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Non-rigid image registration: theory and practice
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Abstract. Image registration is an important enabling technology in medical image analysis. The current
emphasis is on development and validation of application-specific non-rigid techniques, but there is already a
plethora of techniques and terminology in use. In this paper we discuss the current state of the art of non-rigid
registration to put on-going research in context and to highlight current and future clinical applications that
might benefit from this technology. The philosophy and motivation underlying non-rigid registration is
discussed and a guide to common terminology is presented. The core components of registration systems are
described and outstanding issues of validity and validation are confronted.

Image registration is a key enabling technology in
medical image analysis that has benefited from 20 years of
development [1]. It is a process for determining the
correspondence of features between images collected at
different times or using different imaging modalities. The
correspondences can be used to change the appearance —
by rotating, translating, stretching etc. — of one image so it
more closely resembles another so the pair can be directly
compared, combined or analysed (Figure 1). The most
intuitive use of registration is to correct for different
patient positions between scans. Image registration is not
an end in itself but adds value to images, e.g. by allowing
structural (CT, MR, ultrasound) and functional (PET,
SPECT, functional MRI (fMRI)) images to be viewed and
analysed in the same coordinate system, and facilitates
new uses of images, e.g. to monitor and quantify disease
progression over time in the individual [2] or to build
statistical models of structural variation in a population
[3]. In some application areas image registration is now a
core tool; for example (i) reliable analysis of fMRIs of the
brain requires image registration to correct for small
amounts of subject motion during imaging [4]; (ii) the
widely used technique of voxel based morphometry makes
use of image registration to bring brain images from tens
or hundreds of subjects into a common coordinate system
for analysis (so-called ‘“‘spatial normalization”) [5]; (iii) the
analysis of perfusion images of the heart would not be
possible without image registration to compensate for
patient respiration [6]; and (iv) some of the latest MR
image acquisition techniques incorporate image registra-
tion to correct for motion [7].

Historically, image-registration has been classified as
being “rigid” (where images are assumed to be of objects
that simply need to be rotated and translated with respect
to one another to achieve correspondence) or “non-rigid”’
(where either through biological differences or image
acquisition or both, correspondence between structures in
two images cannot be achieved without some localized
stretching of the images). Much of the early work in
medical image registration was in registering brain images
of the same subject acquired with different modalities (e.g.
MRI and CT or PET) [8, 9]. For these applications a rigid
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body approximation was sufficient as there is relatively
little change in brain shape or position within the skull
over the relatively short periods between scans. Today
rigid registration is often extended to include affine
registration, which includes scale factors and shears, and
can partially correct for calibration differences across
scanners or gross differences in scale between subjects.
There have been several recent reviews that cover these

source rotate

global scale non-rigid

target

Figure 1. Schematic showing rigid and non-rigid registration.
The source image is rotated, of a different size and contains
different internal structure to the target. These differences are
corrected by a series of steps with the global changes generally
being determined before the local changes.
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areas in more detail [1, 10]. Clearly most of the human
body does not conform to a rigid or even an affine
approximation [11] and much of the most interesting and
challenging work in registration today involves the
development of non-rigid registration techniques for
applications ranging from correcting for soft-tissue
deformation during imaging or surgery [12] through to
modelling changes in neuroanatomy in the very old [13]
and the very young [14]. In this paper we focus on these
non-rigid registration algorithms and their applications.
We first distinguish and compare geometry-based and
voxel-based approaches, discuss outstanding problems of
validity and validation and examine the confluence of
registration, segmentation and statistical modelling. We
concentrate on the concepts, common application areas
and limitations of contemporary algorithms but provide
references to the technical literature for the interested
reader. With such broad ambition this paper will
inevitably fail to be comprehensive but aims to provide
a snapshot of the current state of the art with particular
emphasis on clinical applications. For more specific
aspects of image registration, the reader is referred to
other reviews; there is good technical coverage in Hill et al
[1], Brown [15], Lester and Arridge [16], Maintz and
Viergever [17] and Zitova and Flusser [18], reviews of
cardiac applications in Makela et al [19], nuclear medicine
in Hutton et al [20], radiotherapy in Rosenman et al [21],
digital subtraction angiography in Meijering et al [22] and
brain applications in Toga and Thompson [23] and
Thompson et al [24].

Registration and correspondence

Image registration is about determining a spatial
transformation — or mapping — that relates positions in
one image, to corresponding positions in one or more
other images. The meaning of correspondence is crucial;
depending on the application, the user may be interested in
structural correspondence (e.g. lining up the same
anatomical structures before and after treatment to
detect response), functional correspondence (e.g. lining
up functionally equivalent regions of the brains of a group
of subjects) or structural-functional correspondence (e.g.
correctly positioning functional information on a struc-
tural image). A particular registration algorithm will
determine correspondence at a particular scale, and even
if this transformation is error-free, there will be errors of
correspondence at finer scales. Sometimes the scale is set
explicitly; in registration using free-form deformations [25]
the displacements of a regular grid of control-points are
the parameters to be deduced and the initial millimetre
spacing between these points defines a scale for the
registration. In some other registration types the scale-
selection is more implicit; in the registration used in the
statistical parametric mapping (SPM) package (http://
www.fil.ion.ucl.ac.uk/spm/) for example the number of
discrete-cosine basis functions must be specified by the
user with higher numbers introducing more flexibility into
the registration and hence the ability to determine
correspondences at a finer scale [5]. It is worth emphasising
that increased flexibility comes at some cost. The most
obvious penalty is that more parameter determination
tends to mean more computer time is required. Rigid and
affine registrations can typically be determined in seconds
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or minutes but most non-rigid registration algorithms
require minutes or hours with that time being spent either
identifying a geometric set of corresponding features to
match directly (see below) or automatically determining a
large number of parameters by matching voxel intensities
directly. Another issue is that typically the transformation
is asymmetric: although there will be a vector that, at the
scale of the transformation, describes how to displace each
point in the source image to find the corresponding
location in the target image, there is no guarantee that, at
the same scale, each point in the target image can be
related to a corresponding position in the source image
(see Appendix 1 for a description of common terminology
such as source and target). There may be gaps in the target
image where correspondence is not defined at the selected
scale. Some work has been done on symmetric schemes
which guarantee the same result whether image A is
matched to image B or vice versa [26]. This may be more
appropriate for some applications (matching one normal
brain to another) than others (monitoring the growth of a
lesion). Finally, there is the question of redundancy. If
geometrical features are used to match images then there
will be many different possible deformation fields which
can align those features but which behave differently away
from those features or may be constrained in some way
(e.g. to disallow situations where features can be
“folded” to improve the image match but in a non-
physical way). Similarly there will also be many possible
deformation fields that can result in voxel intensities
appearing to be well matched between images. With all
these possibilities how do we distinguish between equiva-
lent fields and how do we know what is “right” for a
particular application? These are issues of current
importance [27] and are discussed in the context of
validation below.

Components of registration algorithms

A registration algorithm can be decomposed into three
components:

the similarity measure of how well two images match;
the transformation model, which specifies the way in
which the source image can be changed to match the
target. A number of numerical parameters specify a
particular instance of the transformation;

e the optimization process that varies the parameters of
the transformation model to maximize the matching
criterion.

Similarity measures

Registration based on patient image content can be
divided into geometric approaches and intensity
approaches. Geometric approaches build explicit models
of identifiable anatomical elements in each image. These
elements typically include functionally important surfaces,
curves and point landmarks that can be matched with
their counterparts in the second image. These correspon-
dences define the transformation from one image to the
other. The use of such structural information ensures that
the mapping has biological validity and allows the
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transformation to be interpreted in terms of the underlying
anatomy or physiology.

Corresponding point landmarks can be used for
registration [28] provided landmarks can be reliably
identified in both images. Landmarks can either be defined
anatomically (e.g. prominences of the ventricular system),
or geometrically [29-32] by analysing how voxel intensity
varies across an image. When landmarks are identified
manually, it is important to incorporate measures of
location accuracy into the registration [28]. After establish-
ing explicit correspondences between the pairs of point
landmarks, interpolation is used to infer correspondence
throughout the rest of the image volume in a way
consistent with the matched landmarks. Recent work
has incorporated information about the local orientation
of contours at landmark points to further constrain the
registration [33]. In other studies, linear features called
ridges or crest lines are extracted directly from three-
dimensional (3D) images [30, 34-36], and non-rigidly
matched. Then, as above, interpolation extends the
correspondences between lines to the rest of the volume.
For some anatomy linear features are a natural way of
summarizing important structure. For instance in the
brain, a large subset of the crest lines correspond to gyri
and sulci and in Subsol et al [37] these features were
extracted from different brains and registered to a
reference to construct a crest-line atlas. Such atlases
succinctly summarize population anatomical variation. As
point and line matching is relatively fast to compute, a
large number of solutions and potential correspondences
can be explored. Other related applications include the
registration of vascular images where the structures of
interest are “tubes” [38, 39]. Many non-rigid registration
methods based on 3D geometric features use anatomical
surfaces, for example the shape of the left ventricle [40].
Typically, surface-based registration algorithms can be
decomposed into three components: extracting boundary
points of interesting structures in the image, matching the
source and reference surface, and then extending the
surface-based transformation to the full volume. There are
many different ways to implement each of these steps. For
example, Thompson et al extract the surfaces of the lateral
ventricle and the cerebral cortex in a subject’s brain scan
and in a corresponding brain atlas automatically [41]. In
Audette et al [42] brain and skin surfaces in pre-operative
MR and CT images and intraoperative range images are
extracted using the powerful level-set framework [43] and
registered to track intraoperative brain deformation. Other
authors have used elastic [44] and boundary mapping [45]
techniques. The related task of tracking MR brain
deformation in intraoperative images is achieved in
Ferrant et al [46] by registering cortical and ventricle
surfaces and using a biomechanical model of brain tissue
to infer volumetric brain deformation. A detailed survey of
surface-based medical image registration can be found in
Audette et al [47].

Intensity approaches match intensity patterns in each
image using mathematical or statistical criteria. They
define a measure of intensity similarity between the source
and the target and adjust the transformation until the
similarity measure is maximized. They assume that the
images will be most similar at the correct registration.
Measures of similarity have included squared differences in
intensities, correlation coefficient, measures based on
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optical flow, and information-theoretic measures such as
mutual information. The simplest similarity measure is the
sum of squared differences, which assumes that the images
are identical at registration except for (Gaussian) noise.
The correlation coefficient assumes that corresponding
intensities in the images have a linear relationship. These
two similarity measures are suitable for mono-modal
registration where the intensity characteristics are very
similar in the images. For multi-modal registration,
similarity measures have been developed, which define
weaker relationships between intensities to reflect the
different intensity characteristics of different imaging
modalities. The correlation ratio [48] assumes that
corresponding intensities are functionally related at
registration and information-theoretic measures like
mutual information assume only that a probabilistic
relationship between voxel intensities is maximized at
registration. All these measures are discussed at greater
length in Hajnal et al [10] and defined more precisely in
Table 1.

Intensity-based registrations match intensity patterns
over the whole image but do not use anatomical knowl-
edge. Geometric registration uses anatomical information
but usually sparsely distributed throughout the images.
Combining geometric features and intensity features in
registration should result in more robust methods. Hybrid
algorithms are therefore of particular current interest,
combining intensity-based and model-based criteria to
establish more accurate correspondences in difficult
registration problems, e.g. using sulcal information to
constrain intensity-based brain registration [49, 50] or to
combine the cortical surface with a volumetric approach
[51]. Surfaces are also used to drive volumetric registration
in Thompson et al [52] to analyse normal and Alzheimer
brains with respect to an anatomical image database. In
Christensen et al [53] the registration task is to correct for
large displacement and deformation of pelvic organs
induced when intracavity CT applicators are used to
treat advanced cancer of the cervix. Anatomical landmarks
are used to initialize an intensity driven fluid registration
with both stages using the same model for tissue
deformation. In this application the more robust but less
flexible landmark registration produces a robust starting
position for the less robust but more flexible fluid
registration and the two steps run serially (there is further
discussion of fluid registration in the next section). Other
researchers have attempted true hybrid solutions where
intensity and feature information are incorporated into a
single similarity measure, e.g. in Russakoff et al [54] a rigid
registration is computed between a pre-operative spinal
CT and an intraoperative X-ray by maximizing the
difference of a mutual information based intensity measure
and a distance between corresponding landmarks. As is
often the case, an additional parameter has to be chosen
empirically to appropriately weight the intensity and
landmark parts of the similarity measure. A more
sophisticated approach built on the same principles is
used in PASHA (Pair And Smooth Hybrid Algorithm) [55]
where the similarity measure is the weighted sum of an
intensity similarity, a term expressing the difference
between the landmark correspondence and the volumetric
deformation field, and a smoothing term. In Hellier and
Barillot [50] a framework for incorporating landmark
constraints with image-based non-rigid registration is

The British Journal of Radiology, Special Issue 2004



Non-rigid image registration

Table 1. Common image similarity measures used in registration. Here 7(x) is the intensity at a position x in an image and S(#(x))
is the intensity at the corresponding point given by the current estimate of the transformation #(x). N is the number of voxels in the

region of overlap

Voxel similarity measure

Comment

Sum of Squared Differences
SSD = 3= (T(x) = S(t(x)))?
X

Correlation coefficient

> (TR~ T)(5((%)-5)
CC=—=

\/Z (T(0)-T7 Y (S(t(x)) =S’
Correlation ratio
n=1-yg=> Nig;

Mutual information
MI=Hr+Hs—Hrs

Registered images differ only by Gaussian noise.
Sensitive to small number of voxels that have
very large intensity differences. Only for
mono-modal image registration
Registered images have linear intensity relationship
and objects of interest are in the field of view of
both images. Segmentation of interesting features
often necessary. Only for single-modal image registration
The correlation ratio assumes a functional relationship
between intensities. It can be defined in terms of sums
and sums of squares of source voxels that correspond
to a number N; of iso-intense voxels in the target image

02=% Z S(x)z—mz,m=% Z S(x)

overlap x overlapx
1 1
oi=— Z S(x)*—m?, m;= 2 Z S(x)
J x:T(x)=i i x:T(x)=i

Assumes only a probabilistic relationship between intensities.
Defined in terms of entropies of the intensity distribution

Hr=— ZPilogP,-,Hsz - Z O;log Qjand Hys = — Zp,-jlogp,-j
i Jj ij
where P (Q)=probability of intensity / (J) occurring in target

(source) and p;=joint probability of both occurring at the same place

Normalized mutual
Hr+Hs

information NMI = =28
7S

Proposed to minimize the overlap problem seen
occasionally with mutual information

described for the application of intersubject brain
registration where the constraints ensure that homologous
sulci are well matched.

Transformation models

The transformation model defines how one image can be
deformed to match another; it characterizes the type and
number of possible deformations. The most well known
example is the rigid or affine transformation that can be
described very compactly by between 6 (3 translations and
3 rotations) and 12 (6 + 3 scalings + 3 shears) parameters
for a whole image. These parameters are applied to a
vector locating a point in an image to find its location in
another image. The transformation model serves two
purposes; first it controls how image features can be
moved relative to one another to improve the image
similarity and second it interpolates between those features
where there is no useable information. Transformations
used in non-rigid registration range from smooth regional
variation described by a small number of parameters [56]
to dense displacement fields defined at each voxel [2]. One
of the most important transformations is the family of
splines that have been used in various forms for around 15
years. Spline-based registration algorithms use correspond-
ing (“‘control”) points, in the source and target image and
a spline function to define correspondences away from
these points. The “thin-plate” spline [57] has been used
extensively to investigate subtle morphometric variation in
schizophrenia [58-60]. Each control point belonging to a
thin-plate spline has a global influence on the transforma-
tion in that, if its position is perturbed, all other points in
the transformed image change. This can be a disadvantage
because it limits the ability to model complex and localized
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deformations and because, as the number of control points
increases, the computational cost associated with moving a
single point rises steeply. By contrast, B-splines are only
defined in the vicinity of each control point; perturbing the
position of one control point only affects the transforma-
tion in the neighbourhood of the point. Because of this
property, B-splines are often referred to as having “local
support”. B-spline based non-rigid registration techniques
[25] are popular due to their general applicability,
transparency and computational efficiency. Their main
disadvantage is that special measures are sometimes
required to prevent folding of the deformation field and
these measures become more difficult to enforce at finer
resolutions. Such problems have not prevented these
techniques finding widespread use (in the brain [61], the
chest [62] the heart [63, 64], the liver [65], the breast [66,
67] etc.). Elastic models treat the source image as a linear,
elastic solid [68] and deform it using forces derived from
an image similarity measure. The elastic model results in
an internal force that opposes the external image matching
force. The image is deformed until the forces reach
equilibrium. Since the linear elasticity assumption is only
valid for small deformations it is hard to recover large
image differences with these techniques. Replacing the
elastic model by a viscous fluid model [69] allows large and
highly localized deformations. The higher flexibility
increases the opportunity for misregistration, generally
involving the growth of one region instead of a shifting or
distorting another [16]. According to BroNielsen and
Gramkow [70] another non-rigid technique, the “demons”
algorithm [71, 72], can be thought of as an approximation
to fluid registration. Finite element (FE) models allow
more principled control of localized deformations and
have been applied particularly to the head for surgical

S143



scenarios [12, 73]. These models divide the image into cells
and assign to these cells a local physical description of the
anatomical structure. For instance, soft tissue can be
labelled as elastic, bone as rigid and cerebrospinal fluid
(CSF) as fluid. External forces such as landmark
correspondences or voxel similarity measures are applied
to the model, which deforms according to the material
behaviour in each cell. Such approaches tend to be used
where there are strong biomechanical constraints in
operation, i.e. they are appropriate for serial registration
of images of brains undergoing some mechanical
intervention but not appropriate for intersubject registra-
tion. Where registration speed is important some research-
ers have applied optical flow techniques that were
originally developed in the computer vision and artificial
intelligence community. Some adaptation has been
required for medical applications because the ‘“‘constant
intensity”’ assumption is often (usually!) broken in serial
medical images and optical flow methods have not been
widely adopted. Nevertheless optical flow based registra-
tion has enjoyed some success in tracking myocardial tags
[74], aligning CT lung images [75], registering breast
images [76] and registering real and virtual endoscopic
images [77].

Optimization

Optimization refers to the manner in which the
transformation is adjusted to improve the image similarity.
A good optimizer is one that reliably and quickly finds the
best possible transformation. Choosing a good optimizer
requires a good understanding of the registration problem,
the constraints that can be applied and knowledge of
numerical analysis. An in depth discussion of optimization
is far beyond the scope of this paper. In non-rigid
registration applications choosing or designing an optimi-
zer can be difficult because the more non-rigid (or flexible)
the transformation model the more parameters are
generally required to describe it. For the optimizer this
means that more time is required to make a parameter
choice and that there is more chance of choosing a set of
parameters, which result in a good image match which is
nevertheless not the best one (the “local minima”
problem). A more subtle problem is that a transformation
parameter choice that gives a good image or feature
similarity may not be physically meaningful. The most
common example of this is when we have a prior belief
that the registration of one image onto another should be
diffeomorphic; in simple terms this means that if the
transformation were applied to a real physical object to
deform it then no tearing of the object would occur. The
problem is that tearing can often result in a transformation
that makes the images more similar despite it being
physically invalid. Therefore in many situations, e.g. serial
MR brain registration of a subject undergoing diffuse
atrophy, there is a prior expectation that folding or tearing
should not be required to secure a good match. One of the
attractions of fluid registration [69] that has been
successfully used in this application [2, 78] is that the
transformation model implicitly forbids tearing. Often,
tearing is a result of correspondence problems. For
instance, intersubject brain registration where one subject
has a large extrinsic tumour and abdominal registration
where fluid and gas filled spaces can appear and disappear
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between scans are examples where correspondence is
not well defined and where tearing or folding may be
necessary to describe the underlying physical transfor-
mation. Other constraints can be implicit in the choice of
the transformation model, e.g. that the transformation
should be consistent with the behaviour of a deforming
elastic body. Much of the work of optimizers is therefore
to balance the competing demands of finding the best
set of correspondences subject to application-specific
constraints.

The most common optimizer for registering point sets is
the Tterative Closest Point algorithm of Besl and McKay
[79], which does not require all the pair-wise correspon-
dences of landmarks to be pre-defined and which iterates
towards the nearest local error minimum. Some more
recent algorithms solve a similar problem with similar
performance and some claimed advantages in robustness
to local minima [80] and convergence properties [81].
Many registration algorithms are amenable to existing
optimization schemes in that they seek to choose a set of
parameters to maximize (or minimize) a function. This is a
standard problem and there are standard ways to solve it
(e.g. Downhill Simplex Method, Powells Method, Steepest
Gradient Descent, the Conjugate Gradient Method etc.
[82]). Fluid and elastic transformations that can be
described in terms of a partial differential equation
(PDE) can be obtained using existing numerical solvers
(successive over relaxation, full multi-grid etc. [2, 69, 82]).
Which optimization scheme is suitable for a particular
registration application depends on the cost function, the
transformation, potential time-constraints, and the
required accuracy of the registration.

Validation

Validation usually means showing that a registration
algorithm applied to typical data in a given application
consistently succeeds with a maximum (or average) error
acceptable for the application. For geometric approaches a
real-world error can be computed, which for landmark
methods expresses the distance between corresponding
landmarks post-registration. For rigid-registration this
form of error analysis has been studied intensively and
it has been found that an average target registration error
for the whole volume can be estimated from knowledge of
the landmark positions [83]. Such an analysis is not
generally possible for non-rigid techniques so although the
error at landmarks can be established, the error in other
parts of the volume is dependent on the transformation
model and must be estimated using other means. In
intensity-based approaches the registration itself, usually
cannot inform the user of success or failure, as the image
similarity measure is not related to real-world error in a
simple way. For these problems, validation is usually
performed by making additional measurements post-
registration or showing that an algorithm performs as
desired on pairs of test images for which the transforma-
tion is known. One common approach is to identify
corresponding landmarks or regions independently of the
registration process and establish how well the registration
brings them into alignment [56, 84]. In Schnabel et al [66] a
biomechanical model of the human breast is used to
simulate MR images of a breast subject to mechanical
forces as might be experienced during biopsy or movement
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during dynamic contrast-enhanced imaging. Pre- and post-
contrast images subject to known deformation were
generated and used to validate a B-spline based non-
rigid registration. Of course in many applications the true
point-to-point correspondence can never be known and
may not even exist (e.g. intersubject brain registration).
Various kinds of consistency test are also used in
validation; the most common are establishing that
registration of source to target produces the same
alignment as from target to source (this is commonly
not the case for non-rigid registration) or that for three
images, A, B, C, registration of C—A gives the same result
as C—B compounded with B—A [85]. It is important to
carefully pose the registration task in application specific
terms that make use of available information in the image
and prior knowledge. These issues are discussed in some
depth for brain registration problems in Crum et al [27]. In
most applications, careful visual inspection remains the
first and most important validation check available for
previously unseen data.

Applications

Rigid registration is well established as a research tool,
and is becoming widely available in clinical products (such
as on workstations provided by scanner vendors). Non-
rigid registration is only gradually being adopted, partly
due to the difficulties in validation described above.
Nevertheless there is a growing body of published work
that focuses on real-world applications of non-rigid
registration rather than technical refinements. In this
section we briefly review this work and suggest areas
where the use of non-rigid registration is likely to increase
in importance.

Non-rigid registration is a key requirement for the
application of biomechanical models of cardiac function.
A recent methodology involves the creation of a generic
cardiac model that is instantiated by linear elastic
registration with cardiac images of a subject acquired
with more than one imaging modality [86]. Each image
allows different mechanical parameters (e.g. muscle fibre
direction from diffusion tensor imaging, regional tissue
segmentation from MRI etc.) to be assigned to the model
increasing its validity as a representation of the cardiac
function of the individual. The model has been used to
track heart motion in time-series of SPECT and MRI
images and estimate the ejection fraction. In other work, a
two-stage non-rigid registration approach is used to enable
direct comparison of cardiac motion fields between
individuals imaged using tagged MRI [87]. Each tagged
frame was registered back to the end-diastolic frame using
B-spline registration. Then untagged end-diastolic frames
were registered between individuals allowing direct com-
parison of cardiac motion in a single reference frame. This
work is still at a relatively early stage but has huge
potential. The use of gated myocardial perfusion SPECT
to assess left ventricular function and perfusion can be
improved by using registration to remove left ventricular
motion to allow perfusion image to be visualized in a static
coordinate system. Slomka et al [88] attempt this by
sampling the epicardial and endocardial surfaces and
matching all phases to the end-diastolic phase using thin-
plate splines. They argue that the effective resolution of
the technique is improved by removing motion-related blur
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which should lead to improvements in the ability to detect
coronary artery disease. Respiratory motion remains a
problem in cardiac imaging. Strategies such as breath-hold
and navigator-gated imaging have been employed to
reduce the effects of breathing motion but are not
universally successful. McLeish et al [64] used non-rigid
registration to study the motion of the heart during the
breathing cycle. For images acquired at the same cardiac
phase at different stages of inhalation significant deforma-
tion ( ~3-4 mm) was observed in the free wall of the right
atrium and the left ventricle.

There is growing interest in applying registration to
other organs subject to motion and non-rigid deformation
often with a view to tracking their position and shape
during breathing to allow delivery of targeted treatments
for cancer such as external beam radiotherapy or thermal/
cryo ablation. This often involves registration of planning
images acquired pre-treatment, possibly on a different
day at a different site, with images acquired during
treatment. For some organs there will be gross deforma-
tions owing to patient positioning as well as differences
owing to different stomach, bowel and bladder contents,
and owing to breathing. Several authors have used
registration to quantify the motion and deformation of
the liver during breathing as a precursor to tracking
motion. Rohlfing et al [65] used breathing gated acquisi-
tions to acquire MR liver images in normal subjects and
then applied rigid followed by non-rigid registration to
match each breathing phase with the end-expiration
image. They found that non-rigid deformation varied
between 1 cm and 3 cm in the liver across all subjects.
Blackall et al [89] adopted a more sophisticated approach
to the motion analysis in an earlier study by constructing a
statistical model and extracting principal components of
motion and deformation. They found typical deformation
magnitudes of between 1 cm and 1.5 cm with the superior
and inferior surfaces of the liver experiencing the most
deformation.

The motion of lungs during the breathing cycle is also of
interest, especially for external beam radiotherapy applica-
tions. Gee et al [90] use elastic registration to track lung
motion in MR images acquired during normal breathing
and to quantify the deformation, calculate local strains
from the registration displacement field. Boldea et al [91]
use the Demons registration algorithm to detect lung
deformation in CT scans of images acquired while the
subjects used an active breath control device to stop
inhalation or expiration at a specified lung volume. The
technique verified that breath-holding was effective and in
one case, detected a partial lung collapse that occurred
between acquisitions. Another application where breathing
must be accommodated is using CT chest images (acquired
in a maximum inspiration 30 s breath-hold) to provide
high resolution anatomical context to PET functional
scans (acquired over 30 min with free breathing) [62]. The
PET image is an average over the breathing cycle whereas
the CT scan is a snapshot during the breathing cycle.
Using a careful visual assessment of 27 subjects the
authors established that the largest registration errors
occurred in the abdomen (mean ~1.5-2.5 PET voxel
dimensions) and the smallest errors occurred in the mid to
upper lung regions (mean ~0-1.5 PET voxel dimensions).
To standardize anatomy between subjects, Li et al [3] used
a combination of rigid and non-rigid inverse-consistent
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registration techniques to align CT lung volumes from six
individuals. The registration was constrained using 10-15
airway branch points manually identified in each lung.
Dougherty et al [75] used optical flow to register lung
volumes acquired from the same individual at different
times to enable serial analysis of lung structure. The

non-rigid registration

Figure 2. A more unusual application is registering images of
knee joints for the purpose of tracking changes in the thickness
of cartilage. The knee is particularly difficult to image consis-
tently in three dimensions on consecutive occasions due to the
high degree of mobility around the joint regardless of any dis-
ease process. Non-rigid registration, in this case using B-spline
based free-form deformations, can recover most of the differ-
ences between scans of the same subject acquired at different
times.
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method did not require any manual delineation of
landmarks but did not have to accommodate inter-
individual differences in anatomy either.

Central to the use of registration in radiotherapy is its
use to calculate localized dose distributions, which in
common with precise delivery techniques has the potential
to allow higher doses to be delivered to cancerous tissue
without harming nearby normal tissue. Several groups
have applied non-rigid registration to align the prostate
and surrounding structures with this in mind. Fei et al [92]
compared rigid (volumetric) and thin-plate spline (iterated
control-point) registration of MR pelvic volumes to
correct for (a) diagnosis versus treatment positioning;
(b) full-bladder versus empty bladder with repositioning;
(c) diagnosis versus diagnosis positioning with a week
between scans; and (d) diagnosis versus diagnosis with
repositioning. They found that non-rigid registration was
necessary to achieve a good match when repositioning was
significant but that >120 control points were required in
the pelvic volume to achieve a good result (defined as sub-
millimetre residual error in the centroid of the prostate). A
biomechanical model of the prostate has also been used to

. €
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Figure 3. Non-rigid registration applied to intersubject brain
matching. The top row shows two selected slices from a T
weighted MR-volume of a normal subject. The middle row
shows the same slices from a similar image of a different sub-
ject. The bottom row shows the result of using non-rigid (fluid)
registration to match the second subject to the first. The major
neuroanatomical features have been brought into good corre-
spondence. A closer inspection shows that not all of the fine
cortical structure has been matched successfully. This is a typi-
cal finding when comparing brain images across subjects due to
population variation in the geometry of the cortical surface.
Note, the left and right views are not of the same scale.
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correct for differences in positioning and scanning
protocol between pre-operative 1.5 T MR images and
0.5 T MR images acquired during brachytherapy sessions
[93]. Schaly et al [94] used thin-plate-spline registration to
show that significant differences in rectum, bladder and
seminal vesicle doses compared with the planned dose are
possible due to motion both within fractions and between
daily fractions.

Another area where patient positioning and reproduci-
ble imaging is very difficult is in imaging of joints. Work in
is this area is at a relatively early stage but there are
already some obvious applications such as to track
changes in the thickness of cartilage plates over time
[95]. In Figure 2 the ability of non-rigid registration based
on B-splines to correct for repositioning problems in MR
images of a volunteer is shown. There are many potential
applications in the study and monitoring of diseases such
as osteoarthritis.

At the time of writing, it is only in brain applications
that non-rigid registration is used on a routine basis even
though there remain some questions about its veracity [27,
96-98]. Perhaps the most common application is so-called
“spatial normalization™ [5, 99], where it is desired to place
a number of brain images into a single reference frame for
detailed structural or functional comparison (Figure 3).
The SPM package provides a means to do this using a

Post-Contrast Pre-Contrast

>

non-rigid registration
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standard template brain and a non-rigid registration based
on discrete cosine basis functions. A large number of
structural MR brain studies have been performed using
this framework investigating ageing [100], dementia [101—
105], epilepsy [106, 107], schizophrenia [108, 109] etc. It is
well known that normalizing to a specific template can
introduce bias either by registering to a particular brain
that has its own structural peculiarities and/or by forcing a
pre-ordained anatomical coordinate system on each brain
in a study. One solution to this is to register all brains to a
reference frame that minimizes the total “distance”
between itself and each brain and this is an area of
current research [110, 111]. Non-rigid registration algo-
rithms are computationally demanding, which makes
analysis techniques using registration slow, especially
when images of large numbers of subjects are involved.
Recent work has shown how innovations in internet
technology such as computational grids can couple image
analysis algorithms, databases and distributed computing
to provide high-throughput image analysis. A recent
application used grid technology to database a large
number of labelled MR brain images registered to a
standard template. A dynamic atlas could then be
constructed on demand, using the grid for speed, and
matching user preferences such as age, sex, disease,
disease-stage etc. [112]. Such dynamic atlases can be

Difference

Figure 4. Non-rigid registration applied to
lesion detection in contrast-enhanced MR
mammography. The subject is scanned at rest
and then scanned repeatedly after introduc-
tion of a contrast agent. There is often rigid
and non-rigid movement when the agent is
given. The pre- and post-contrast images
appear virtually identical but subtraction
reveals many differences (top panel), most
caused by motion. Rigid registration (middle
panel) reduces the difference between scans
significantly. Non-rigid registration using a
hierarchical B-spline technique (bottom panel)
removes virtually all the artefact associated
with motion leaving clear evidence of an
enhancing lesion.
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used to label a new brain image or to classify it into a
disease category. Disease-specific atlases carefully con-
structed using elastic registration of cortical surfaces and
major sulci had also previously been used to analyse
structural changes in early Alzheimer’s disease [13].
Another area where image registration coupled with
large computer resources is likely to be applied is in
large-scale animal (and ultimately human) morphological
studies for genomic and phenomic investigation and drug
discovery [113].

In contrast to the group-based studies above, another
brain application of non-rigid registration is in monitoring
change in the individual by acquiring serial scans. This has
been particularly useful in dementia where fluid registra-
tion has proven useful for visualizing patterns of regional
atrophy [2, 78]. Studies have also been carried out in
multiple sclerosis to improve the power of analytical
techniques by using non-rigid registration as part of a
pipeline to transform serial scans into a four-dimensional
space for spatiotemporal analysis [114, 115]. Non-rigid
registration has also been used to quantify surgical brain
shift by registering post-operative and intraoperative MR
images with pre-operative images using free-form defor-
mations [116] and linear elastic finite element models
driven by surface deformation [46].

The increasing use of contrast-enhanced MRI breast
imaging has generated problems, which can be solved by
registration (Figure 4). Early work by Davis et al [117] and
Rueckert et al [25] used elastic-body splines and B-splines,
respectively, to correct for motion before and after
contrast injection and between scans acquired over time,
e.g. to track response to chemotherapy. This problem has
also been studied by Bruckner et al [118] where rigid
registration was compared with an elastic non-rigid
registration algorithm. These studies utilized common
structural information in the images to be registered but
did not deal explicitly with the presence or absence of
contrast agent. In Hayton et al [76] a careful consideration
of possible patient motions during dynamic MR image
acquisition is combined with a simple model for contrast
uptake in a 2D registration algorithm based on optical
flow. Where a physical process is affecting image contrast
in a series of images, modelling the effect of that process
on the appearance of image structure is a powerful
approach. In Rohlfing et al [119] and Tanner et al [67]
volume-preserving constraints are applied during registra-
tion of dynamic images to reduce the effect of enhancing
regions on the intensity based registration. Non-rigid
registration has also been used to correct for varying
amounts of breast deformation in 3D free-hand ultrasound
acquisition [120].

A generic application of non-rigid registration is in
segmentation or labelling. The general idea is that an
image exists with structures or tissue classes labelled
already and it is desired to label a new image. If non-rigid
registration can achieve a good correspondence between
structurally equivalent regions on the two images then the
labels can be transferred from one image to another and
the problem is solved. Brain segmentation has been
explored using this technique [84, 121-123]. The amount
of deformation that each label undergoes when being
matched to the target brain can also be used for
volumetric [61, 124] or morphometric analysis. An
ambitious attempt to construct a CT atlas of the liver,
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kidneys and spinal cord is described in Park et al [125]
where thin-plate splines and mutual information were used
to register 31 CT images to a reference. The resulting
tissue probability maps were then applied to organ
segmentation in 20 further scans. In Noble et al [126]
non-rigid registration was used to propagate manual
delineation of epicardial and endocardial boundaries on
a single slice first to other slices in the volume and then to
other cardiac phases in an acquisition. Epicardial volumes
computed from the automated method compared favour-
ably with manual delineations. An example of this process
is shown in Figure 5.

~ . p \‘
end diastolic end systolic

'. /‘
=

rnanIJaI label . propagated label

| L

pre-registration post-registration

Figure 5. Non-rigid registration applied to myocardial segmen-
tation. In this example the myocardium has been manually
delineated on each slice of the end-diastolic phase to define a
surface. The end-diastolic image volume has been registered to
the end-systolic volume to delineate the myocardium at end
systole. Technical details: the images are short axis electro-
cardiogram triggered SSFP SENSE factor 2 images from a
healthy volunteer collected on a Philips Intera 1.5 T scanner
(Philips Medical Systems, Best, The Netherlands) at Guy’s
Hospital, London, UK. 20 cardiac phases were acquired with
each volume consisting of 12-14 contiguous slices, collected in
blocks of three, during up to five breath-holds. Registration
was performed with vtknreg (available free from www.image-
registration.com), which uses free-form deformations modelled
with B-splines.
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Figure 6. An example of 1.5 T versus 3 T MRI of the brain. It must be remembered that image acquisition is evolving along with
image registration. With new imaging opportunities come new registration challenges. This pair of corresponding slices from rigidly
registered brains acquired on two different scanners have exactly the same structure but appear subtly different, despite efforts to
match the image acquisition schemes. The 3 T image has higher signal to noise ratio than the 1.5 T image but is also more prone to
image artefacts, most obviously here in significant amounts of signal inhomogeneity across the brain (so-called “shading artefact™),
and also flow artefacts from the carotid arteries. Registration algorithms driven by intensity information find it hard to differentiate
between image differences caused by biological processes and those caused by details of the acquisition process. Image analysis stu-
dies that migrate from 1.5 T to 3 T scanners, or which involve aggregation of scans collected from scanners of different field strength

are likely to have problems separating real effects from scanner-induced effects.

Conclusions

Image registration is becoming a core technology for
many imaging tasks. For example, reliable analysis of
functional images such as BOLD MRI and perfusion MRI
is not possible without image registration to compensate
for subject motion during scanning. For functional brain
studies, rigid registration is sufficient, but for most other
parts of the body, non-rigid registration is required. Non-
rigid registration of a subject image to a reference image is
also increasingly being used as a way of automatically
segmenting structures of interest from scans. Furthermore,
registration is being used not just as part of the post-
processing of images, but also in the acquisition and
reconstruction of images. These trends mean that image
registration — especially rigid registration — will soon be
widely used clinically without the user even being aware
it is happening. The two obstacles to widespread clinical
use of non-rigid registration are the computational cost
and the difficulty in validating the results. The most
sophisticated non-rigid registration algorithms frequently
take many hours to register images, which makes them
unsuitable for interactive use on image analysis work-
stations or on scanner consoles. For non-rigid registration
to become widely used clinically, there will either need
to be huge improvements in algorithm performance, or
a willingness to allow the analysis to be run ‘“off-line”,
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just as tomographic image reconstruction once was.
For clinical users to be prepared to wait for the
registration results, the difficulties in validation discussed
earlier will need to be addressed. Another important
point is that the field of imaging is advancing in parallel
with the field of image analysis. Figure 6 shows the
changing nature of MRI as more centres have access to
improved imaging technology. In this case the improve-
ment in image quality moving from 1.5 T acquisition to
3T acquisition is apparent but so are the increased
problems of image artefacts. Registration solutions con-
structed for particular types of images do not always
perform as well when the imaging conditions change. This
field is moving rapidly and provided that confidence in
registration technology can be maintained at a high level,
non-rigid registration is likely to become an increasingly
important component of 21st century medical imaging
systems.
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Appendix 1
Terminology

The registration community use a number of terms for
the same things that can confuse the unwary. When two
images are being registered one is conventionally regarded
as static and defining a frame of reference and the other is
transformed (ie. translated, rotated, scaled, sheared,
warped) to bring corresponding features into alignment.
The static image is variously known as the target, reference
or baseline image. The image undergoing transformation is
then known as the source, floating or repeat image. The
criterion used to register two images can be known as
the similarity measure or the objective or cost function.
The geometrical transformation that maps features in one
image to features in another is known as the transforma-
tion, deformation field, displacement field or warp. These
transformations are usually classified as being rigid, affine
or non-rigid. The terms “linear” and “non-linear” are
sometimes substituted for affine and non-rigid although
this is not strictly correct. Other common terms that are
often used together are homology (as in the homologues of
Richard Owen, the famous anatomist of the 19th century)
and correspondence errors. The TRE, a short-hand for
target registration error, is often quoted to give an idea of
the mean registration error in an image. In some cases this
can be calculated explicitly but this is usually not the case
for prospective non-rigid registration.

In this paper we will register “source” images to
“target” images usually by maximizing a “‘similarity
measure’” resulting in a “deformation” field. We will
also talk generally about “transformations” when appro-
priate. See Figure 1 for an example of image registration.
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