

Figure 10.24: The *p* orbitals (a) perpendicular to the plane of the carbon ring system in graphite can combine to form (b) an extensive π -bonding network.

Figure 10.25: Graphite consists of layers of carbon atoms.

		Some Common Types of Glass					
Type of Glass	.si0,	CaO	Ne ₂ O	B _p O _n	ALO:	к,о	MgC
Window (and alime- place)	77		13	_	03	3.8	-
Cookware (aluminosilicate glass)	55	15	1.0		20	5.0	10
Ile at resistant (honosilic ate glass)	76	1	5	13	20	0.5	
Ontical	69	12	6	0.3	-	12	_

Figure 10.30: Energy-level diagrams for (a) an n-type semiconductor and (b) a p-type semiconductor.

Semiconductors A substance in which some electrons can cross the band gap. Conductivity is enhanced by doping with group 3a or group 5a elements.

Figure 10.34: (a) Sulfur crystals (yellow) contain S_8 molecules. (b) White phosphorus (containing P_4 molecules) is so reactive with the oxygen in air that it must be stored under water.

TABLE 10.6 Comparison of Atomic Separations Within Molecules (Covalent Bonds) and Between Molecules (Intermolecular Interactions)					
Solid	Distance Between Atoms in Molecule*	Closest Distance Betweer Molecules in the Solid			
P.4	220 pm	380 pm			
S ₈ Cl ₂	206 pm 199 pm	370 pm 360 pm			

Figure 10.36: (a) The location (X) of a tetrahedral hole in the face-centered cubic unit cell. (b) One of the tetrahedral holes. (c) The unit cell for ZnS where the S²⁻ ions (yellow) are closest packed with the Zn²⁺ ions (red) in alternating tetrahedral holes.

Types of Solids

- An **ionic solid** is a solid that consists of cations and anions held together by electrical attraction of opposite charges (ionic bond).
 - Examples include cesium chloride, sodium chloride, and zinc sulfide (but ZnS has considerable covalent character).

Type of Solid:	Afonic			Molecular	Ionic
	Network	Metallic	Group 8A		
Structural Unit:	Atom	Atom	Atom	Molecule	Ion
Type of Bonding:	Directional covalent bonds	Nondirectional covalent bunds involving electrons that are delocalized throughout the crystal	London dispersion forces	Polar molecules: dipole-dipole interactions Nonpolar molecules: London dispersion forces	lonic
Typical Properties:	Hard	Wide range of hordress		Soft	Hard
	High melting point	Wide range of melting points	Very low melting point	Low melting point	High melting point
	Insulator	Conductor		Insulator	Insulator
Examples.	Diamond	Silver Iron Brass	Argon(3)	lee (solid H ₂ O) Dry ice (solid CO ₂)	Sodium chloride Calcium fluoride

Vapor Pressure

... is the pressure of the vapor present at

... is determined principally by the size of the intermolecular forces in the liquid.
... increases significantly with temperature. Volatile liquids have high vapor pressures.

equilibrium.

TABLE 10.8 The Vapor Pressure of Water as a Function of Temperature	
T (°C)	P (torr)
0.0	4.579
10.0	9.209
20.0	17.535
25.0	23.756
30.0	31.824
40.0	55.324
60.0	149.4
70.0	233.7
90.0	525.8

If we know the vapor pressure, P_1 , of a pure substance at temperature, T_1 , and want to determine the vapor pressure, P_2 , of the substance at a new temperature, T_2 , we can use the Clausius-Clapeyron equation.

Since for a pure substance: $\ln P_1 = -\Delta H_{vap}/RT_1 \quad (1),$ and $\ln P_2 = -\Delta H_{vap}/RT_2 \quad (2)$ we can subtract equation (1) from (2) to get: $\ln P_2 \quad -\ln P_1 = -\Delta H_{vap}/RT_2 \quad (-\Delta H_{vap}/RT_1).$

And, collecting terms

 $\ln (P_2/P_1) = (\Delta H_{vap}/R)(1/T_1 - 1/T_2)$

A Problem to Consider

- Carbon disulfide, CS₂, has a normal boiling point of 46°C (vapor pressure = 760 mmHg) and a heat of vaporization of 26.8 kJ/mol. What is the vapor pressure of carbon disulfide at 35°C?
 - Substituting into the Clausius-Clapeyron equation, we obtain:

```
\ln \frac{P_2}{(760 \text{ mm Hg})} = \frac{26.8 \times 10^3 \text{ J/mol}}{8.31 \text{ J/(mol \cdot K)}} \left(\frac{1}{319 \text{ K}} - \frac{1}{308 \text{ K}}\right)= (3225 \text{ K}) \times (-1.12 \times 10^{-4} \text{ K}^{-1}) = -0.361
```

Figure 10.42: (a) The vapor pressure of water, ethanol, and diethyl ether as a function of temperature. (b) Plots of $In(P_{vap})$ versus 1/T (Kelvin temperature) for water, ethanol, and diethyl ether.

Heat of Phase Transition

- To melt a pure substance at its melting point requires an extra boost of energy to overcome lattice energies.
 - The heat needed to melt 1 mol of a pure substance is called the heat of fusion and denoted ΔH_{fus} .
 - For ice, the heat of fusion is 6.01 kJ/mol.

 $\Delta H_{fus} = 6.01 \text{ kJ}$

 $H_2O(s) \rightarrow H_2O(l);$

Freezing Point

- The temperature at which a pure liquid changes to a crystalline solid, or **freezes**, is called the **freezing point**.
 - The melting point is identical to the freezing point and is defined as the temperature at which a solid becomes a liquid.
 - Unlike boiling points, melting points are affected significantly by only large pressure changes.

for Several Representative Solids				
Compound	Melting Point (°C)	Enthalpy of Fusion (kJ/mol)		
0,	-218	0.45		
HCI	-114	1.99		
HI	-51	2.87		
CCI ₄	-23	2.51		
CHCl ₃	-64	9.20		
II ₂ O	0	6.02		
NaF	992	29.3		
NaCl	801	30.2		

Melting Point

Molecules break loose from lattice points and solid changes to liquid. (Temperature is constant as melting occurs.)

vapor pressure of solid = vapor pressure of liquid

Boiling Point The temperature at which the vapor pressure of a liquid equals the pressure exerted on the liquid is called the boiling point. As the temperature of a liquid increases, the vapor pressure increases until it reaches atmospheric pressure. At this point, stable bubbles of vapor form within the liquid. This is called boiling. The normal boiling point is the boiling point

at 1 atm.

Boiling Point

Constant temperature when added energy is used to vaporize the liquid.

vapor pressure of liquid = pressure of surrounding atmosphere

Location	Feet Above Sea Level	P _{alm} (torr)	Boiling Point (°C)	
Top of Mt. Everest, Tibet	29,028	240	70	
Top of Mt. McKinley, Alaska	20,320	340	79	
Top of Mt. Whitney, Calif.	14,494	430	85	
Leadville, Colo.	10,150	.510	89	
Top of Mt. Washington, N.H.	6,293	.590	93	
Boulder, Colo.	5,430	610	94	
Madison, Wis.	900	730	99	
New York City, N.Y.	10	760	100	
Death Valley, Calif.	-282	770	100.3	

Problem 77, p. 504

A Problem to Consider

- The heat of vaporization of ammonia is 23.4 kJ/mol. How much heat is required to vaporize 1.00 kg of ammonia?
 - Then we can determine the heat required for vaporization.

58.8 mol NH₃ \times 23.4 kJ/mol = 1.38 \times 10³ kJ

Problem 83, p. 504

Phase Diagram

Represents phases as a function of temperature and pressure.

critical temperature: temperature above which the vapor can not be liquefied.

critical pressure: pressure required to liquefy \underline{AT} the critical temperature.

critical point: critical temperature and pressure (for water, $T_c = 374$ °C and 218 atm).

