color only in state b or f (d and h are already ruled out
by the previous announcements). However, in the true state a agent 2 still
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considers c possible, therefore she replies negatively. Her reply excludes b
and f from the set of candidate states, resulting in a further refinement of
the partitions of agent 1 and 3:

Pt+3
1 = {{a, e}, {b}, {f}, {c, g}, {d}, {h}},

Pt+3
2 = {{a, c}, {b}, {d}, {e, g}, {f}, {h}},

Pt+3
3 = {{a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}}.

(5.7)

The partition of agent 3 now contains only singleton cells, thus agent 3 can
now tell her hat color. Note that agents 1 and 2 still cannot tell their hat
colors. In fact, they will be unable to tell their har colors no matter how
many more announcements will take place; the partitions (5.7) cannot be
further refined. Interestingly, the above analysis would have been exactly
the same if the true state had been any one in the set {a, c, e, g}. (Try to
verify this with logical reasoning.)

5.4 A model of knowledge

Any subset E of S is called an event. If for an agent i holds Pi(s) ⊆ E
in true state s, then we say that agent i knows1 E. Generalizing, the
knowledge function of an agent i is defined as

Ki(E) = {s ∈ S : Pi(s) ⊆ E}. (5.8)

That is, for any event E, the set Ki(E) contains all states in which agent i
knows E. It is not difficult to see that Ki(E) can be written as the union
of all cells of Pi that are fully contained in E. In the puzzle of the hats, for
example, in the final partitions (5.7) holds K1({a, e, c}) = {a, e}, while for
the event E = {a, c, e, g} holds Ki(E) = E for all i = 1, 2, 3.

An event E ⊆ S is called self-evident to agent i if E can be written
as a union of cells of Pi. For example, in (5.7) the event E = {a, c, e, g} is
self-evident to all three agents. As another example, suppose that the state
space consists of the integer numbers from 1 to 8, the true state is s = 1,
and two agents have the following partitions:

P1 = {{1, 2}, {3, 4, 5}, {6}, {7, 8}},

P2 = {{1, 2, 3}, {4}, {5}, {6, 7, 8}}.
(5.9)

1This definition of knowledge is slightly different from the one used in epistemic

logic. There an agent is said to know a fact φ if φ is true in all states the agent considers
possible. In the event-based framework, an agent knows an event E if all the states the
agent considers possible are contained in E. Intuitively, if a fact φ is true in all s ∈ E,
and the agent knows E, then the agent also knows φ (since φ is true in all states the agent
considers possible). Fagin et al. (1995, sec. 2.5) show that the two approaches, logic-based
and event-based, are in fact equivalent.
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In s = 1 agent 1 thinks that {1, 2} are possible. Agent 1 also thinks that
agent 2 may think that {1, 2, 3} are possible. Furthermore, agent 1 thinks
that agent 2 may think that agent 1 might think that {1, 2} or {3, 4, 5}
are possible. But nobody needs to think beyond 5. In this example, the
event {1, 2, 3, 4} is self-evident to agent 2, while the event {1, 2, 3, 4, 5} is
self-evident to both agents.

We can now formalize the notion of common knowledge. For simplicity,
the first definition is formulated for only two agents.

Definition 5.4.1. An event E ⊆ S is common knowledge between agents
1 and 2 in true state s ∈ S, if s is a member of every set in the infinite
sequence K1(E), K2(E), K1(K2(E)), K2(K1(E)), . . ..

Definition 5.4.2. An event E ⊆ S is common knowledge among a group
of agents in true state s ∈ S, if s is a member of any set F ⊆ E that is
self-evident to all agents.

It turns out that the two definitions are equivalent (Osborne and Ru-
binstein, 1994, prop. 74.2). However, the second definition is much easier
to apply; it only requires computing self-evident sets which are unions of
partition cells and thus easy to find. For instance, in the above example
the event E = {1, 2, 3, 4, 5} is common knowledge between the two agents
because E is self-evident to both of them and the true state s = 1 belongs
to E. Similarly, in the puzzle of the hats, in the final partitions (5.7), and
with true state s = a, the event E = {a, c, e, g} is common knowledge among
all three agents.

5.5 Knowledge and actions

So far we have discussed how the perceptions of the agents are related to
the world states through the information functions, and what it means to
say that an event is common knowledge among a group of agents. We now
extend the framework to incorporate also the actions of the agents.

In section 2.2 we defined a memoryless policy π of an agent as a mapping
from perceptions to actions (2.2). Equivalently, in the current framework
we can assume that the policy of an agent i with information function Pi is
a mapping from information sets to actions:

πi : Pi(s) 7→ ai (5.10)

where s is the current state. For example, in the puzzle of the hats, a reply
Yes or No of an agent to the question “Do you know your hat color?” can
be regarded as an action taken by the agent given her current information.
In the final partitions (5.7), agent 1 will reply No given her information set
{a, e} and agent 3 will reply Yes given her information set {a}.
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Let E be the set of states in which agent i takes a particular action ai,
that is, E = {s ∈ S : πi(Pi(s)) = ai}. If another agent j knows the policy
and the information function of agent i, then agent j will know that agent i
takes action ai in state s if and only if agent j knows E. Similarly, assuming
that the policy and the information function of agent i is common knowledge,
then it will be common knowledge in s that agent i takes action ai if and
only if E is common knowledge.

Let us also assume that for two information sets E and F of an agent i
the following ‘union-consistency’ property holds:

πi(E) = πi(F ) =⇒ πi(E) = πi(E ∪ F ). (5.11)

In other words, if an agent is taking the same action in two different infor-
mation sets, then he must be taking the same action in their union as well.
In the puzzle of the hats, for instance, if an agent answers No if she knows
that the true state s is in E, and she also answers No if she knows that
s ∈ F , then she will also answer No if she only knows that s ∈ E ∪ F .

Given the above, it turns out that for a group of agents with potentially
different information functions, the following result holds:

Proposition 5.5.1. If the agents run the same policy π, and it is common
knowledge in the current state what actions the agents are taking, then the
agents must be taking the same actions.

Proof. The fact that in the current state the action ai of an agent i is
common knowledge among all agents implies that there must be a set E ⊆ S
that is common knowledge among all agents, and in all states of which agent i
would take action ai, that is, π(Pi(s)) = ai for all s ∈ E. Since E is common
knowledge among the agents, it must be self-evident to all agents, thus we
can write E =

⋃

s∈E Pi(s) for all i. But then (5.11) implies that π(E) = ai

for all i, therefore all ai must be equal.

As noted by Geanakoplos (1992), a surprising consequence of this propo-
sition is that, for instance, rational agents would never want to bet with
each other if their bets are common knowledge. Moreover, this is true even
if the agents have different information about the current state. Betting is
equivalent to deciding whether a random variable has positive or negative
expectation. For expectations of random variables the union-consistency
property (5.11) holds, therefore, assuming the agents are of the same ‘mind’,
proposition 5.5.1 applies.

Finally, there is the question of how the agents can actually reach com-
mon knowledge of actions. As we saw in the puzzle of the hats, the public
announcement of the action of each agent allows for a stepwise refinement
of the partitions of the agents. At some point in time this refinement stops
because there are only a finite number of states. At this point it will be
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common knowledge in every state of the world what each agent is going to
do in the future. Geanakoplos (1992) cites the following amusing story:

Two detectives are trained in the same police academy, and share
a well-defined policy that specifies whom to arrest in a particular
case given the clues that have been discovered. A murder occurs,
the detectives collect (different) clues for some time, and finally
make up their own (different) opinions about the suspect. Then
they meet and exchange their opinions, but not the clues that
led them to these opinions. Hearing each other’s opinion, each
detective may change his mind and give another opinion. This
may cause a further change in opinion. If they talk long enough,
however, then they will come up with the same opinion at the
end! Their final decision can be explained by a common set of
clues, although their individual clues might be different.

The above story is based on the fact that common knowledge of actions
is achieved after a finite number of public announcements of actions, and
then proposition 5.5.1 guarantees that, as long as the agents run the same
policy, they must necessarily take the same actions. On the other hand, if
the actions of the agents are not publicly announced and there are delays or
failures in the transmission of messages from one agent to the other, then,
as shown by Fagin et al. (1995), common knowledge cannot be achieved.

5.6 Notes and further reading

The concept of common knowledge was introduced by Lewis (1969). We
have mainly followed Osborne and Rubinstein (1994, ch. 5) and Geanakop-
los (1992). The latter article is a readable overview on the topic, with many
examples. The definition 5.4.2 of common knowledge and proposition 5.5.1
are due to Aumann (1976). Fagin et al. (1995) provide an epistemic-logic
treatment of knowledge and common knowledge, and give several impossi-
bility results in the case of unreliable communication between agents.



Chapter 6

Communication

In this chapter we address the issue of multiagent communication. We view
communication as a means for the agents to revise their knowledge, and we
briefly review communicative acts, a formal framework for agent interaction.
Then we explain how an agent can compute the value of a communicative
act using the framework of Bayesian games. Finally, we show how communi-
cation can be effectively used for multiagent coordination, by appropriately
modifying the coordination algorithms of chapter 4.

6.1 Communicating agents

Multiagent interaction is often associated with some form of communica-
tion. We employ communication in most of our daily social activities, for
cooperatively solving a problem, for negotiating with others, or simply for
exchanging knowledge with others. As we saw in the puzzle of the hats
in chapter 5, by communicating their answers to each other, the agents were
able to form more accurate statements about the problem, and eventually
solve it.

When we talk about computational agents, communication involves sev-
eral levels of abstraction. On the lower, ‘network’ level, one would like to
make sure that the messages that are communicated among the agents ar-
rive safely and timely at their destination. For that, several well-studied
formalisms and protocols exist in the distributed systems literature (Tanen-
baum and van Steen, 2001). On an intermediate, ‘language’ level, one would
like to have a basic set of language primitives and a standardized format for
exchanging these primitives, so that agents that speak the same language
can easily understand each other. Finally, on a high, ‘application’ level, one
would like to effectively use communication for solving standard multiagent
problems, like coordination or negotiation.

Next we will briefly address the issues of defining appropriate language
primitives, and using communication for multiagent coordination.
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6.2 Communicative acts

As we saw in the previous chapters, a world state is characterized by a num-
ber of agents, the available actions and the payoffs of the agents if the latter
are involved in a strategic game, and other aspects of the external environ-
ment (e.g., the color of a traffic light in a traffic coordination problem). In
some cases, as we saw in section 4.4, some of the actions of an agent may be
deactivated in a particular state because this agent is assigned a particular
role. Similarly, if the world state is partially observable to the agents, each
agent may possess different levels of knowledge about the true state, as we
saw in chapter 5; if the true state is s, an agent i may consider all states in
his information set Pi(s) as candidate true states.

A formal way to describe communication is by treating each commu-
nication primitive as an action that updates the knowledge of an agent
about aspects of the state like those described above. The communica-
tion primitives that are exchanged among agents are typically referred to as
communicative acts or speech acts. Some of the most common types of
communicative acts are the following (as they could be applied, for example,
by an agent in the traffic coordination problem of Fig. 3.2):

Informing about some aspects of the current state, “The traffic light is out
of order,” or about what an agent knows, “The car from the right has
priority.”

Querying aspects of the state that are hidden, “Does your traffic light
work?” or “Do you consider crossing?” or “What is the convention in
this country?”

Committing to a particular action, “I will cross.”

Prohibiting an action, “You may not cross.”

Directing an agent to do an action, “Cross!”

Each communicative act can affect the knowledge of the agents in a
different way. For example, an informing act can reduce the uncertainty of
an agent about the current state by eliminating candidate states from his
information set. In the puzzle of the hats, for example, if at the beginning
agent 1 says “The hat of agent 3 is red”, then, given that agent 1 is truthful,
the information set of agent 3 is transformed from {a, b} to {a}, and the
partitions of all agents change accordingly. Similarly, the answer No of an
agent i to the query “Do you know your hat color?” is a communicative
act that informs the other agents about the current knowledge of agent i
regarding the true state, and results in a refinement of their partitions as
we saw in section 5.3.
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A committing communicative act, on the other hand, can be used for
informing about the chosen course of action of an agent. We have already
seen an example where an agent commits to choosing a specific course of
action: in the backward pass of the variable elimination algorithm of Fig. 4.5,
an agent that computes its optimal action according to its best-response
function and given the optimal actions of the other agents so far, implicitly
commits to taking this action. In section 6.4, this communicative act will
be made more explicit by having each agent communicate its chosen action
to the other agents.

Similar interpretations can be given to the other communicative acts. For
instance, a prohibiting act can have the same effect as a role (see section 4.4),
by enforcing the deactivation of some actions of an agent in a particular
situation. A directing act may apear in an organizational structure of the
agents in which an agent with more authority can give commands to the
other agents.

Recently, several agent communication languages have been pro-
posed in the agents community, aiming at standardizing the multiagent
communication process (Labrou et al., 1999). The two most notable ones
are KQML and FIPA ACL, each using a slightly different syntax and set of
communicative acts. Unfortunately, many dialects of these languages have
already appeared, and the languages seem not to conform with other stan-
dards (for example, in the Internet). As it is often the case, we might see in
the future new language standards emerging directly from applications.

6.3 The value of communication

As we mentioned above, a communicative act can be viewed as an action
that changes the knowledge state of the involved agents. Given a set of
available communicative acts, an agent in a particular state is faced with
the question which act to use and whom to communicate it to. Naturally,
we would like to assign a value to a communicative act as an indicator of the
goodness of this act, just like a Q-value measures the goodness of a regular
action of an agent (see section 2.4). This would allow an agent to select
the most appropriate communicative act per case. But where should these
values come from?

A formal framework that allows us to properly define the value of com-
munication is a Bayesian game. This model combines the strategic game
of chapter 3 with the partial observability concepts of chapter 5. In par-
ticular, we assume a number of agents, a set S of world states, and an
information function for each agent i that gives rise to a partition Pi of S,
different for each agent. We also assume that each state s ∈ S occurs with
some (prior) probability that is assumed equal for all agents, and that it
defines a strategic game Gs with corresponding payoffs.
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L R

U 2, 2 1, 0

D 0, 1 0, 0

L R

U 0, 0 0, 1

D −1, 0 2, 2

Ga (probability 0.7) Gb (probability 0.3)

Figure 6.1: A Bayesian game defined by two strategic games, Ga and Gb.

We will explain by an example how the model of a Bayesian game can be
used for defining the value of a communicative act. Suppose there are two
agents, the state space is S = {a, b}, and the information partitions of the
agents are P1 = {{a}, {b}} and P2 = {{a, b}} and they are common knowl-
edge among the agents. In any true state s, agent 1 knows s, but agent 2
does not know s, and agent 1 knows that agent 2 does not know s. Suppose
also that state a occurs with probability 0.7 and state b with probability 0.3,
and let each of them define a strategic game as shown in Fig. 6.1.

In this problem, the actions of the agents should depend on what state
is actually realized, in other words, which one of Ga or Gb actually applies.
Note that, contrary to the coordination problems of chapter 4 where the
agents had to choose among several equilibria, here each of the two games
has a single equilibrium which is trivial to find; in s = a the agents should
choose (U, L ), and in s = b they should choose (D, R ). However, agent 2
does not know what the true state is, and thus it is difficult for him to
predict the action of agent 1 and find the correct equilibrium.

Given the partial knowledge of the agents about the true state, the ra-
tional joint action (Nash equilibrium) for the agents is (U, L ) which gives to
each of them expected payoff 0.7∗2+0.3∗0 = 1.4. Now, if in any true state s
agent 1 informs agent 2 about s with a communicative act, the partition of
agent 2 will read P2 = {{a}, {b}} and the agents can now safely choose the
correct equilibrium for each value of s. This gives to each of them payoff 2.
The difference 2−1.4 = 0.6 of the expected payoffs of each agent before and
after communication defines the value of the corresponding communicative
act.

In a similar manner an agent can compute the value of all its available
communicative acts in some situation, and then choose the one with the
highest value. In practice, however, taking an optimal decision about what
and with whom to communicate may require computational resources that
go beyond the capacity of an agent. For a bounded rational agent with
memory and time restrictions, there is always a trade-off between choosing
a good communicative act (or any other action) and choosing it quickly. We
could also think of having each agent broadcast its private information to
all other agents in every time step, but this could lead to communication
bottlenecks or other effects.
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For each agent i in parallel
If i 6= 1

Wait until all actions (a∗
1, . . . , a

∗
i−1) are received.

End
Compute an equilibrium that contains (a∗

1, . . . , a
∗
i−1, . . .).

Choose component a∗
i from this equilibrium.

Broadcast action a∗
i to all agents i + 1, . . . , n.

End

Figure 6.2: Coordination by broadcast.

6.4 Coordination via communication

In chapter 4 we studied several coordination algorithms for cooperative
agents. These algorithms relied on several common knowledge assumptions.
In this section we relax some of these assumptions, and show how the algo-
rithms can be modified to explicitly take communication into account. An
advantage of using communication is that an agent does not need to predict
the actions of all other agents at the equilibrium anymore.

Social conventions

When communication is not available, coordination by social conventions is
based on an ordering scheme of joint actions that has been a priori defined
and is common knowledge among agents. As we explained in section 4.3,
such an ordering scheme can be realized in a lexicographic manner, by first
ordering the agents, and then the actions of the agents.

When communication is available, we only need to impose an ordering
i = 1, . . . , n of the agents that is common knowledge. Coordination can now
be achieved by the algorithm of Fig. 6.2. Each agent i (except agent 1) waits
until all previous agents 1, . . . , i−1 in the ordering have broadcast their cho-
sen actions. Then, agent i computes its component of the equilibrium that
agrees with the choices of the previous agents, that is (a∗

1, . . . , a
∗
i−1, a

∗
i , . . .),

and broadcasts a∗
i to all agents that have not chosen an action yet. Note

that, unlike the communication-free coordination algorithm of Fig. 4.2 where
each agent runs the same procedure identically and in parallel, here the fixed
ordering of the agents together with the wait/broadcast primitives result in
a synchronized sequential execution order.

Note that in the above algorithm an agent needs to compute only its own
component of any equilibrium that is consistent with the previously broad-
cast actions, while its communication-free counterpart of Fig. 4.2 requires
that each agent computes all equilibria in the game which can be costly.
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For each agent i in parallel
I = {}.
For each role j = 1, . . . , n

Compute the potential rij of agent i for role j.
Broadcast rij to all agents.

End
Wait until all ri′j, for j = 1, . . . , n, are received.
For each role j = 1, . . . , n

Assign role j to agent i∗ = arg maxi′ /∈I{ri′j }.
Add i∗ to I.

End
End

Figure 6.3: Role assignment by broadcast.

Role assignment

The role assignment algorithm of Fig. 4.3 was based on the assumption
that each agent is able to compute the potential of each other agent for
a particular role. In practice, however, this is not always possible; in a
partially observable domain, a potential function may require elements of
the state that are only privately perceived by an agent (a soccer robot may
know how close it is to the ball, but may not know how close its teammates
are to the ball). In some applications it seems more natural to have each
agent compute by itself how suitable it is for a particular role.

When communication is available, role assignment requires that an agent
computes only its own potentials for the set of roles, and then broadcasts
them to the rest of the agents. The agent then waits for all other potentials
to arrive, and finally computes the assignment of roles to agents as in the
communication-free role assignment algorithm of Fig. 4.3. Here too we as-
sume a fixed ordering j = 1, . . . , n of the set of roles and a potential function
for each role that are common knowledge among the agents. The algorithm
is shown in Fig. 6.3. Note that the broadcast of the potentials to all agents
allows each agent to compute the full assignment of all roles to all agents.
As in Fig. 4.3, agent i will be assigned role j when i∗ = i, which will occur
only once: every agent i∗ that is assigned a role is added to I, and is not
considered again in the set of candidates i′ for a new role.

Concerning the computational requirements, each agent now needs to
compute only O(n) (its own) potentials instead of O(n2) in the algorithm
of Fig. 4.3, but this will be compensated by the total number O(n2) of
potentials that need to be broadcast and processed by the agents. Note
that the maximization step over {ri′j} is the same in both algorithms.
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For each agent i in parallel
If i 6= 1

Wait until agent i− 1 sends OK.
End
Let fj(a−i, ai) be all local payoffs (initial and communicated) that
involve agent i.
Compute Bi(a−i) = arg maxai

∑

j fj(a−i, ai).

Compute f ∗(a−i) = maxai

∑

j fj(a−i, ai).

Send f∗(a−i) to agent j = min{i + 1, . . . , n}, j ∈ −i.
If i 6= n

Send OK to agent i + 1.
Wait until all a∗

−i are received.
End
Choose any a∗i ∈ Bi(a

∗
−i).

Broadcast a∗i to all agents j such that ai ∈ domain(Bj).
End

Figure 6.4: Variable elimination via communication.

Variable elimination

The forward pass of the variable elimination algorithm of Fig. 4.5, where
each agent i computes its best-response function Bi(a−i), relies on the as-
sumption that all local payoff functions fj are common knowledge among
agents. Similarly, in the backward pass, where an agent informs the other
agents of its action choice, we have assumed that the actions of the agents are
ordered and these orderings are common knowledge. The effect of these two
common knowledge assumptions is that each agent can run the algorithm
in parallel, choosing an arbitrary elimination order.

When communication is available, these two assumptions are not needed
anymore. In the forward pass, each agent can maintain in its local memory
the payoff functions that involve only this agent. The initial distribution
of payoff functions to the agents can be done as follows: agent 1 in the
elimination order takes all payoff functions that involve this agent, agent 2
takes all functions that involve this agent and are not distributed to agent 1,
and so on, until no more payoff functions are left. When an agent computes
its best-response function and generates a new payoff function, the agent
can broadcast this function to the other agents involved in it. In fact, the
agent needs to send the payoff function only to the first non-eliminated
agent whose action appears in the domain of this function. Similarly, in
the backward pass an agent can wait for the optimal actions of the other
agents (unless it is the last eliminated agent), then choose any action from
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its best-response action set, and finally broadcast this action to all agents
that need it in their best-response functions.

The complete algorithm is shown in Fig. 6.4. A crucial difference with
the communication-free variable elimination algorithm of Fig. 4.5 is that
here the elimination order i = 1, . . . , n of the agents is a priori fixed and
is common knowledge among the agents. The OK signal is required for
synchronization, ensuring an execution order of the algorithm according to
the elimination order of the agents.

In terms of complexity, the forward pass is slightly slower than in the
communication-free case, because here the generated payoffs need to be com-
municated to the other involved agents. On the other hand, when commu-
nication is available the backward pass is fully asynchronous. One can also
think of asynchronous versions of the forward pass in which many agents
are simultaneously eliminated. This would require some additional book-
keeping for storing the pairwise dependencies between agents.

6.5 Notes and further reading

Speech acts have been studied by Searle (1969). Bayesian games are briefly
covered in (Osborne and Rubinstein, 1994). The role assignment algorithm
of Fig. 6.3 has been proposed by Castelpietra et al. (2000). Gmytrasiewicz
and Durfee (2001) analyze communication in a Bayesian game setting where
the agents model the knowledge of each other recursively. The latter provide
also a framework for multiagent coordination. Among early approaches in
distributed AI to communication-based coordination is the ‘contract net pro-
tocol’ of Smith (1980) where tasks are dynamically distributed among agents
using a bidding mechanism (see also chapter 7), and the ‘partial global plan-
ning’ algorithm of Durfee and Lesser (1987) and Decker and Lesser (1995)
in which agents exchange and refine local plans in order to reach a common
goal. The variable elimination algorithm of Fig. 6.4 is due to Guestrin et al.
(2002a).



Chapter 7

Mechanism design

In this chapter we study the problem of mechanism design, which is the
development of agent interaction protocols that explicitly take into account
the fact that the agents may be self-interested. We discuss the revelation
principle and the Groves-Clarke family of mechanisms that allow us to build
successful protocols in a wide variety of practical problems.

7.1 Self-interested agents

In the previous chapters we mainly studied multiagent systems that consist
of cooperative agents. The fact that the agents work cooperatively for a com-
mon goal allowed us to develop algorithms, like the coordination algorithms
of chapter 4 and 6, in which the agents are assumed to be sincere to each
other and behave as instructed. A soccer agent, for instance, would never
violate a protocol that assigns roles to teammates (see Fig. 4.3), because
this could potentially harm the performance of his team.

In many practical applications, however, we have to deal with self-
interested agents, for example, agents that act on behalf of some owner
that wants to maximize his or her own profit. A typical example is a software
agent that participates in an electronic auction on the Internet. Developing
an algorithm or protocol for such a system is a much more challenging task
than in the cooperative case. First, we have to motivate an agent to par-
ticipate in the protocol, which is not a priori the case. Second, we have to
take into account the fact that an agent may try to manipulate the protocol
for his own interest, leading to suboptimal results. The latter includes the
possibility that the agent may lie, if needed.

The development of protocols that are stable (non-manipulable) and
individually rational for the agents (no agent is worse off by participating)
is the subject of mechanism design or implementation theory. As we
will see next, a standard way to deal with the above two problems is to
provide payments to the agents in exchange for their services.

49
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7.2 The mechanism design problem

In chapter 3 we used the model of a strategic game to describe a situation
in which a group of agents interact with each other. The primitives of
such a game are the action sets Ai and the payoff functions ui(a) of the
agents, for i = 1, . . . , n, where ui(a) reflects the preference of agent i for
the joint action a. Moreover, for any profile of payoff functions, a solution
concept (e.g., Nash equilibrium) allows us to make predictions over the set
of outcomes that may result when the game is played. Our standpoint
in chapter 3 was that of an external observer who wants to know the outcome
of a game, but cannot affect this outcome in any way.

In mechanism design we go one step further. Here we assume a set O
of possible outcomes over which a number of agents form preferences. Our
task is to design a game that, when played by the agents, brings about a
desired outcome from O. In this framework we therefore use a game as a
tool for achieving our design goals. An outcome can be practically anything,
for example, the assignment of a resource to an agent. The main difficulty
in mechanism design is that we often do not know the preferences of the
agents in advance.

More formally, in each world state we assume that each agent i has
some private information θi ∈ Θi, called the type of the agent, which is
not revealed to the other agents or to us (the mechanism designer). We can
think of a profile θ = (θi) of agent types as a world state, and in each state θ
agent i considers possible all states in which his type is θi (see chapter 5).
Moreover, we assume that the type of an agent fully specifies the preferences
of this agent over the set of outcomes o ∈ O. In particular, each agent i has
a valuation function νi(o, θi), that is parametrized on θi, such that agent i
in type θi prefers outcome o to o′ if and only if νi(o, θi) > νi(o

′, θi). We will
assume that in each state θ we know the valuation function of each agent i
(but not his type), and this fact is common knowledge among all agents.

In a mechanism design problem we hold a social choice function f(θ)
that, for any given profile θ = (θi) of agent types, produces a desired outcome
o = f(θ). We can think of f as an algorithm that solves an optimization
problem: given n inputs θ = (θi), the function f computes an outcome o
that maximizes a functional over the set of agents valuations. A typical
case, which we will examine further in section 7.4, is to select the outcome
that maximizes the sum of the agents valuations given their types:

f(θ) = arg max
o∈O

n
∑

i=1

νi(o, θi). (7.1)

Such a social choice function is called allocatively-efficient.

Implementing a social choice function would be easy if we had full ob-
servability of the state θ. Then we could just use θ in (7.1) and compute
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the desired optimal outcome (assuming of course that we have a tractable
algorithm for doing this). However, as we saw above, θi is revealed only
to agent i. One option would be to ask each agent to tell us his type, but
there is no guarantee that an agent will report his true type! Recall that
each agent i forms his own preferences over outcomes, given by his valuation
function νi(o, θi) with θi his true type. If by reporting a false type θ̃i 6= θi an
agent i expects to receive higher payoff than by reporting θi, then this agent
may certainly consider lying. For instance, if a social choice function chooses
the outcome that is last in the (reported) preferences of, say, agent 1, then
agent 1 will report his preferences inverted!

Viewed from a computational perspective, we can characterize mecha-
nism design as follows:

Definition 7.2.1. Mechanism design is the development of efficient algo-
rithms for optimization problems in which some of the parameters of the
objective function are in the control of agents that have different prefer-
ences for different solutions.

The challenge is therefore to design mechanisms that steer the agents
toward selecting the desired o = f(θ) by themselves, for any profile of true
types θ. We focus here on simple mechanisms in the form of a strategic
game M = (Ai, g, p) where:

• Ai is a set of available actions for agent i.

• g is an outcome function that maps a joint action a = (ai) to an
outcome g(a) = o.

• p is a payment function that associates with each joint action a
a profile p(a) = (pi(a)) of payments, so that agent i receives pay-
ment pi(a) when a is chosen.

Including a payment function in M is essential because we need to moti-
vate the agents to participate in the mechanism. As we mentioned above,
participation for an agent is not a priori the case!

When the agents play the game M, we expect them to choose a joint
action a∗(θ) = (a∗i (θi)) according to some solution concept, where the action
a∗i (θi) of an agent i will typically depend on his true type θi. This joint
action is then mapped through g to an outcome g(a∗(θ)) which we want
to equal f(θ). The valuation function together with the payment function
define the payoff function of an agent in M (we assume that payments
and valuations are expressed in the same units):

ui(g(a∗), θi) = νi(g(a∗), θi) + pi(a
∗) (7.2)

which is exactly what each agent cares about maximizing. A mechanism in
which no agent is worse off by participating, that is, ui(g(a−i, a

∗
i ), θi) ≥ 0

for all i, θi, and a−i is called individually rational.
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As solution concept we will consider the following:

Definition 7.2.2. A joint action a∗ = (a∗i ) is an equilibrium in dominant
actions inM if for every agent i holds

ui(g(a−i, a
∗
i ), θi) ≥ ui(g(a−i, ai), θi) (7.3)

for all joint actions (a−i, ai).

Our choice of such a solution concept is motivated by the fact that we
want to design a mechanism in which each agent i can compute his optimal
action a∗i without having to worry about the actions of the other agents.
In terms of predictive power for the solutions of a game, an equilibrium
a∗ = (a∗i ) in dominant actions is weaker than both a Nash equilibrium
and an equilibrium computed by iterated elimination of strictly dominated
actions (see chapter 3). However, in the context of mechanism design, the
existence of such an equilibrium guarantees that every (rational) agent will
adhere to it, even if he has no information about the preferences of the other
agents. Such an equilibrium solution is also very attractive computationally,
because an agent does not need to consider the actions of the other agents
anymore.

Summarizing, the mechanism design problem can be defined as follows:

Definition 7.2.3 (The mechanism design problem). Given a set of
outcomes o ∈ O, a profile of valuation functions νi(o, θi) parametrized by θi,
and a social choice function f(θ), find appropriate action sets Ai, an outcome
function g(a) = o, and a payment function p(a) = (pi(a)), such that for
any profile θ = (θi) and for payoff functions ui(g(a∗), θi) defined via (7.2)
holds g(a∗(θ)) = f(θ), where a∗(θ) = (a∗i (θi)) is an equilibrium solution
in dominant actions of the strategic game M = (Ai, g, p). In this case we
say that the mechanism M implements the social choice function f in
dominant actions.

Example: an auction

Consider the following mechanism design problem (an auction). We have n
agents and an item (e.g., a resource in a computer network). We want to
assign the item to the agent that values it most, but we do not know the
true valuations of the agents. In this example, an outcome o ∈ {1, . . . , n}
is the index of the agent to whom the item is assigned, while the valuation
function of an agent i with type θi ∈ IR+ is νi(o, θi) = θi if o = i and zero
otherwise. The social choice function is f(θ1, . . . , θn) = arg maxi{θi} which
is a special case of (7.1). If we do not include a payment function, that is
pi(a) = 0 for all i, then a mechanism M1 = (Ai, g, 0) that implements f is
always individually rational because for an agent i holds ui(·, θi) = νi(·, θi)
which is either θi > 0 or zero.
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7.3 The revelation principle

Looking at definition 7.2.3, mechanism design seems a formidable task. Our
design options can in principle involve all possible action sets Ai, all possible
outcome functions g, and all kinds of payments p that we could provide to
the agents. Searching in the space of allM = (Ai, g, p) for a mechanism that
implements f would be infeasible. Fortunately, there is a theorem that tells
us that we do not need to search in the space of all possible mechanisms.

Proposition 7.3.1 (Revelation principle). If a social choice function f
is implementable in dominant actions by a mechanismM = (Ai, g, p), then
f is also implementable in dominant actions by mechanism M′ = (Θi, f, p)
where each agent is simply asked to report his type. Moreover, the dominant
action of agent i in M′ is to report his true type θi.

Proof. Suppose truth-telling is not a dominant action in M′. Then there
must be a profile of reported types θ̃ = (θ̃i) for which

ui(f(θ̃−i, θ̃i), θi) > ui(f(θ̃−i, θi), θi). (7.4)

If f is implementable by M in dominant actions, then f(θ) = g(a∗(θ)) for
all θ, where a∗(θ) = (a∗i (θi)) is an equilibrium in dominant actions in M.
We can therefore rewrite (7.4) as

ui(g(a∗−i(θ̃−i), a
∗
i (θ̃i)), θi) > ui(g(a∗−i(θ̃−i), a

∗
i (θi)), θi) (7.5)

which contradicts the fact that a∗
i (θi) is a dominant action inM. Thus the

profile of true types θ = (θi) must be an equilibrium in dominant actions
inM′, from which directly follows that M′ implements f .

A mechanism in the form M = (Θi, f, p) in which each agent is asked
to report his type is called a direct-revelation mechanism. A direct-
revelation mechanism in which truth-telling is the dominant action for every
agent is called strategy-proof. The revelation principle is remarkable be-
cause it allows us to restrict our attention to strategy-proof mechanisms
only. One of its consequences, for example, is that if we cannot implement
a social choice function by a strategy-proof mechanism, then there is no
way to implement this function in dominant actions by any other general
mechanism. The revelation principle has been a powerful theoretical tool
for establishing several possibility and impossibility results in mechanism
design (see, e.g., (Parkes, 2001) for details and references).

Example: second-price sealed-bid (Vickrey) auction

Let us return to the auction example, and consider a direct-revelation mech-
anism M2(Θi, f, p) with pi = −maxj 6=i{θj}. In other words, each agent is
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asked to bid a price (i.e., to report his valuation), and the item is allocated
to the agent with the highest bid. That agent then has to pay tax (negative
payment) equal to the second highest bid, whereas the other agents do not
have to pay anything. In this case, the payoff function of an agent i with
valuation θi equals ui(o, θi) = θi + pi if o = i and zero otherwise. Let θ̃i be
the bid of agent i given that his true valuation is θi, and bi = maxj 6=i{θ̃j}
be the highest bid among all other agents. Mechanism M2 is individually
rational because for the winning agent k holds uk(k, θk) = θk−bk ≥ 0, while
for the other agents j 6= k holds uj(k, θj) = 0.

We will now show that in mechanism M2 truth-telling is a dominant
action for each agent; that is, each agent must bid his true valuation. The
payoff of agent i is ui(·, θi) = θi − bi if θ̃i > bi and zero otherwise. Ignoring
ties, if bi < θi then any bid θ̃i > bi is optimal (results in positive payoff
ui(i, θi) = θi − bi > 0). If bi > θi then any bid θ̃i < bi is optimal (results in
nonnegative payoff). Truth-telling bid θ̃i = θi is optimal in both cases, and
is thus a dominant action inM2.

7.4 The Groves-Clarke mechanism

The mechanismM2 in the auction example above is a strategy-proof mecha-
nism that implements the social choice function f(θ1, . . . , θn) = arg maxi{θi}
which is a special case of an allocatively-efficient social choice function (7.1).
We return now to the more general case. We assume a direct-revelation
mechanism in which the agents are asked to report their types, and based
on their reports θ̃ = (θ̃i) the mechanism computes an optimal outcome f(θ̃)
that solves

f(θ̃) = arg max
o∈O

n
∑

i=1

νi(o, θ̃i). (7.6)

In a Groves mechanism, the payment function that is associated with
a profile of reported types θ̃ is defined for each agent as

pi(θ̃) =
∑

j 6=i

νj(f(θ̃), θ̃j)− hi(θ̃−i), (7.7)

for arbitrary function hi(θ̃−i) that does not depend on the report of agent i.
In this case, and for payoffs given by (7.2), we can show the following (the
proof is left as an exercise):

Proposition 7.4.1. A Groves mechanism is a strategy-proof mechanism.

Having the freedom to choose any function hi(θ̃−i), the Clarke mecha-
nism uses

hi(θ̃−i) =
∑

j 6=i

νj(f
′(θ̃−i), θ̃j) (7.8)
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where f ′(θ̃−i) is an allocatively-efficient social choice function with agent i
excluded:

f ′(θ̃−i) = arg max
o∈O

∑

j 6=i

νj(o, θj). (7.9)

Under quite general conditions, the Clarke mechanism can be shown to be
individually rational. Moreover, in some applications the payments pi to
the agents are negative, so the mechanism does not need to be externally
subsidized (however, the collected tax must be burnt).

Example: shortest path

This is classical example with many applications, that is based on the
Groves-Clarke mechanism. We want to compute the shortest path between
two fixed nodes in a graph. Each edge i in the graph has cost (length)
θi ≥ 0, and is operated by an agent (e.g., a transport company) who would
preferably stay out of the path. We do not know the cost of each edge in
advance, and we want to design a mechanism in which each agent reports
his true cost.

Translated in the language of mechanism design, an outcome o is an
ordered list of agents indices (the edges that are included in the shortest
path); agent i has type θi (the cost of his edge), and valuation function
νi(o, θi) = −θi if i ∈ o and zero otherwise; and the social choice function
f(θ̃) is an algorithm (e.g., Dijkstra’s) that solves (7.6) (computes the shortest
path given the reported costs).

A Clarke mechanism solves the above problem by providing nonzero
payments to all agents i that are included in a shortest path solution. These
payments are computed from (7.7) and (7.8):

pi(θ̃) =
∑

j 6=i

νj(f(θ̃), θ̃j)−
∑

j 6=i

νj(f
′(θ̃−i), θ̃j) = θ̃i − C + C ′ (7.10)

where C is the additive cost (length) of the shortest path solution, and C ′

is the length of the shortest path solution after edge i is removed from the
graph. From (7.2) and (7.10), the payoff of agent i under truth-telling is
ui = −θi + θi−C +C ′, which is always nonnegative since removing an edge
from a graph can never generate a shorter path. It is therefore individually
rational for an agent to participate in this mechanism, and because Groves-
Clarke mechanisms are strategy-proof, each agent will gladly report his true
cost.

7.5 Notes and further reading

Our exposition was partly based on Osborne and Rubinstein (1994, chap. 10),
Parkes (2001, chap. 2), Nisan (1999), and Sandholm (1999). The papers of
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Vickrey (1961), Clarke (1971), and Groves (1973) are seminal. The revela-
tion principle is due to Gibbard (1973). Computational issues in mechanism
design are discussed by Nisan (1999), Parkes (2001), and Papadimitriou
(2001). The latter writes: “All design problems [in computer science] are
now mechanism design problems”.



Chapter 8

Learning

In this chapter we briefly address the issue of learning, in particular rein-
forcement learning which allows agents to learn from delayed rewards. We
outline existing techniques for single-agent systems, and show how they can
be extended in the multiagent case.

8.1 Reinforcement learning

Reinforcement learning (RL) is a generic name given to a family of tech-
niques in which an agent tries to learn a task by directly interacting with
the environment. The method has its roots in the study of animal behavior
under the influence of external stimuli. In the last two decades, RL has
been extensively studied in artificial intelligence, where the emphasis is on
how agents can improve their performance in a given task by perception
and trial-and-error. The field of single-agent RL is nowadays mature, with
well-understood theoretical results and many practical techniques (Sutton
and Barto, 1998).

On the contrary, the field of multiagent reinforcement learning in
which many agents are simultaneously learning by interacting with the envi-
ronment and with each other, is less mature. The main reason is that many
theoretical results for single-agent RL do not directly apply in the case of
multiple agents. There are also computational issues like the difficulty of
dealing with exponentially large state/action spaces, and the intractability
of several distributed decision making algorithms (Bernstein et al., 2000).
Recent efforts involve linking multiagent RL with game-theoretic models
of learning, with promising results (Claus and Boutilier, 1998; Wang and
Sandholm, 2003).

In the rest of the chapter we will present two popular learning algorithms
for single-agent systems, value iteration and Q-learning, and show how they
can be extended to the multiagent case. For simplicity, we will focus on
cooperative multiagent systems only.

57
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8.2 Markov decision processes

In this section we address the single-agent case. The sequential deci-
sion making of an agent in an observable stochastic world with Marko-
vian transition model is called a Markov decision process (MDP). An
MDP extends the decision making model of section 2.4 by allowing an agent
to take consecutive actions at, at+1, . . ., one action per time step t. In an
MDP we assume that in each state st at time t the agent receives from the
environment an immediate reward or reinforcement R(st) ∈ IR. The
task of the agent is to maximize its total discounted future reward
R(st) + γR(st+1) + γ2R(st+2) + · · · , where γ ∈ [0, 1] is a discount rate
that ensures that even with infinite sequences the sum is finite. Clearly, the
discounted future reward will depend on the particular policy of the agent,
because different policies result in different paths in the state space.

Given the above, the optimal utility of a state s for a particular agent
can be defined as the maximum discounted future reward this agent can
receive in state s by following some policy:

U∗(s) = max
π

E

[ ∞
∑

t=0

γtR(st)|π, s0 = s

]

(8.1)

where the expectation operator E[·] averages over rewards and stochastic
transitions. Similarly, we can define an optimal action value Q∗(s, a) as
the maximum discounted future reward the agent can receive after taking
action a in state s. A policy π∗(s) that maximizes the above expression is
called an optimal policy, for which, as we already saw in section 2.4, the
greedy property (2.5) holds. We should note that there can be many optimal
policies in a given task, but they all share a unique U ∗(s) and Q∗(s, a).

If we combine (8.1) with (2.5) we get a recursive definition of optimal
utility:

U∗(s) = R(s) + γ max
a

∑

s′

P (s′|s, a)U ∗(s′). (8.2)

This is called the Bellman equation, and the solutions of this set of equa-
tions (one for each state) define the optimal utility of each state. A similar
recursive definition holds for action values:

Q∗(s, a) = R(s) + γ
∑

s′

P (s′|s, a)max
a′

Q∗(s′, a′). (8.3)

Value iteration

A simple and efficient method for computing optimal utilities in an MDP
when the transition model is available is value iteration. We start with
random utility values U(s) for each state and then iteratively apply (8.2)



8.2. MARKOV DECISION PROCESSES 59

turned into an assignment operation:

U(s) := R(s) + γ max
a

∑

s′

P (s′|s, a)U(s′). (8.4)

We repeat until convergence which is measured in relative increase in U(s)
between two successive update steps. Value iteration converges to the opti-
mal U∗(s) for each state. As we described in section 2.4, from the optimal
utilities we can then easily compute an optimal policy π∗(s) by using (2.5).
For example, using value iteration in the world of Fig. 2.1 with a reward of
R(s) = −1/30 for each nonterminal state and γ = 1 (no discounting), we
get the optimal utilities and the optimal policy shown in Fig. 2.2.

Q-learning

One of the disadvantages of value iteration is that it assumes knowledge of
the transition model P (s′|s, a). However, in many applications the tran-
sition model is unavailable, and we would like to have a learning method
that does not require a model. Q-learning is such a model-free method
in which an agent repeatedly interacts with the environment and tries to
estimate the optimal Q∗(s, a) by trial-and-error. In particular, the agent
starts with random estimates Q(s, a) for each state-action pair, and then
begins exploring the environment. During exploration it receives tuples in
the form (s,R, a, s′) where s is the current state, R is the current reward,
a is an action taken in state s, and s′ is the resulting state after executing a.
From each tuple, the agent updates its action value estimates as

Q(s, a) := (1− λ)Q(s, a) + λ
[

R + γ max
a′

Q(s′, a′)
]

, (8.5)

where λ ∈ (0, 1) is a learning rate that controls convergence. Note that the
maximization in (8.5) is over all actions a′ from the resulting state s′.

If all state-action pairs are visited infinitely often and λ decreases slowly
with time, Q-learning can been shown to converge to the optimal Q∗(s, a).
Moreover, this holds irrespective of the particular exploration policy by
which the agent selects its actions a above. A common choice is the so-called
ε-greedy policy by which in state s the agent selects a random action with
probability ε, and action a = arg maxa′ Q(s, a′) with probability 1−ε, where
ε < 1 is a small number. Alternatively, the agent can choose exploration
action a in state s according to a Boltzmann distribution

p(a|s) =
exp(Q(s, a)/τ)

∑

a′ exp(Q(s, a′)/τ)
, (8.6)

where τ controls the smoothness of the distribution (and thus the random-
ness of the choice), and is decreasing with time.
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8.3 Multiagent reinforcement learning

In this section we examine how RL techniques, like value iteration and Q-
learning, can be extended to the case of multiple agents. Extending RL to
multiagent systems involves several issues, for instance whether the agents
receive the same rewards, whether they know the payoffs of each other in
a local game, whether they observe the selected joint actions, whether they
model each other, etc. For simplicity, we will only deal with cooperative
multiagent systems, in which all agents receive the same reward (or a reward
sampled from the same distribution) in each time step.

As in chapters 3 and 4, we assume here that each state s ∈ S is fully
observable to all agents, and defines a local strategic game Gs with corre-
sponding payoffs for each joint action of the agents. Since we restrict at-
tention to cooperative systems, the true payoff of a joint action is assumed
to be the same for all agents, reflecting average discounted future reward if
this action is taken from the particular state. However, an agent will not be
aware of the true payoffs of Gs, and this is what he must learn.

We additionally assume that the world evolves with a stochastic transi-
tion model p(s′|s, a), where s is the current state, a is the joint action of the
agents, and s′ is the resulting state after a is executed. The transition model
will typically be unknown to the agents. As in single-agent RL, the task of
the agents is to compute an optimal joint policy π∗(s) = (π∗

i (s)) that
maximizes discounted future reward in the specific environment p(s′|s, a).
The challenge in multiagent RL is to guarantee that the individual optimal
policies π∗

i (s) are coordinated, that is, they indeed define an optimal joint
policy π∗(s).

Independent learning

The simplest case is when the agents learn independently of each other.
That is, each agent treats the other agents as part of the environment, and
does not attempt to model them or predict their actions. In this case it is
more natural for an agent to use Q-learning to compute its optimal policy,
because even knowledge of p(s′|s, a) does not imply knowledge of p(s′|s, ai),
where ai is the action of agent i. Note that the way the world changes when
agent i takes action ai in state s depends also on the actions of the other
agents in s, and since agent i does not model the other agents there is no way
for him to compute p(s′|s, ai) (or an informative approximation of it). But
even Q-learning may not result in coordinated individual policies because
its convergence relies on an underlying transition model that is stationary,
i.e., does not change with time. This is not the case with p(s′|s, ai) which
is affected by the policy of the other agents who are also simultaneously
learning.

Although the use of Q-learning by independent agents cannot be justi-
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fied theoretically, the method has been employed in practice with reported
success (Tan, 1993; Sen et al., 1994; Matarić, 1994). Claus and Boutilier
(1998) examine the conditions under which independent Q-learning leads
to individual policies that form a Nash equilibrium in a single state co-
ordination problem, concluding that under general conditions the method
converges. However, the resulting equilibrium may not be Pareto optimal
(see chapter 4). Similarly, Wolpert et al. (1999) have shown that for a con-
strained class of problems independent Q-learning may converge to a Nash
equilibrium.

Joint action learning

Better results can be obtained if the agents attempt to model each other. In
this case, each agent maintains an action value function Q(i)(s, a) for all state
and joint action pairs. Every time a joint action a is taken in state s and a
new state s′ is observed, each agent i updates his Q(i)(s, a). This Q-value
reflects the value of joint action a in state s as modeled by the particular
agent. Note that this framework requires that each agent observes the taken
joint actions. If all agents receive exactly the same reward in each state,
then clearly all Q(i)(s, a) will be identical during Q-learning. However, it
may happen that the rewards the agents receive are different samples from
the same distribution, and thus not identical. In this case the individual
Q(i)(s, a) may differ during Q-learning.

In general, in joint action learning we have to consider the following
issues:

Representation: how an agent should represent Q(i)(s, a).

Optimization: how he can compute arg maxa′ Q(s′, a′) in (8.5).

Exploration: how he should select an exploration action a in (8.5).

With regard to representation, each agent can in principle choose his
own representation. The simplest choice is to use a tabular representation
in which each Q(i)(s, a) is a matrix with as many entries as the pairs of states
s ∈ S and joint actions a ∈ ×iAi. Alternatively, if many agents are involved,
a coordination graph can be used (see section 4.5). In this case the assump-
tion is that the true payoffs can be decomposed as Q(s, a) =

∑

j Qj(s, aj)
where aj denotes the joint action of a subset of agents. Moreover, if com-
munication is available, each agent can only maintain those local payoff
functions Qj(s, aj) that involve him, as in the communication-based coordi-
nation of chapter 6. If the state space is large, a functional representation
of Qj(s, aj) using, for instance, a neural network, may be more appropriate
than a tabular representation (Guestrin et al., 2002b).

Concerning the maximization step arg maxa′ Q(s′, a′) in (8.5), an agent
needs to search over all a′ for the joint action that maximizes Q(i)(s′, a′)
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(hoping that the other estimates Q(j 6=i)(s′, a′) do not differ too much from
Q(i)(s′, a′), see also (Wang and Sandholm, 2003)). In a tabular representa-
tion the maximization involves just a pass through all entries (s′, a′) for given
s′. In a coordination graph representation this can be done with variable
elimination as we explained in section 4.5.

Finally, in the next section we discuss the issue of optimal exploration.

8.4 Exploration policies

An important issue in multiagent RL is how an agent chooses his exploration
policy. We focus again on the cooperative case only. If all observed rewards
are exactly equal, a simple method is to select a joint action in state s
according to a Boltzmann distribution over joint actions using the current
Q(i)(s, a) (which will be the same for all agents). Each agent can sample
a joint action from this distribution by using the same random number
generator (and same seed). This ensures that all agents will sample the
same exploration action a. Then each agent can select his action ai as the
component i of the selected a.

Q-learning with an exploration policy like the above and common knowl-
edge assumptions about parameters like the random number generator and
seed, implies in effect that each agent runs Q-learning over joint actions iden-
tically and in parallel. This guarantees the convergence of the algorithm,
under conditions similar to those in single-agent Q-learning. Equivalently,
if a transition model is available, value iteration can also be performed by
each agent identically. In this way, the whole multiagent system is effec-
tively treated as a ‘big’ single agent, and the learning algorithm is simply
reproduced by each agent. The approach resembles the communication-free
coordination protocols of chapter 4 where each agent runs the same algo-
rithm identically and in parallel.

When the individual rewards differ and common knowledge assumptions
cannot be guaranteed, the following scheme for exploratory action selection
can be used. At time t and state s, agent i chooses at random k joint actions
from the last m (m > k) observed joint actions H = {at−m, . . . , at−1} taken
by the agents in state s. Then each agent i computes the relative frequency
of each a−i, i.e., how many times out of k each a−i was played by the other
agents at state s. This results in an empirical distribution µi(s, a−i) that
reflects the belief of agent i over the joint action a−i of all other agents
at state s. Using such an empirical belief, agent i can now compute his
expected payoff Ui(s, ai) for an action ai at state s as

Ui(s, ai) =
∑

a−i

µi(s, a−i)Q
(i)(s, (a−i, ai)), (8.7)

and then randomly choose a best-response action from arg maxai
Ui(s, ai).
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Variations of the above approach have been used by Peyton Young
(1993), Claus and Boutilier (1998), and Wang and Sandholm (2003). In par-
ticular, under some additional technical conditions, Q-learning with such an
exploration scheme can be shown to converge to a coordinated joint policy
for the agents (Wang and Sandholm, 2003). The approach bears resem-
blance to fictitious play, a learning method in games in which a number of
(less than fully rational) agents interact repeatedly with each other aiming
at reaching an equilibrium (Fudenberg and Levine, 1998).

8.5 Notes and further reading

Single-agent reinforcement learning is treated thoroughly in the book of Sut-
ton and Barto (1998). Fudenberg and Levine (1998) provide a detailed treat-
ment of learning in games. The article of Tan (1993) was one of the first
attempts to extend RL to multiagent systems, where independent learning
was applied on the predator-prey problem. Other references on indepen-
dent Q-learning include (Sen et al., 1994; Matarić, 1994). Schneider et al.
(1999) suggested distributing the local values among (neighboring) agents.
The idea of decomposing the global Q-function into a sum of local func-
tions is due to Guestrin et al. (2002b). The papers of Claus and Boutilier
(1998), Wolpert et al. (1999), and Wang and Sandholm (2003) discuss the
case of cooperative multiagent RL and examine the conditions under which
Q-learning converges. Multiagent RL among self-interested agents has been
treated by Littman (1994) and Lagoudakis and Parr (2003). Learning in
general-sum games has been studied by Hu and Wellman (1998), Littman
(2001), and Bowling and Veloso (2002).



64 CHAPTER 8. LEARNING



Bibliography

Aumann, R. J. (1976). Agreeing to disagree. Ann. Statist., 4(6):1236–1239.

Bellman, R. (1961). Adaptive Control Processes: a Guided Tour. Princeton
University Press.

Bernstein, D. S., Zilberstein, S., and Immerman, N. (2000). The complexity
of decentralized control of Markov decision processes. In Proc. 16th Int.
Conf. on Uncertainty in Artificial Intelligence, Stanford, CA.

Boutilier, C. (1996). Planning, learning and coordination in multiagent
decision processes. In Proc. Conf. on Theoretical Aspects of Rationality
and Knowledge.

Bowling, M. and Veloso, M. (2002). Multiagent learning using a variable
learning rate. Artificial Intelligence, 136(8):215–250.

Castelpietra, C., Iocchi, L., Nardi, D., Piaggio, M., Scalzo, A., and Sgor-
bissa, A. (2000). Coordination among heterogenous robotic soccer players.
In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taka-
matsu, Japan.

Clarke, E. H. (1971). Multipart pricing of public goods. Public choice,
11:17–33.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learn-
ing in cooperative multiagent systems. In Proc. 15th Nation. Conf. on
Artificial Intelligence, Madison, WI.

Cohen, P. R. and Levesque, H. J. (1991). Teamwork. Nous, 25(4):487–512.

Decker, K. and Lesser, V. R. (1995). Designing a family of coordination
algorithms. In Proc. 1st Int. Conf. on Multi-Agent Systems, San Francisco,
CA.

Durfee, E. H. and Lesser, V. R. (1987). Using partial global plans to co-
ordinate distributed problem solvers. In Proc. 10th Int. Joint Conf. on
Artificial Intelligence, Milan, Italy.

65



66 BIBLIOGRAPHY

Fagin, R., Halpern, J., Moses, Y., and Vardi, M. (1995). Reasoning about
Knowledge. The MIT Press, Cambridge, MA.

Ferber, J. (1999). Multi-Agent Systems: an Introduction to Distributed
Artificial Intelligence. Addison-Wesley.

Fudenberg, D. and Levine, D. K. (1998). The theory of learning in games.
MIT Press.

Geanakoplos, J. (1992). Common knowledge. J. of Economic Perspectives,
6(4):53–82.

Gibbard, A. (1973). Manipulation of voting schemes: a general result.
Econometrica, 41:587–601.

Gibbons, R. (1992). Game Theory for Applied Economists. Princeton Uni-
versity Press.

Gilbert, N. and Doran, J., editors (1994). Simulating Societies: the computer
simulation of social phenomena. UCL Press, London.

Gmytrasiewicz, P. J. and Durfee, E. H. (2001). Rational communication in
multi-agent environments. Autonomous Agents and Multi-Agent Systems,
4:233–272.

Groves, T. (1973). Incentives in teams. Econometrica, 41:617–631.

Guestrin, C., Koller, D., and Parr, R. (2002a). Multiagent planning with
factored MDPs. In Advances in Neural Information Processing Systems
14. The MIT Press.

Guestrin, C., Lagoudakis, M., and Parr, R. (2002b). Coordinated reinforce-
ment learning. In Proc. 19th Int. Conf. on Machine Learning, Sydney,
Australia.

Harsanyi, J. C. and Selten, R. (1988). A General Theory of Equilibrium
Selection in Games. MIT Press.

Hu, J. and Wellman, M. P. (1998). Multiagent reinforcement learning: The-
oretical framework and an algorithm. In Proc. 15th Int. Conf. on Machine
Learning, San Francisco, CA.

Huhns, M. N., editor (1987). Distributed Artificial Intelligence. Pitman,
Morgan Kaufmann.

Jennings, N. R. (1996). Coordination techniques for distributed artificial
intelligence. In O’Hare, G. M. P. and Jennings, N. R., editors, Foundations
of Distributed Artificial Intelligence, pages 187–210. John Wiley & Sons.



BIBLIOGRAPHY 67

Kitano, H., Tambe, M., Stone, P., Veloso, M., Coradeschi, S., Osawa, E.,
Matsubara, H., Noda, I., and Asada, M. (1997). The RoboCup synthetic
agent challenge 97. In Proc. Int. Joint Conf. on Artificial Intelligence,
pages 24–29.

Kok, J. R., Spaan, M. T. J., and Vlassis, N. (2003). Multi-robot decision
making using coordination graphs. In Proc. 11th Int. Conf. on Advanced
Robotics, Coimbra, Portugal.

Labrou, Y., Finin, T., and Peng, Y. (1999). Agent communication languages:
The current landscape. IEEE Intelligent Systems, 14(2):45–52.

Lagoudakis, M. G. and Parr, R. (2003). Learning in zero-sum team Markov
games using factored value functions. In Advances in Neural Information
Processing Systems 15, Cambridge, MA. MIT Press.

Lesser, V. R. and Erman, L. D. (1980). Distributed interpretation: a model
and experiment. IEEE Trans. Computers, 29(12):1144–1163.

Lewis, D. K. (1969). Conventions: A Philosophical Study. Harvard Univer-
sity Press, Cambridge.

Littman, M. L. (1994). Markov games as a framework for multi-agent re-
inforcement learning. In Proc. 11th Int. Conf. on Machine Learning, San
Francisco, CA.

Littman, M. L. (2001). Friend-or-foe Q-learning in general-sum games. In
Proc. 18th Int. Conf. on Machine Learning, San Francisco, CA.
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