

Models of Acids and Bases

-Arrhenius Concept: Acids produce H^{+}in solution, bases produce OH^{-}ion.

- Brønsted-Lowry: Acids are H^{+}donors, bases are proton acceptors.
-Review Chapter 4 - Acids \& Bases, Section 4.8

$$
\begin{aligned}
& \mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Cl}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
& \text {acid base }
\end{aligned}
$$

Conjugate Acid/Base Pairs

-conjugate base: everything that remains of the acid molecule after a proton is lost.
-conjugate acid: formed when the proton is transferred to the base.

CONCEPT CHECK 16.1

Chemists in the seventeenth century discovered that the substance that gives red ants their irritating bite is an acid with the formula HCHO_{2}. They called this substance formic acid after the ant, whose Latin name is formica rufus. Formic acid has the following structural formula and molecular model:

Write the acid-base equilibria connecting all components in the aqueous solution. Now list all of the species present.

$\underset{\text { HCOOH }}{\text { formic acid }}+\underset{\text { water }}{\mathrm{H}_{2} \mathrm{O}} \rightleftharpoons \underset{\text { formate ion }}{\mathrm{HCOO}^{-}+} \quad$| $\mathrm{H}_{3} \mathrm{O}^{+}$ |
| :--- |
| hydronium ion |

Acid Strength

Strong Acid:

齂 Its equilibrium position lies far to the right. $\left(\mathrm{HNO}_{3}\right)$
Yields a weak conjugate base. $\left(\mathrm{NO}_{3}{ }^{-}\right)$

$$
\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})
$$

$\mathrm{K}_{\mathrm{a}} \gg 1$ We do not usually consider the reactants in reactions because the are present in very small amounts!

Acid Strength
 (continued)

Weak Acid:

Its equilibrium lies far to the left. $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$
鱼 Yields a much stronger (it is relatively strong) conjugate base than water. $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{a}} \ll 1$ Equilibrium favors reactants - but the solution is still acidic - so acetic acid IS an acid!

Weak \& Strong Acids: (a) A strong acid HA is completely ionized in water. (b) A weak acid HB exists mostly as undissociated HB molecules in water. Note that the water molecules are not shown in this figure.

Figure 14.4: Graphic representation of the behavior of acids of different strengths in aqueous solution. (a) A strong acid. (b) A weak acid.

TABLE 14.1 Various Ways to Describe Acid Strength

Property	Strong Acid	Weak Acid
K_{a} value	K_{a} is large	K_{a} is small
Position of the dissociation (ionization) equilibrium	Far to the right	Far to the left
Equilibrium concentration of H^{+}compared with original concentration of HA	$\left[\mathrm{H}^{+}\right] \approx[\mathrm{HA}]_{0}$	$\left[\mathrm{H}^{+}\right] \ll[\mathrm{HA}]_{0}$
Strength of conjugate base compared with that of water	A^{-}much weaker base than $\mathrm{H}_{2} \mathrm{O}$	A^{-}much stronger base than $\mathrm{H}_{2} \mathrm{O}$

Bases

-"Strong" and "weak" are used in the same sense for bases as for acids.
-strong $=$ complete dissociation (hydroxide ion supplied to solution)

$$
\cdot \mathrm{NaOH}(s) \rightarrow \mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q)
$$

$$
\mathrm{K}_{\mathrm{b}} \gg 1
$$

Bases

(continued)
-weak $=$ very little dissociation (or reaction with water)

$$
\begin{gathered}
\cdot \mathrm{CH}_{3} \mathrm{NH}_{2}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}(a q)+\mathrm{OH}^{-}(a q) \\
\mathrm{K}_{\mathrm{b}} \ll 1
\end{gathered}
$$

TABLE 14.3 Values of $\boldsymbol{K}_{\mathrm{b}}$ for Some Common Weak Bases

Name	Formula	Conjugate Acid	K_{b}
Ammonia	NH_{3}	$\mathrm{NH}_{4}{ }^{+}$	1.8×10^{-5}
Methylamine	$\mathrm{CH}_{3} \mathrm{NH}_{2}$	$\mathrm{CH}_{3} \mathrm{NH}_{3}{ }^{+}$	4.38×10^{-4}
Ethylamine	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	5.6×10^{-4}
Aniline	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}$	3.8×10^{-10}
Pyridine	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}$	1.7×10^{-9}

Figure 14.7: Two water molecules react to form $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}.

$$
\begin{gathered}
2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=\mathrm{K}_{\mathrm{w}}=1.01 \times 10^{-14}}
\end{gathered}
$$

CONCEPT CHECK 16.2
Formic acid, HCHO_{2}, is a stronger acid than acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$. Which is the stronger base, formate ion, $\mathrm{CHO}_{2}{ }^{-}$, or acetate ion, $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{-}$?

Acetic Acid: $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
Formic Acid: $\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-4}$
Acetate ion: $\mathrm{K}_{\mathrm{b}}=5 \times 10^{-10}$
Formate ion: $\mathrm{K}_{\mathrm{b}}=5 \times 10^{-11}$

Acetate ion!

Solutions of Strong Acid or Base

- In a solution of a strong acid you can normally ignore the self-ionization of water as a source of $\mathrm{H}^{+}(\mathrm{aq})$.
- The $\mathrm{H}^{+}(\mathrm{aq})$ concentration is usually determined by the strong acid concentration.
- However, the self-ionization still exists and is responsible for a small concentration of OH^{-}
ion.

$$
\begin{aligned}
& \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) \mathrm{K}_{\mathrm{a}} \gg 1 \\
& 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-14}
\end{aligned}
$$

Self-ionization of Water

- These ions are produced in equal numbers in pure water, so if we let $x=\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$

$$
\begin{aligned}
& 1.0 \times 10^{-14}=(x)(x) \quad \text { at } 25^{0} \mathrm{C} \\
& x=\sqrt{1.0 \times 10^{-14}}=1.0 \times 10^{-7}
\end{aligned}
$$

- Thus, the concentrations of H^{+}and OH^{-}in pure water are both $1.0 \times 10^{-7} \mathrm{M}$.
- If you add acid or base to water they are no longer equal but the K_{w} expression still holds.

Solutions of Strong Acid or Base

- As an example, calculate the concentration of OH^{-} ion in 0.10 M HCl .

Because you started with 0.10 M HCl (a strong acid) the reaction will produce $0.10 \mathrm{M} \mathrm{H}^{+}(\mathrm{aq})$.

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

- Substituting $\left[\mathrm{H}^{+}\right]=0.10$ into the ion-product expression, we get:

$$
1.0 \times 10^{-14}=(0.10)\left[\mathrm{OH}^{-}\right]
$$

Solutions of Strong Acid or

 Base- As an example, calculate the concentration of OH^{-} ion in 0.10 M HCl .

Because you started with 0.10 M HCl (a strong acid) the reaction will produce $0.10 \mathrm{M} \mathrm{H}^{+}(\mathrm{aq})$.

$$
\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

- Substituting $\left[\mathrm{H}^{+}\right]=0.10$ into the ion-product expression, we get:

$$
\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{0.10}=1.0 \times 10^{-13} \mathrm{M}
$$

Solutions of Strong Acid or Base

- Similarly, in a solution of a strong base you can normally ignore the self-ionization of water as a source of $\mathrm{OH}^{-}(\mathrm{aq})$.
- The $\mathrm{OH}^{-}(\mathrm{aq})$ concentration is usually determined by the strong base concentration.
- However, the self-ionization still exists and is responsible for a small concentration of H^{+}ion.

Solutions of Strong Acid or

Base

- As an example, calculate the concentration of H^{+}
ion in 0.010 M NaOH . Because you started with 0.010 M NaOH (a strong base) the reaction will produce $0.010 \mathrm{M} \mathrm{OH}^{-}(\mathrm{aq})$.
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Substituting $\left[\mathrm{OH}^{-}\right]=0.010$ into the ion-product expression, we get:

$$
1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right](0.010)
$$

Solutions of Strong Acid or

Base

- At $25^{\circ} \mathrm{C}$, you observe the following conditions.
- In an acidic solution, $\left[\mathrm{H}^{+}\right]>1.0 \times 10^{-7} \mathrm{M}$.
- In a neutral solution, $\left[\mathrm{H}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$.
- In a basic solution, $\quad\left[\mathrm{H}^{+}\right]<1.0 \times 10^{-7} \mathrm{M}$.

Solutions of Strong Acid or Base

- As an example, calculate the concentration of H^{+} ion in 0.010 M NaOH . Because you started with 0.010 M NaOH (a strong base) the reaction will produce $0.010 \mathrm{M} \mathrm{OH}^{-}(\mathrm{aq})$.
$\mathrm{NaOH}(\mathrm{s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
- Substituting $\left[\mathrm{OH}^{-}\right]=0.010$ into the ion-product expression, we get:

$$
\left[H^{+}\right]=\frac{1.0 \times 10^{-14}}{0.010}=1.0 \times 10^{-12} \mathrm{M}
$$

The pH Scale

- $\mathrm{pH} \approx-\log \left[\mathrm{H}^{+}\right]$
- pH in water ranges from 0 to 14 .
- $K_{\mathrm{w}}=1.00 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
- $\mathrm{p} K_{\mathrm{w}}=14.00=\mathrm{pH}+\mathrm{pOH}$
- As pH rises, pOH falls (sum = 14.00).

The $\mathbf{p H}$ of a Solution

- For a solution in which the hydrogen-ion concentration is 1.0×10^{-3}, the pH is:

$$
p H=-\log \left(1.0 \times 10^{-3}\right)=3.00
$$

- Note that the number of decimal places in the pH equals the number of significant figures in the hydrogen-ion concentration.

The $\mathbf{p H}$ of a Solution

- In a neutral solution, whose hydrogen-ion concentration is 1.0×10^{-7}, the $\mathrm{pH}=7.00$.
- For acidic solutions, the hydrogen-ion concentration is greater than 1.0×10^{-7}, so the pH is less than 7.00.
- Similarly, a basic solution has a pH greater than 7.00.
- Figure 16.6 shows a diagram of the pH scale and the pH values of some common solutions.

A Problem to Consider

- The pH of human arterial blood is 7.40 . What is the hydrogen-ion concentration?

$$
\left[\mathbf{H}^{+}\right]=\operatorname{anti} \log (-\mathbf{p H})
$$

$$
\left[\mathrm{H}^{+}\right]=\operatorname{anti} \log (-7.40)
$$

$$
\left[\mathrm{H}^{+}\right]=10^{-7.40}=4.0 \times 10^{-8} \mathrm{M}
$$

A Problem to Consider

- A sample of orange juice has a hydrogen-ion concentration of $2.9 \times 10^{-4} \mathrm{M}$. What is the pH ?

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \mathrm{pH}=-\log \left(2.9 \times 10^{-4}\right) \\
& \mathrm{pH}=3.54
\end{aligned}
$$

The pH of a Solution

- A measurement of the hydroxide ion concentration, similar to pH , is the pOH .
- The pOH of a solution is defined as the negative logarithm of the molar hydroxide-ion concentration.

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

The pH of a Solution

- A measurement of the hydroxide ion concentration, similar to pH , is the pOH .
- Then because $\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right][\mathrm{OH}]=1.0 \times 10^{-14}$ at $25^{\circ} \mathrm{C}$, you can show that

$$
\mathrm{pH}+\mathrm{pOH}=14.00
$$

A Problem to Consider

- An ammonia solution has a hydroxide-ion concentration of $1.9 \times 10^{-3} \mathrm{M}$. What is the pH of the solution?
You first calculate the pOH :
$\mathrm{pOH}=-\log \left(1.9 \times 10^{-3}\right)=2.72$
Then the pH is:

$$
\mathrm{pH}=14.00-2.72=11.28
$$

The pH of a Solution

- The pH of a solution can accurately be measured using a pH meter
- Although less precise, acid-base indicators are often used to measure pH because they usually change color within a narrow pH range.
- Figure 16.8 shows the color changes of various acid-base indicators.

Figure 14.9: pH meters are used to measure acidity.

Figure 16.8: Color changes of some acidbased indicators.

Percent Dissociation (Degree of Ionization)
$\%$ dissociation $=\frac{\operatorname{amount} \operatorname{dissociated}(M)}{\text { initial concentration }(M)} \times 100 \%$

Weak acids and bases have low values for
$\%$ dissociation - their degree of ionization is small.

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at $25^{\circ} \mathrm{C}$.
$\left[\mathrm{H}^{+}\right]=10^{-3.39}=0.00041$
- To obtain the degree of dissociation:

Degree of dissociation $=\frac{0.00041}{0.012}=0.034$

- The percent ionization is obtained by multiplying by 100 , which gives 3.4%.

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at $25^{\circ} \mathrm{C}$. Calculate the acidionization constant for this acid at $25^{\circ} \mathrm{C}$.
- It is important to realize that the solution was made 0.012 M in nicotinic acid, however, some molecules ionize making the equilibrium concentration of nicotinic acid less than 0.012 M .
- We will abbreviate the formula for nicotinic acid as HNic.

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at $25^{\circ} \mathrm{C}$. Calculate the acidionization constant for this acid at $25^{\circ} \mathrm{C}$.
- Let x be the moles per liter of product formed.

$$
\mathrm{HNic}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Nic}^{-}(\mathrm{aq})
$$

Initial	0.012
Change	-x
Equilibrium	$0.012-\mathrm{x}$

0	0
+x	+x
x	x

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at $25^{\circ} \mathrm{C}$. Calculate the acidionization constant for this acid at $25^{\circ} \mathrm{C}$.
- The equilibrium-constant expression is:

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Nic}^{-}\right]}{[\mathrm{HNic}]}
$$

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at $25^{\circ} \mathrm{C}$. Calculate the acidionization constant for this acid at $25^{\circ} \mathrm{C}$.
- We can obtain the value of x from the given pH .

$$
\begin{aligned}
& \mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\operatorname{anti} \log (-\mathrm{pH}) \\
& \mathrm{x}=\operatorname{antilog}(-3.39) \\
& \mathrm{x}=4.1 \times 10^{-4}=0.00041
\end{aligned}
$$

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at $25^{\circ} \mathrm{C}$. Calculate the acidionization constant for this acid at $25^{\circ} \mathrm{C}$.
- Substituting the expressions for the equilibrium concentrations, we get

$$
\mathbf{K}_{\mathrm{a}}=\frac{\mathbf{x}^{2}}{(0.012-\mathbf{x})}
$$

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at $25^{\circ} \mathrm{C}$. Calculate the acidionization constant for this acid at $25^{\circ} \mathrm{C}$.
- Substitute this value of x in our equilibrium expression.
- Note first, however, that
$\mathbf{(0 . 0 1 2}-\mathbf{x})=\mathbf{(0 . 0 1 2}-\mathbf{0 . 0 0 0 4 1})=\mathbf{0 . 0 1 1 5 9} \cong 0.012$
the concentration of unionized acid remains virtually unchanged.

Solving Weak Acid Equilibrium Problems

List major species in solution.
Choose species that can produce H^{+}and write reactions.

Based on K values, decide on dominant equilibrium.
(1) Write equilibrium expression for dominant equilibrium.
(e) List initial concentrations in dominant equilibrium.

Calculations With \mathbf{K}_{a}

- If you know the value of K_{a}, you can calculate the equilibrium concentrations of species $\mathrm{HA}, \mathrm{A}^{-}$, and $\mathrm{H}_{3} \mathrm{O}^{+}$for solutions of different molarities.

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $\mathrm{HC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at $25^{\circ} \mathrm{C}$. Calculate the acidionization constant for this acid at $25^{\circ} \mathrm{C}$.
- Substitute this value of x in our equilibrium expression.

$$
K_{a}=\frac{x^{2}}{(0.012-x)} \cong \frac{(0.00041)^{2}}{(0.012)}=1.4 \times 10^{-5}
$$

Solving Weak Acid Equilibrium Problems (continued)

(1) Define change at equilibrium (as " x ").
(1) Write equilibrium concentrations in terms of x.

國 Substitute equilibrium concentrations into equilibrium expression.
-1 Solve for x the "easy way."
(1) Verify assumptions using 5% rule.
(1) Calculate $\left[\mathrm{H}^{+}\right]$and pH .

Calculations With $\mathbf{K}_{\mathbf{a}}$

- Note that in our previous example, the degree of dissociation was so small that " x " was negligible compared to the concentration of nicotinic acid.
- It is the small value of the degree of ionization that allowed us to ignore the subtracted x in the denominator of our equilibrium expression.
- The degree of ionization of a weak acid depends on both the K_{a} and the concentration of the acid solution.

Calculations With \mathbf{K}_{a}

- How do you know when you can use this simplifying assumption?
- It can be shown that if the acid concentration, C_{a}, divided by the K_{a} exceeds 100 , that is,

$$
\text { if } \mathrm{C}_{\mathrm{a}} \mathrm{~K}_{\mathrm{a}}>100
$$

then this simplifying assumption of ignoring the subtracted \mathbf{x} gives an acceptable error of less than 5%.

Calculations With \mathbf{K}_{a}

- How do you know when you can use this simplifying assumption?
- If the simplifying assumption is not valid, you can solve the equilibrium equation exactly by using the quadratic equation.
- The next example illustrates this with a solution of aspirin (acetylsalicylic acid), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, a common headache remedy.

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- The molar mass of $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$ is 180.2 g .

From this we find that the sample contained 0.00180 mol of the acid.

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- The molar mass of $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$ is 180.2 g .

Hence, the concentration of the acetylsalicylic acid is $0.00180 \mathrm{~mol} / 0.500 \mathrm{~L}=0.0036 \mathrm{M}$ (Retain two significant figures, the same number of significant figures in K_{a}).

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- Note that

$$
\mathrm{C}_{\mathrm{a}} / \mathrm{K}_{\mathrm{a}}=0.0036 / 3.3 \times 10^{-4}=11
$$

which is less than 100 , so we must solve the equilibrium equation exactly.

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- We will abbreviate the formula for acetylsalicylic acid as HAcs and let \mathbf{x} be the amount of $\mathrm{H}_{3} \mathrm{O}^{+}$formed per liter.
- The amount of acetylsalicylate ion is also $\mathbf{x} \mathrm{mol}$; the amount of nonionized acetylsalicylic acid is (0.0036-x) mol.

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- These data are summarized below.
$\mathrm{HAcs}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\operatorname{Acs}^{-}(\mathrm{aq})$

Initial	0.0036
Change	-x
Equilibrium	$0.0036-\mathrm{x}$

0	0
+x	+x
x	x

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- If we substitute the equilibrium concentrations and the K_{a} into the equilibrium constant expression, we get

$$
\frac{x^{2}}{(0.0036-x)}=3.3 \times 10^{-4}
$$

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- The equilibrium constant expression is

$$
\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{Acs}^{-}\right]}{[\mathrm{HAcs}]}=\mathrm{K}_{\mathrm{a}}
$$

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- You can solve this equation exactly by using the quadratic formula.
- Rearranging the preceding equation to put it in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$, we get

$$
x^{2}+\left(3.3 \times 10^{-4}\right) x-\left(1.2 \times 10^{-6}\right)=0
$$

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- Now substitute into the quadratic formula.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- Now substitute into the quadratic formula.

$$
x=\frac{-\left(3.3 \times 10^{-4}\right) \pm \sqrt{\left(3.3 \times 10^{-4}\right)^{2}-4\left(1.2 \times 10^{-6}\right)}}{2}
$$

- The lower sign in \pm gives a negative root which we can ignore

A Problem To Consider

- What is the pH at $25^{\circ} \mathrm{C}$ of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $\mathrm{HC}_{9} \mathrm{H}_{7} \mathrm{O}_{4}$, in 0.500 L of water? The acid is monoprotic and $\mathrm{K}_{\mathrm{a}}=3.3 \times 10^{-4}$ at $25^{\circ} \mathrm{C}$.
- Taking the upper sign, we get

$$
\mathrm{x}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=9.4 \times 10^{-4}
$$

- Now we can calculate the pH .

$$
\mathrm{pH}=-\log \left(9.4 \times 10^{-4}\right)=3.03
$$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, in aqueous solution? The K_{b} for pyridine is 1.4×10^{-9}.
- As before, we will follow the three steps in solving an equilibrium.

1. Write the equation and make a table of concentrations.
2. Set up the equilibrium constant expression.
3. Solve for $x=\left[\mathrm{OH}^{-}\right]$.

A Problem To Consider (Weak Base)

- What is the pH of a 0.20 M solution of pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, in aqueous solution? The K_{b} for pyridine is 1.4×10^{-9}.
- Pyridine ionizes by picking up a proton from water (as ammonia does).
$\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longleftrightarrow \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Initial	0.20
Change	-x
Equilibrium	$0.20-\mathrm{x}$

0	0
+x	+x
x	x

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, in aqueous solution? The K_{b} for pyridine is 1.4×10^{-9}.
- Note that
$C_{a} / K_{a}=0.20 / 1.4 \times 10^{-9}=1.4 \times 10^{8}$
which is much greater than 100 , so we may use the simplifying assumption that $(0.20-\mathrm{x}) \cong(0.20)$.

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, in aqueous solution? The K_{b} for pyridine is 1.4×10^{-9}.
- The equilibrium expression is

$$
\frac{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right]}=\mathrm{K}_{\mathrm{b}}
$$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, in aqueous solution? The K_{b} for pyridine is 1.4×10^{-9}.
- If we substitute the equilibrium concentrations and the K_{b} into the equilibrium constant expression, we get

$$
\frac{x^{2}}{(0.20-x)}=1.4 \times 10^{-9}
$$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, in aqueous solution? The K_{b} for pyridine is 1.4×10^{-9}.
- Using our simplifying assumption that the x in the denominator is negligible, we get

$$
\frac{x^{2}}{(0.20)} \cong 1.4 \times 10^{-9}
$$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, in aqueous solution? The K_{b} for pyridine is 1.4×10^{-9}.
- Solving for x we get

$$
\begin{gathered}
\mathrm{x}^{2} \cong(0.20) \times\left(1.4 \times 10^{-9}\right) \\
\mathrm{x}=\left[\mathrm{OH}^{-}\right] \cong \sqrt{(0.20) \times\left(1.4 \times 10^{-9}\right)}=1.7 \times 10^{-5}
\end{gathered}
$$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$, in aqueous solution? The K_{b} for pyridine is 1.4×10^{-9}.
- Solving for pOH
$\mathrm{pOH}=-\log [\mathrm{OH}-]=-\log \left(1.7 \times 10^{-5}\right)=4.8$
- Since $\mathrm{pH}+\mathrm{pOH}=14.00$
$\mathrm{pH}=14.00-\mathrm{pOH}=14.00-4.8=9.2$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as polyprotic acids.
- Sulfuric acid, for example, can lose two protons in aqueous solution.
$\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HSO}_{4}^{-}(\mathrm{aq})$
$\mathrm{HSO}_{4}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})$
- The first proton is lost completely followed by a weak ionization of the hydrogen sulfate ion, $\mathrm{HSO}_{4}{ }^{-}$.

Polyprotic Acids

- . . . can furnish more than one proton $\left(\mathrm{H}^{+}\right)$ to the solution.

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \quad\left(K_{\mathrm{a}_{1}}\right) \\
& \mathrm{HCO}_{3}^{-} \leftrightarrow \mathrm{H}^{+}+\mathrm{CO}_{3}^{2-} \quad\left(K_{\mathrm{a}_{2}}\right)
\end{aligned}
$$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as polyprotic acids.
- For a weak diprotic acid like carbonic acid, $\mathrm{H}_{2} \mathrm{CO}_{3}$, two simultaneous equilibria must be considered.

$$
\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})
$$

$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as polyprotic acids.
- Each equilibrium has an associated acidionization constant.

For the loss of the first proton

$$
\mathrm{K}_{\mathrm{a} 1}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{CO}_{3}\right]}=4.3 \times 10^{-7}
$$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as polyprotic acids.
- Each equilibrium has an associated acidionization constant.

For the loss of the second proton

$$
\mathrm{K}_{\mathrm{a} 2}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CO}_{3}{ }^{2-}\right]}{\left[\mathrm{HCO}_{3}{ }^{-}\right]}=4.8 \times 10^{-11}
$$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as polyprotic acids.
- The second ionization constant, $\mathrm{K}_{\mathrm{a} 2}$, for a polyprotic acid is always smaller than the first ionization constant, $\mathrm{K}_{\mathrm{a} 1}$.
- In the case of a triprotic acid, such as $\mathrm{H}_{3} \mathrm{PO}_{4}$, the third ionization constant, $\mathrm{K}_{\mathrm{a} 3}$, is smaller than the second one, $\mathrm{K}_{\mathrm{a} 2}$.

Bronsted-Lowry Concept of Acids and Bases

- Some species can act as an acid or a base.
- An amphoteric species is a species that can act either as an acid or a base (it can gain or lose a proton).
- For example, $\mathrm{HCO}_{3}{ }^{-}$acts as a proton donor (an acid) in the presence of OH^{-}
$\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{CO}_{3}^{-2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Bronsted-Lowry Concept of Acids and Bases

- Some species can act as an acid or a base.
- An amphoteric species is a species that can act either as an acid or a base (it can gain or lose a proton).
Alternatively, HCO_{3} can act as a proton acceptor (a base) in the presence of HF .
$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{HF}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$

Brønsted-Lowry Concept of Acids and Bases

- The amphoteric characteristic of water is important in the acid-base properties of aqueous solutions.
- Water can also react as a base with the acid HF.

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{F}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})
$$

Acid-Base Properties of a Salt Solution

- One of the successes of the Brønsted-Lowry concept of acids and bases was in pointing out that some ions can act as acids or bases.
- Consider a solution of sodium cyanide, NaCN .

$$
\mathrm{NaCN}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CN}^{-}(\mathrm{aq})
$$

- A 0.1 M solution has a pH of 11.1 and is therefore fairly basic.

Bronsted-Lowry Concept of Acids and Bases

- The amphoteric characteristic of water is important in the acid-base properties of aqueous solutions.
- Water reacts as an acid with the base NH_{3}.

Acid-Base Properties of a Salt Solution

- One of the successes of the Brønsted-Lowry concept of acids and bases was in pointing out that some ions can act as acids or bases.
- Sodium ion, Na^{+}, is unreactive with water, but the cyanide ion, CN^{-}, reacts to produce HCN and OH^{-}.
$\mathrm{CN}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HCN}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

Acid-Base Properties of a Salt Solution

- The hydrolysis of an ion is the reaction of an ion with water to produce the conjugate acid and hydroxide ion or the conjugate base and hydronium ion.
- The $\mathrm{NH}_{4}{ }^{+}$ion hydrolyzes to the conjugate base $\left(\mathrm{NH}_{3}\right)$ and hydronium ion.
$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

Predicting Whether a Salt is Acidic, Basic, or Neutral

- These rules apply to normal salts (those in which the anion has no acidic hydrogen)

1. A salt of a strong base and a strong acid.

The salt has no hydrolyzable ions and so gives a neutral aqueous solution.

An example is NaCl .

Predicting Whether a Salt is Acidic, Basic, or Neutral

- These rules apply to normal salts (those in which the anion has no acidic hydrogen)

2. A salt of a strong base and a weak acid.

The anion of the salt is the conjugate of the weak acid. It hydrolyzes to give a basic solution.

An example is NaCN .

Predicting Whether a Salt is Acidic, Basic, or Neutral

- These rules apply to normal salts (those in which the anion has no acidic hydrogen)

3. A salt of a weak base and a strong acid.

The cation of the salt is the conjugate of the weak base. It hydrolyzes to give an acidic solution.

An example is $\mathrm{NH}_{4} \mathrm{Cl}$.

Predicting Whether a Salt is Acidic, Basic, or Neutral

- These rules apply to normal salts (those in which the anion has no acidic hydrogen)

4. A salt of a weak base and a weak acid.

Both ions hydrolyze. You must compare the K_{a} of the cation with the K_{b} of the anion.
If the K_{a} of the cation is larger the solution is acidic.
If the K_{b} of the anion is larger, the solution is basic.

TABLE 14.5
Qualitative Prediction of pH for Solutions of Salts for Which Both Cation and Anion Have Acidic or Basic Properties

$K_{\mathrm{a}}>K_{\mathrm{b}}$	$\mathrm{pH}<7$ (acidic)
$K_{\mathrm{b}}>K_{\mathrm{a}}$	$\mathrm{pH}>7$ (basic)
$K_{\mathrm{a}}=K_{\mathrm{b}}$	$\mathrm{pH}=7$ (neutral)

$\mathrm{pH}>7$ (basic)
$\mathrm{pH}=7$ (neutral)

The pH of a Salt Solution

- To calculate the pH of a salt solution would require the K_{a} of the acidic cation or the K_{b} of the basic anion.
- The ionization constants of ions are not listed directly in tables because the values are easily related to their conjugate species.
- Thus the \mathbf{K}_{b} for $\mathbf{C N}^{-}$is related to the \mathbf{K}_{a} for HCN.

The pH of a Salt Solution

- To see the relationship between K_{a} and K_{b} for conjugate acid-base pairs, consider the acid ionization of HCN and the base ionization of CN^{-}.

LeN $(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CX}(\mathrm{aq})$	K_{a}
$\mathrm{aH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HCN}^{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	K_{b}
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	K_{w}

- When these two reactions are added you get the ionization of water.

The pH of a Salt Solution

- To see the relationship between K_{a} and K_{b} for conjugate acid-base pairs, consider the acid ionization of HCN and the base ionization of CN^{-}.
$\omega \mathrm{K}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CX}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{a}}$

$\mathrm{AX}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HCN}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
K_{w}

- When two reactions are added, their equilibrium constants are multiplied.

The pH of a Salt Solution

- To see the relationship between K_{a} and K_{b} for conjugate acid-base pairs, consider the acid ionization of HCN and the base ionization of CN^{-}.

LeN $(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CX}(\mathrm{aq})$	K_{a}
at $(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{HN}^{2}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	K_{b}
$2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$	K_{w}

- Therefore,

$$
\mathbf{K}_{\mathrm{a}} \times \mathbf{K}_{\mathrm{b}}=\mathbf{K}_{\mathrm{w}}
$$

A Problem To Consider

- What is the pH of a 0.10 M NaCN solution at $25^{\circ} \mathrm{C}$? The K_{a} for HCN is 4.9×10^{-10}.
- Sodium cyanide gives Na^{+}ions and CN^{-}ions in solution.
- Only the CN^{-}ion hydrolyzes.
$\mathrm{CN}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrows \mathrm{HCN}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

The pH of a Salt Solution

- For a solution of a salt in which only one ion hydrolyzes, the calculation of equilibrium composition follows that of weak acids and bases.
- The only difference is first obtaining the K_{a} or K_{b} for the ion that hydrolyzes.
- The next example illustrates the reasoning and calculations involved.

A Problem To Consider

- What is the pH of a 0.10 M NaCN solution at $25^{\circ} \mathrm{C}$? The K_{a} for HCN is 4.9×10^{-10}.
- The CN^{-}ion is acting as a base, so first, we must calculate the K_{b} for CN^{-}.
$K_{b}=\frac{K_{w}}{K_{a}}=\frac{1.0 \times 10^{-14}}{4.9 \times 10^{-10}}=2.0 \times 10^{-5}$
- Now we can proceed with the equilibrium calculation.

A Problem To Consider

- What is the pH of a 0.10 M NaCN solution at $25^{\circ} \mathrm{C}$? The K_{a} for HCN is 4.9×10^{-10}.
- Let $x=\left[\mathrm{OH}^{-}\right]=[\mathrm{HCN}]$, then substitute into the equilibrium expression.
$\frac{[\mathrm{HCN}]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{CN}^{-}\right]}=\mathrm{K}_{\mathrm{b}}$

A Problem To Consider

- What is the pH of a 0.10 M NaCN solution at $25^{\circ} \mathrm{C}$? The K_{a} for HCN is 4.9×10^{-10}.
- This gives

$$
\frac{x^{2}}{(0.10-x)}
$$

Structure and Acid-Base Properties

- Two factors for acidity in binary compounds:

Bond Polarity (high is good)

Bond Strength (low is good)

- As expected, the solution has a pH greater than 7.0.

Molecular Structure and Acid Strength

- Two factors are important in determining the relative acid strengths.
- One is the polarity of the bond to which the hydrogen atom is attached.
- The H atom should have a partial positive charge:

- The more polarized the bond, the more easily the proton is removed and the greater the acid strength.

Molecular Structure and Acid

 Strength- Two factors are important in determining the relative acid strengths.
- The second factor is the strength of the bond. Or, in other words, how tightly the proton is held.
- This depends on the size of atom X.

$$
\stackrel{\delta+}{\mathbf{H}}-\stackrel{\delta-}{\mathbf{X}}
$$

- The larger atom X , the weaker the bond and the greater the acid strength.

Molecular Structure and Acid Strength

- Consider a series of binary acids from a given column of elements.
- As you go down the column of elements, the radius increases markedly and the $\mathrm{H}-\mathrm{X}$ bond strength decreases.
- You can predict the following order of acidic strength.

$$
\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}
$$

Molecular Structure and Acid Strength

- As you go across a row of elements, the polarity of the $\mathrm{H}-\mathrm{X}$ bond becomes the dominant factor.
- As electronegativity increases going to the right, the polarity of the $\mathrm{H}-\mathrm{X}$ bond increases and the acid strength increases.
- You can predict the following order of acidic strength.

$$
\mathrm{H}_{3} \mathrm{~N}<\mathrm{H}_{2} \mathrm{O}<\mathbf{H F}
$$

Molecular Structure and Acid Strength

- Consider the oxoacids. An oxoacid has the structure:

$$
\mathrm{H}-\mathrm{O}-\mathrm{Y}-
$$

- The acidic H atom is always attached to an O atom, which in turn is attached to another atom Y .
- Bond polarity is the dominant factor in the relative strength of oxoacids.
- This, in turn, depends on the electronegativity of the atom Y .

Molecular Structure and Acid Strength

- Consider the oxoacids. An oxoacid has the structure:

$$
\mathrm{H}-\mathrm{O}-\mathrm{Y}
$$

- If the electronegativity of Y is large, then the $\mathrm{O}-\mathrm{H}$ bond is relatively polar and the acid strength is greater.
- We can predict the acid strength for compounds with Y in the same group:
$\mathrm{HOCl}>\mathrm{HOBr}>\mathrm{HOI}$

TABLE 14.9 Comparison of Electronegativity of X and K_{a} Value for a Series of Oxyacids

Acid	Electronegativity of X				$K_{\mathrm{a} \text { for Acid }}$
HOCl	Cl	3.0	4×10^{-8}		
HOBr	Br	2.8	2×10^{-9}		
HOI	I	2.5	2×10^{-11}		
HOCH_{3}	CH_{3}	2.3 (for carbon in CH_{3})	$\sim 10^{-15}$		

Molecular Structure and Acid Strength

- Consider the oxoacids. An oxoacid has the structure:

$$
\mathrm{H}-\mathrm{O}-\mathrm{Y}-\mathrm{X}
$$

- Other groups, such as O atoms or $\mathrm{O}-\mathrm{H}$ groups, may be attached to Y .
- With each additional O atom, Y becomes effectively more electronegative.

Molecular Structure and Acid Strength

- Consider the oxoacids. An oxoacid has the structure:

$$
\mathrm{H}-\mathrm{O}-\mathrm{Y}-
$$

- As a result, the H atom becomes more acidic.
- The acid strengths of the oxoacids of chlorine increase in the following order.

$$
\mathrm{HClO}<\mathrm{HClO}_{2}<\mathrm{HClO}_{3}<\mathrm{HClO}_{4}
$$

Molecular Structure and Acid Strength

- Consider polyprotic acids and their corresponding anions.
- Each successive H atom becomes more difficult to remove.
- Therefore the acid strength of a polyprotic acid and its anions decreases with increasing negative charge.

$$
\mathrm{HPO}_{4}{ }^{2-}<\mathrm{H}_{2} \mathrm{PO}_{4}^{-}{ }^{-}<\mathrm{H}_{3} \mathrm{PO}_{4}
$$

Oxides

- Acidic Oxides (Acid Anhydrides):
($\mathrm{O}-\mathrm{X}$ bond is strong and covalent.

$$
\cdot \mathrm{SO}_{2}, \mathrm{NO}_{2}, \mathrm{CrO}_{3}
$$

- Basic Oxides (Basic Anhydrides):
(1) $\mathrm{O}-\mathrm{X}$ bond is ionic.

$$
\text { - } \mathrm{K}_{2} \mathrm{O}, \mathrm{CaO}
$$

Lewis Acids and Bases

- Lewis Acid: electron pair acceptor
- Lewis Base: electron pair donor

TABLE 14.10 Three Models for Acids and Bases

Model	Definition of Acid	Definition of Base
Arrhenius	H^{+}producer	OH^{-}producer
Brønsted-Lowry	H^{+}donor	H^{+}acceptor
Lewis	Electron-pair acceptor	Electron-pair donor

Lewis Concept of Acids and Bases

- The Lewis concept defines an acid as an electron pair acceptor and a base as an electron pair donor.
- This concept broadened the scope of acid-base theory to include reactions that did not involve H^{+}.
- The Lewis concept embraces many reactions that we might not think of as acid-base reactions.

$$
\mathrm{Al}^{3+}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}\left(\mathrm{OH}_{2}\right)_{6}{ }^{3+}
$$

A model of
$\mathrm{A}\left(\mathrm{OH}_{2}\right)_{6}{ }^{3+}$.
A lone pair from the oxygen atom in each water molecule is donated to the Al^{3+} to coordinate covalent bonds between the water molecules and

$\mathrm{Al}\left(\mathrm{OH}_{2}\right)_{6}{ }^{3+}$ aluminum ion

