

Table 16.1 Common S and Bases	trong Acids
Strong Acids	Strong Bases*
HClO ₄	LiOH
H_2SO_4	NaOH
HI	КОН
HBr	Ca(OH) ₂
HCl	Sr(OH) ₂
HNO ₃	Ba(OH) ₂
*In general, the Group IIA hydro beryllium hydro bases.	oxides (except

Formula	Name	Value of K _a *
HSO_4^- HCO_2 $HC_2H_2CIO_2$ HF HNO_2 $HC_2H_3O_2$ $[AI(H_2O)_6]^{3+}$ HOCI HOCI HCN NH_4^+ $IIOC_6II_5$	Hydrogen sulfate ion Chlorous acid Monochloracetic acid Hydrofluoric acid Nitrous acid Acetic acid Hydrated aluminum(III) ion Hypochlorous acid Hydracyanic acid Aumonium ion Phenol	$ \begin{array}{c} 1.2 \times 10^{-2} \\ 1.2 \times 10^{-2} \\ 1.35 \times 10^{-3} \\ 4.0 \times 10^{-4} \\ 1.8 \times 10^{-5} \\ 1.4 \times 10^{-5} \\ 3.5 \times 10^{-8} \\ 6.2 \times 10^{-10} \\ 1.6 \times 10^{-10} \end{array} \right) $

Weak & Strong Acids: (a) A strong acid HA is completely ionized in water. (b) A weak acid HB exists mostly as undissociated HB molecules in water. Note that the water molecules are not shown in this figure.

Property	Strong Acid	Weak Acid
K _a value	K_a is large	K_a is small
Position of the dissociation (ionization) equilibrium	Far to the right	Far to the left
Equilibrium concentration of H ⁺ compared with original concentration of HA	$\lfloor H^+ \rfloor \approx \lfloor HA \rfloor_0$	$\lfloor H^+ \rfloor \ll \lfloor HA \rfloor_0$
Strength of conjugate base	A ⁻ much weaker	A ⁻ much stronger
compared with that of water	base than H ₂ O	base than H ₂ O

	K _b
hulamina CH NH CH NH ⁺ 4.29	$\times 10^{-5}$
	$\times 10^{-4}$
vlamine C ₂ H ₅ NH ₂ C ₂ H ₅ NH ₃ ⁺ 5.6	$\times 10^{-4}$
line C ₆ H ₃ NH ₂ C ₆ H ₃ NH ₃ ⁺ 3.8	$ imes 10^{-10}$
idine C_5H_5N $C_5H_5NH^+$ 1.7	$ imes 10^{-9}$

Acid	Base	
HCIO ₄	ClO ₄ ⁻	Weakest
H_2SO_4	HSO ₄ ⁻	bases
HI	I_	Ĩ
HBr	Br ⁻	
HC1	Cl-	
HNO3	NO3 ⁻	
H_3O^+	H ₂ O	
HSO4	SO42-	
H_2SO_3	HSO3 ⁻	
H ₃ PO ₄	H ₂ PO ₄	
HNO ₂	NO2 ⁻	
HF	F ⁻	
HC2H3O2	C2H3O2-	
Al(H2O)63+	Al(H ₂ O) ₅ OH ²⁺	
H ₂ CO ₃	HCO3 ⁻	
H ₂ S	HS ⁻	
HCIO	CIO ⁻	
HBrO	BrO ⁻	
NH4 ⁺	NH ₃	
HCN	CN ⁻	
HCO3-		
H_2O_2	HO ₂ ⁻	
HS ⁻		
H ₂ O	OH-	Strongest
	HClO4 HI HI HBr HCl HNO5 HSO4 HSO4 HSO5 HSO5 HHCP HCl HSO5 HCO5 HBRO NH4 HCN HCN HCN HCN HCN HCN HCN HCN HCN HCN	$\begin{array}{cccc} HClO_{4} & ClO_{4}^{-1} \\ HSO_{4}^{-1} & HSO_{4}^{-1} \\ HI & I^{-1} \\ HR & Br^{-1} \\ HCl & Cl^{-1} \\ HO_{5} & NO_{7}^{-1} \\ HO_{5} & NO_{7}^{-1} \\ HSO_{4} & SO_{4}^{-2} \\ HSO_{5} & HSO_{5}^{-1} \\ HSO_{5} & HSO_{5}^{-1} \\ HSO_{5} & HSO_{5}^{-1} \\ HSO_{5} & CHO_{7}^{-1} \\ HSO_{5} & HSO_{7}^{-1} \\ HSO_{5} & HSO_{7}^{-1} \\ HSO_{5} & HSO_{7}^{-1} \\ HSO_{5} & CHO_{7}^{-1} \\ HSO_{5} & HSO_{7}^{-1} \\ HSO_{5} & HSO_{7}^{-1} \\ HSO_{5} & HSO_{7}^{-1} \\ HSO_{7} & CO_{7}^{-1} \\ HO_{7} & HS_{7}^{-1} \\ HSO_{7} & S^{-1} \\ \end{array}$

Self-ionization of Water

• These ions are produced in equal numbers in pure water, so if we let x = [H⁺] = [OH⁻]

 $1.0 \times 10^{-14} = (x)(x) \quad \text{at 25 °C} \\ x = \sqrt{1.0 \times 10^{-14}} = 1.0 \times 10^{-7}$

- Thus, the concentrations of H^+ and OH^- in pure water are both 1.0 x 10^-7 M.
- If you add acid or base to water they are no longer equal but the K_w expression still holds.

Solutions of Strong Acid or Base

- In a solution of a strong acid you can normally ignore the self-ionization of water as a source of H⁺(aq).
 - The H⁺(aq) concentration is usually determined by the strong acid concentration.
 - However, the self-ionization still exists and is responsible for a small concentration of OH⁻
 - ion. H⁺ (aq) + H₂O (l) → H₃O⁺ (aq) K_a >> 1 2 H₂O (l) ⇒ H₃O⁺ (aq) + OH⁻ (aq) K_a = 1.0 x 10⁻¹⁴

Solutions of Strong Acid or Base

• As an example, calculate the concentration of OHion in 0.10 M HCl.

Because you started with 0.10 M HCl (a strong acid) the reaction will produce 0.10 M $H^+(aq)$.

$HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$

• Substituting [H⁺]=0.10 into the ion-product expression, we get:

 $1.0 \times 10^{-14} = (0.10)[OH^{-1}]$

Solutions of Strong Acid or Base

As an example, calculate the concentration of OHion in 0.10 M HCl. Because you started with 0.10 M HCl (a strong

acid) the reaction will produce $0.10 \text{ M H}^+(\text{aq})$.

$HCl(aq) \rightarrow H^+(aq) + Cl^-(aq)$

• Substituting [H⁺]=0.10 into the ion-product expression, we get:

 $[OH^{-}] = \frac{1.0 \times 10^{-14}}{0.10} = 1.0 \times 10^{-13} M$

Solutions of Strong Acid or Base

- Similarly, in a solution of a strong base you can normally ignore the self-ionization of water as a source of OH⁻(aq).
 - The OH-(aq) concentration is usually determined by the strong base concentration.
 - However, the self-ionization still exists and is responsible for a small concentration of H⁺ ion.

Solutions of Strong Acid or Base

• As an example, calculate the concentration of H⁺ ion in 0.010 M NaOH. Because you started with 0.010 M NaOH (a strong base) the reaction will produce 0.010 M OH (aq).

$NaOH(s) \xrightarrow{H_{0}O} Na^{+}(aq) + OH^{-}(aq)$

• Substituting [OH-]=0.010 into the ion-product expression, we get:

 $1.0 \times 10^{-14} = [H^+](0.010)$

Solutions of Strong Acid or Base

• As an example, calculate the concentration of H⁺ ion in 0.010 M NaOH. Because you started with 0.010 M NaOH (a strong base) the reaction will produce 0.010 M OH-(aq).

$NaOH(s) \xrightarrow{H_{0}O} Na^{+}(aq) + OH^{-}(aq)$

• Substituting [OH-]=0.010 into the ion-product

expression, we get: $[H^+] = \frac{1.0 \times 10^{-14}}{0.010} = 1.0 \times 10^{-12} M$

Solutions of Strong Acid or Base

- At 25 °C, you observe the following conditions.
 - In an acidic solution, $[H^+] > 1.0 \times 10^{-7} M$.
 - In a neutral solution, $[H^+] = 1.0 \times 10^{-7} M.$
 - In a basic solution, $[H^+] < 1.0 \times 10^{-7} M.$

The pH Scale

- pH \approx -log[H⁺]
- pH in water ranges from 0 to 14.
- $K_{\rm w} = 1.00 \times 10^{-14} = [\rm H^+] [\rm OH^-]$
- $pK_w = 14.00 = pH + pOH$
- As pH rises, pOH falls (sum = 14.00).

The pH of a Solution

• For a solution in which the hydrogen-ion concentration is 1.0 x 10⁻³, the pH is:

 $pH = -\log(1.0 \times 10^{-3}) = 3.00$

• Note that the number of <u>decimal places</u> in the pH equals the number of significant figures in the hydrogen-ion concentration.

The pH of a Solution

- In a neutral solution, whose hydrogen-ion concentration is 1.0 x 10⁻⁷, the pH = 7.00.
- For acidic solutions, the hydrogen-ion concentration is greater than 1.0 x 10⁻⁷, so the **pH is less than 7.00.**
- Similarly, a basic solution has a pH greater than 7.00.
- Figure 16.6 shows a diagram of the pH scale and the pH values of some common solutions.

A Problem to Consider • A sample of orange juice has a hydrogen-ion concentration of 2.9 x 10^{-4} M. What is the pH? $pH = -log[H^+]$ $pH = -log(2.9 \times 10^{-4})$ pH = 3.54

A Problem to Consider

• The pH of human arterial blood is 7.40. What is the hydrogen-ion concentration?

 $[\mathbf{H}^+] = \operatorname{anti} \log(-\mathbf{p}\mathbf{H})$

 $[H^+] = antilog(-7.40)$

$$[\mathbf{H}^+] = 10^{-7.40} = 4.0 \times 10^{-8} \,\mathrm{M}$$

The pH of a Solution

- A measurement of the hydroxide ion concentration, similar to pH, is the pOH.
 - The **pOH** of a solution is defined as the negative logarithm of the molar hydroxide-ion concentration.

$$pOH = -log[OH^-]$$

The pH of a Solution

- A measurement of the hydroxide ion concentration, similar to pH, is the pOH.
 - Then because $K_w = [H^+][OH^-] = 1.0 \text{ x } 10^{-14}$ at 25 °C, you can show that

pH + pOH = 14.00

A Problem to Consider

• An ammonia solution has a hydroxide-ion concentration of 1.9 x 10⁻³ M. What is the pH of the solution?

You first calculate the pOH:

$pOH = -log(1.9 \times 10^{-3}) = 2.72$

Then the pH is:

$$pH = 14.00 - 2.72 = 11.28$$

The pH of a Solution

- The pH of a solution can accurately be measured using a pH meter (see Figure 14.9).
 - Although less precise, acid-base indicators are often used to measure pH because they usually change color within a narrow pH range.
 - Figure 16.8 shows the color changes of various acid-base indicators.

• Nicotinic acid is a weak monoprotic acid with the formula $HC_6H_4NO_2$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at 25 °C.

$[\mathrm{H}^+] = 10^{-3.39} = 0.00041$

• To obtain the degree of dissociation:

Degree of dissociation
$$=\frac{0.00041}{0.012}=0.034$$

• The percent ionization is obtained by multiplying by 100, which gives 3.4%.

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $HC_6H_4NO_2$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at 25 °C. Calculate the acid-ionization constant for this acid at 25 °C.
 - It is important to realize that the solution was made 0.012 M in nicotinic acid, however, some molecules ionize making the equilibrium concentration of nicotinic acid less than 0.012 M.
 - We will abbreviate the formula for nicotinic acid as HNic.

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula HC₆H₄NO₂. A 0.012 M solution of nicotinic acid has a pH of 3.39 at 25 °C. Calculate the acidionization constant for this acid at 25 °C.
 - Let x be the moles per liter of product formed.

$HNic(aq) + H_2O(l) \implies H_3O^+(aq) + Nic^-(aq)$

Change -x Fauilibrium 0.012 x	Initial	0.012
Equilibrium 0.012 y	Change	-X
Dquinorium 0.012-X	Equilibrium	0.012-x

J (1		
0	0	
$+_{X}$	$+_{\mathbf{X}}$	
х	х	

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula HC₆H₄NO₂. A 0.012 M solution of nicotinic acid has a pH of 3.39 at 25 °C. Calculate the acidionization constant for this acid at 25 °C.
 - We can obtain the value of x from the given pH.

 $x = [H_3O^+] = antilog(-pH)$ x = antilog(-3.39) $x = 4.1 \times 10^{-4} = 0.00041$

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula HC₆H₄NO₂. A 0.012 M solution of nicotinic acid has a pH of 3.39 at 25 °C. Calculate the acidionization constant for this acid at 25 °C.
 - The equilibrium-constant expression is:

$$\mathbf{K}_{a} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{Nic}^{-}]}{[\mathbf{HNic}]}$$

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $HC_6H_4NO_2$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at 25 °C. Calculate the acid-ionization constant for this acid at 25 °C.
 - Substituting the expressions for the equilibrium concentrations, we get

$$K_a = \frac{x^2}{(0.012 - x)}$$

- Nicotinic acid is a weak monoprotic acid with the formula HC₆H₄NO₂. A 0.012 M solution of nicotinic acid has a pH of 3.39 at 25 °C. Calculate the acidionization constant for this acid at 25 °C.
 - Substitute this value of x in our equilibrium expression.
 - Note first, however, that
- $(0.012 x) = (0.012 0.00041) = 0.01159 \cong 0.012$ the concentration of unionized acid remains virtually **unchanged**.

A Problem To Consider

- Nicotinic acid is a weak monoprotic acid with the formula $HC_6H_4NO_2$. A 0.012 M solution of nicotinic acid has a pH of 3.39 at 25 °C. Calculate the acid-ionization constant for this acid at 25 °C.
 - Substitute this value of x in our equilibrium expression.

$$K_a = \frac{x^2}{(0.012 - x)} \cong \frac{(0.00041)^2}{(0.012)} = 1.4 \times 10^{-5}$$

Solving Weak Acid Equilibrium Problems

- Jist major species in solution.
- Choose species that can produce H⁺ and write reactions.
- Based on K values, decide on dominant equilibrium.
- Write equilibrium expression for dominant equilibrium.
- List initial concentrations in dominant equilibrium.

Solving Weak Acid Equilibrium Problems (continued)

- Define change at equilibrium (as "x").
- figure Write equilibrium concentrations in terms of x.
- Substitute equilibrium concentrations into equilibrium expression.
- Solve for *x* the "easy way."
- Verify assumptions using 5% rule.
- Calculate [H⁺] and pH.

Calculations With K_a

• If you know the value of K_a, you can calculate the **equilibrium concentrations of species HA, A⁻, and H₃O⁺** for solutions of different molarities.

Calculations With K_a

- Note that in our previous example, the degree of dissociation was so small that "x" was negligible compared to the concentration of nicotinic acid.
- It is the small value of the degree of ionization that allowed us to ignore the subtracted x in the denominator of our equilibrium expression.
- The degree of ionization of a weak acid depends on both the K_a and the concentration of the acid solution.

Calculations With K_a

- · How do you know when you can use this simplifying assumption?
 - It can be shown that if the acid concentration, C_a , divided by the K_a exceeds 100, that is,

$$f \frac{C_a}{K_a} > 100$$

then this simplifying assumption of ignoring the subtracted x gives an acceptable error of less than 5%.

Calculations With K_a

- · How do you know when you can use this simplifying assumption?
 - If the simplifying assumption is not valid, you can solve the equilibrium equation exactly by using the quadratic equation.
 - The next example illustrates this with a solution of aspirin (acetylsalicylic acid), $HC_9H_7O_4$, a common headache remedy.

A Problem To Consider

• What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), HC₉H₇O₄, in 0.500 L of water? The acid is monoprotic and $K_a = 3.3 \times 10^{-4}$ at 25 °C. • The molar mass of HC₉H₇O₄ is 180.2 g.

> From this we find that the sample contained 0.00180 mol of the acid.

A Problem To Consider

• What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), HC₉H₇O₄, in 0.500 L of water? The acid is monoprotic and $K_a=3.3 \times 10^{-4} \text{ at } 25 \text{ °C}$. • The molar mass of HC₉H₇O₄ is 180.2 g.

> Hence, the concentration of the acetylsalicylic acid is 0.00180 mol/0.500 L = 0.0036 M(Retain two significant figures, the same number of significant figures in K_a).

A Problem To Consider

- What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), HC₉H₇O₄, in 0.500 L of water? The acid is monoprotic and $K_a = 3.3 \times 10^{-4}$ at 25 °C. • Note that

$$C_a/K_a = \frac{0.0036}{3.3 \times 10^{-4}} = 11$$

which is less than 100, so we must solve the equilibrium equation exactly.

A Problem To Consider

- What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), HC₉H₇O₄, in 0.500 L of water? The acid is monoprotic and K_a=3.3 x 10⁻⁴ at 25 °C.
 - · We will abbreviate the formula for acetylsalicylic acid as HAcs and let x be the amount of H₃O⁺ formed per liter.
 - The amount of acetylsalicylate ion is also x mol; the amount of nonionized acetylsalicylic acid is (0.0036-x) mol.

- What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $HC_9H_7O_4$, in 0.500 L of water? The acid is monoprotic and $K_a=3.3 \times 10^{-4}$ at 25 °C.
 - These data are summarized below.

$HAcs(aq) + H_2O(l) \implies H_3O^+(aq) + Acs^-(aq)$

Initial	0.0036	0	0
Change	-X	$+_{X}$	+x
Equilibrium	0.0036-x	Х	x

A Problem To Consider

- What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), HC₉H₇O₄, in 0.500 L of water? The acid is monoprotic and K_a=3.3 x 10⁻⁴ at 25 °C.
 The equilibrium constant expression is
 - $\frac{[\mathrm{H}_{3}\mathrm{O}^{+}][\mathrm{Acs}^{-}]}{[\mathrm{HAcs}]} = \mathrm{K}_{\mathrm{a}}$

A Problem To Consider

- What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), HC₉H₇O₄, in 0.500 L of water? The acid is monoprotic and K_{*}=3.3 x 10⁻⁴ at 25 °C.
 - You can solve this equation exactly by using the quadratic formula.
 - Rearranging the preceding equation to put it in the form $ax^2 + bx + c = 0$, we get

 $x^{2} + (3.3 \times 10^{-4})x - (1.2 \times 10^{-6}) = 0$

A Problem To Consider

- What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), HC₉H₇O₄, in 0.500 L of water? The acid is monoprotic and K_a=3.3 x 10⁻⁴ at 25 °C.
 - Now substitute into the quadratic formula.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

A Problem To Consider

- What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $HC_9H_7O_4$, in 0.500 L of water? The acid is monoprotic and $K_a=3.3 \times 10^{-4}$ at 25 °C.
 - Now substitute into the quadratic formula.

$$x = \frac{-(3.3 \times 10^{-4}) \pm \sqrt{(3.3 \times 10^{-4})^2 - 4(1.2 \times 10^{-6})}}{2}$$

• The lower sign in ± gives a negative root which we can ignore

- What is the pH at 25 °C of a solution obtained by dissolving 0.325 g of acetylsalicylic acid (aspirin), $HC_9H_7O_4$, in 0.500 L of water? The acid is monoprotic and $K_a=3.3 \times 10^{-4}$ at 25 °C.
 - Taking the upper sign, we get

$x = [H_3O^+] = 9.4 \times 10^{-4}$

• Now we can calculate the pH.

 $pH = -log(9.4 \times 10^{-4}) = 3.03$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, C_5H_5N , in aqueous solution? The K_b for pyridine is 1.4 x 10⁻⁹.
 - As before, we will follow the three steps in solving an equilibrium.
 - 1. Write the equation and make a table of concentrations.
 - 2. Set up the equilibrium constant expression.
 - 3. Solve for $x = [OH^{-}]$.

A Problem To Consider (Weak Base)

- What is the pH of a 0.20 M solution of pyridine, C_5H_5N , in aqueous solution? The K_b for pyridine is 1.4 x 10⁻⁹.
 - Pyridine ionizes by picking up a proton from water (as ammonia does).

 $C_5H_5N(aq) + H_2O(l) \Longrightarrow C_5H_5NH^+(aq) + OH^-(aq)$

Initial	0.20
Change	-X
Equilibrium	0.20-x

0	0
$+_{X}$	+x
x	X

A Problem To Consider

• What is the pH of a 0.20 M solution of pyridine, C_5H_5N , in aqueous solution? The K_b for pyridine is 1.4 x 10⁻⁹.

• Note that

 $C_a/K_a = \frac{0.20}{1.4 \times 10^{-9}} = 1.4 \times 10^8$

which is much greater than 100, so we may use the simplifying assumption that $(0.20-x) \cong (0.20)$.

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, C_5H_5N , in aqueous solution? The K_b for pyridine is 1.4 x 10⁻⁹.
 - The equilibrium expression is

$$\frac{\mathbf{C}_{5}\mathbf{H}_{5}\mathbf{N}\mathbf{H}^{+}][\mathbf{O}\mathbf{H}^{-}]}{[\mathbf{C}_{5}\mathbf{H}_{5}\mathbf{N}]} = \mathbf{K}_{b}$$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, C_5H_5N , in aqueous solution? The K_b for pyridine is 1.4 x 10⁻⁹.
 - If we substitute the equilibrium concentrations and the K_b into the equilibrium constant expression, we get

$$\frac{x^2}{(0.20-x)} = 1.4 \times 10^{-9}$$

- What is the pH of a 0.20 M solution of pyridine, C_5H_5N , in aqueous solution? The K_b for pyridine is 1.4 x 10⁻⁹.
 - Using our simplifying assumption that the x in the denominator is negligible, we get

 $\frac{x^2}{(0.20)} \cong 1.4 \times 10^{-9}$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, C_5H_5N , in aqueous solution? The K_b for pyridine is 1.4 x 10⁻⁹.
 - · Solving for x we get

 $x^2 \cong (0.20) \times (1.4 \times 10^{-9})$

$$x = [OH^{-}] \cong \sqrt{(0.20) \times (1.4 \times 10^{-9})} = 1.7 \times 10^{-5}$$

A Problem To Consider

- What is the pH of a 0.20 M solution of pyridine, C_5H_5N , in aqueous solution? The K_b for pyridine is 1.4 x 10⁻⁹.
 - Solving for pOH

 $pOH = -log[OH -] = -log(1.7 \times 10^{-5}) = 4.8$

• Since pH + pOH = 14.00

pH = 14.00 - pOH = 14.00 - 4.8 = 9.2

Polyprotic Acids

 \ldots can furnish more than one proton (H⁺) to the solution.

 $H_2CO_3 \leftrightarrow H^+ + HCO_3^- \quad (K_{a_1})$

 $\text{HCO}_3^- \leftrightarrow \text{H}^+ + \text{CO}_3^{2-} \quad (K_{a_2})$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as **polyprotic acids**.
 - Sulfuric acid, for example, can lose two protons in aqueous solution.

 $H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$

- $HSO_4^{-}(aq) + H_2O(l) \Longrightarrow H_3O^{+}(aq) + SO_4^{2-}(aq)$
 - The first proton is lost completely followed by a weak ionization of the hydrogen sulfate ion, HSO₄⁻.

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as **polyprotic acids**.
 - For a weak diprotic acid like carbonic acid, H₂CO₃, two simultaneous equilibria must be considered.

 $H_2CO_3(aq) + H_2O(l) \Longrightarrow H_3O^+(aq) + HCO_3^-(aq)$

 $HCO_3^{-}(aq) + H_2O(l) \Longrightarrow H_3O^{+}(aq) + CO_3^{2-}(aq)$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as **polyprotic acids**.
 - Each equilibrium has an associated acidionization constant.

For the loss of the first proton

 $K_{a1} = \frac{[H_3O^+][HCO_3^-]}{[H_3CO_3]} = 4.3 \times 10^{-7}$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as **polyprotic acids**.
 - Each equilibrium has an associated acidionization constant.

For the loss of the second proton

$$\mathbf{K}_{a2} = \frac{[\mathbf{H}_{3}\mathbf{O}^{+}][\mathbf{CO}_{3}^{2-}]}{[\mathbf{HCO}_{3}^{-}]} = 4.8 \times 10^{-11}$$

Polyprotic Acids

- Some acids have two or more protons (hydrogen ions) to donate in aqueous solution. These are referred to as **polyprotic acids**.
 - The second ionization constant, K_{a2}, for a polyprotic acid is always smaller than the first ionization constant, K_{a1}.
 - In the case of a triprotic acid, such as H₃PO₄, the third ionization constant, K_{a3}, is smaller than the second one, K_{a2}.

vrsenic acid		7.5×10^{-3}	6.2×10^{-8}	4.8×10^{-1}
	H ₃ AsO ₄	5×10^{-3}	8×10^{-8}	6×10^{-8}
arbonic acid	H ₂ CO ₃	4.3×10^{-7}	5.6 × 10 ⁻¹¹	
ulfuric acid ulfurous acid	H ₂ SO ₄ H ₂ SO ₃	Large 1.5×10^{-2}	1.2×10^{-2} 1.0×10^{-7}	
utturous acid lydrosulfuric acid*	H ₂ SO ₃ H ₂ S	1.5×10^{-7} 1.0×10^{-7}	-10 ⁻¹⁹	
Stalic acid	H ₂ C ₂ O ₄	6.5 × 10 ⁻²	6.1 × 10 ⁻⁵	
Ascorbic acid	H ₂ C ₂ O ₄ H ₂ C ₄ H ₄ O ₆	7.9×10^{-5}	1.6×10^{-12}	
(vitamin C)	1150-91180-8	1.3 % 10	1.0 × 10	

Brønsted-Lowry Concept of Acids and Bases

- Some species can act as an acid or a base.
- An **amphoteric species** is a species that can act either as an acid or a base (it can gain or lose a proton).
- For example, HCO₃⁻ acts as a proton donor (an acid) in the presence of OH⁻

 $HCO_{3}^{-}(aq) + OH^{-}(aq) \rightarrow CO_{3}^{-2}(aq) + H_{2}O(l)$

 H^+

Brønsted-Lowry Concept of Acids and Bases

- Some species can act as an acid or a base.
- An **amphoteric species** is a species that can act either as an acid or a base (it can gain or lose a proton).

Alternatively, HCO_3 can act as a proton acceptor (a base) in the presence of HF.

 $HCO_{3}^{-}(aq) + HF(aq) \rightarrow H_{2}CO_{3}(aq) + F^{-}(aq)$ H^{+}

Brønsted-Lowry Concept of Acids and Bases

- The amphoteric characteristic of water is important in the acid-base properties of aqueous solutions.
 - Water can also react as a base with the acid HF.

 $HF(aq) + H_2O(1) \rightarrow F^-(aq) + H_3O^+(aq)$

H+

Brønsted-Lowry Concept of Acids and Bases

- The amphoteric characteristic of water is important in the acid-base properties of aqueous solutions.
 - Water reacts as an acid with the base NH₃.

Acid-Base Properties of a Salt Solution

- One of the successes of the Brønsted-Lowry concept of acids and bases was in pointing out that some ions can act as acids or bases.
 - Consider a solution of sodium cyanide, NaCN.

 $NaCN(s) \xrightarrow{H,O} Na^+(aq) + CN^-(aq)$

• A 0.1 M solution has a pH of 11.1 and is therefore fairly basic.

Acid-Base Properties of a Salt Solution

- One of the successes of the Brønsted-Lowry concept of acids and bases was in pointing out that some **ions can act as acids or bases**.
 - Sodium ion, Na⁺, is unreactive with water, but the cyanide ion, CN⁻, reacts to produce HCN and OH⁻.

 $CN^{-}(aq) + H_2O(l) \implies HCN(aq) + OH^{-}(aq)$

Acid-Base Properties of a Salt Solution

- The hydrolysis of an ion is the reaction of an ion with water to produce the conjugate acid and hydroxide ion or the conjugate base and hydronium ion.
 - The NH_4^+ ion **hydrolyzes** to the conjugate base (NH_3) and hydronium ion.

 $NH_4^+(aq) + H_2O(l) \Longrightarrow NH_3(aq) + H_3O^+(aq)$

Predicting Whether a Salt is Acidic, Basic, or Neutral

- These rules apply to normal salts (those in which the anion has no acidic hydrogen)
 - A salt of a strong base and a strong acid. The salt has <u>no hydrolyzable ions</u> and so gives a <u>neutral</u> aqueous solution.

An example is NaCl.

Predicting Whether a Salt is Acidic, Basic, or Neutral

- These rules apply to normal salts (those in which the anion has no acidic hydrogen)
 - A salt of a strong base and a weak acid. The anion of the salt is the conjugate of the weak acid. It hydrolyzes to give a basic solution.

An example is NaCN.

Predicting Whether a Salt is Acidic, Basic, or Neutral

- These rules apply to normal salts (those in which the anion has no acidic hydrogen)
 - 3. A salt of a **weak base** and a **strong acid**. The cation of the salt is the conjugate of the weak base. It hydrolyzes to give an **acidic** solution.

An example is NH₄Cl.

Predicting Whether a Salt is Acidic, Basic, or Neutral

- These rules apply to normal salts (those in which the anion has no acidic hydrogen)
 - 4. A salt of a weak base and a weak acid.

Both ions hydrolyze. You must compare the K_a of the cation with the K_b of the anion. If the K_a of the cation is larger the solution is

acidic.

If the K_b of the anion is larger, the solution is **basic**.

for Solutions	rediction of pH of Salts for Cation and Anion
$K_{a} > K_{b}$ $K_{b} > K_{a}$ $K_{a} = K_{b}$	pH < 7 (acidic) pH > 7 (basic) pH = 7 (neutral)

TABLE 14.6 Acid-Base Properties	of Various Types of Sa	lts	
Type of Salt	Examples	Comment	pH of Solution
Cation is from strong base; anion is from strong acid	KCl, KNO3, NaCl, NaNO3	Neither acts as an acid or a base	Neutral
Cation is from strong base; anion is from weak acid	NaC ₂ H ₃ O ₂ , KCN, NaF	Anion acts as a base; cation has no effect on pH	Basic
Cation is conjugate acid of weak base; anion is from strong acid	NH4CI, NH4NO3	Cation acts as acid; anion has no effect on pH	Acidic
Cation is conjugate acid of weak base; anion is conjugate base of weak acid	NH4C2H3O2, NH4CN	Cation acts as an acid; anion acts as a base	Acidic if $K_a > K_b$, basic if $K_b > K_a$, neutral if $K_a = K_b$
Cation is highly charged metal ion; anion is from strong acid	Al(NO ₃) ₃ , FeCl ₃	Hydrated cation acts as an acid; anion has no effect on pH	Acidic

The pH of a Salt Solution

- To calculate the **pH of a salt** solution would require the K_a of the acidic cation or the K_b of the basic anion. (see Figure 17.8)
 - The ionization constants of ions are not listed directly in tables because the values are easily related to their conjugate species.
 - Thus the K_b for CN⁻ is related to the K_a for HCN.

The pH of a Salt Solution

To see the relationship between K_a and K_b for conjugate acid-base pairs, consider the acid ionization of HCN and the base ionization of CN⁻.

 Wern(aq)+H₂O(1) ⇒ H₃O⁺(aq)+CM⁻(aq) K_a

 Wern(aq)+H₂O(1) ⇒ H₃O⁺(aq)+OH⁻(aq) K_b

 2H₂O(1) ⇒ H₃O⁺(aq)+OH⁻(aq) K_w

 When two reactions are added, their equilibrium constants are multiplied.

The pH of a Salt Solution

- For a solution of a salt in which only one ion hydrolyzes, the calculation of equilibrium composition follows that of weak acids and bases.
 - The only difference is first obtaining the $K_{\rm a}$ or $K_{\rm b}$ for the ion that hydrolyzes.
 - The next example illustrates the reasoning and calculations involved.

A Problem To Consider

- What is the pH of a 0.10 M NaCN solution at 25 °C? The K_a for HCN is 4.9 x 10⁻¹⁰.
 - Sodium cyanide gives Na⁺ ions and CN⁻ ions in solution.
 - Only the CN⁻ ion hydrolyzes.

 $CN^{-}(aq) + H_2O(l) \implies HCN(aq) + OH^{-}(aq)$

A Problem To Consider

- What is the pH of a 0.10 M NaCN solution at 25 °C? The K a for HCN is 4.9 x 10⁻¹⁰.
 - The CN- ion is acting as a base, so first, we must calculate the $\rm K_b$ for CN-.

$$K_{b} = \frac{K_{w}}{K_{a}} = \frac{1.0 \times 10^{-14}}{4.9 \times 10^{-10}} = 2.0 \times 10^{-5}$$

• Now we can proceed with the equilibrium calculation.

- What is the pH of a 0.10 M NaCN solution at 25 °C? The K a for HCN is 4.9 x 10⁻¹⁰.
 - This gives

$$\frac{x^2}{(0.10-x)} = 2.0 \times 10^{-5}$$

A Problem To Consider

- What is the pH of a 0.10 M NaCN solution at 25 °C? The K_a for HCN is 4.9 x 10⁻¹⁰.
 - Solving the equation, you find that

 $x = [OH^{-}] = 1.4 \times 10^{-3}$

- Hence,
- $pH = 14.00 pOH = 14.00 + log(1.4 \times 10^{-3}) = 11.2$
 - As expected, the solution has a pH greater than 7.0.

Structure and Acid-Base Properties

• Two factors for acidity in binary compounds:

Bond Polarity (high is good)

Bond Strength (low is good)

Molecular Structure and Acid Strength

- Two factors are important in determining the relative acid strengths.
 - One is the polarity of the bond to which the hydrogen atom is attached.
 - The H atom should have a partial positive charge:

• The more polarized the bond, the more easily the proton is removed and the greater the acid strength.

Molecular Structure and Acid Strength

- Two factors are important in determining the relative acid strengths.
 - The second factor is the strength of the bond. Or, in other words, how tightly the proton is held.
 - This depends on the size of atom X.

• The larger atom X, the weaker the bond and the greater the acid strength.

Molecular Structure and Acid Strength

- Consider a series of binary acids from a given column of elements.
 - As you go down the column of elements, the radius increases markedly and the H-X bond strength decreases.
 - You can predict the following order of acidic strength.

HF < HCl < HBr < HI

TABLE 14.Bond StrenStrengths forHalides	gths and <i>i</i>	
H—X Bond	Bond Strength (kJ/mol)	Acid Strength in Water
H—F H—Cl H—Br H—I	565 427 363 295	Weak Strong Strong Strong

Molecular Structure and Acid Strength

- As you go across a row of elements, the polarity of the H-X bond becomes the dominant factor.
 - As electronegativity increases going to the right, the polarity of the H-X bond increases and the acid strength increases.
 - You can predict the following order of acidic strength.

$H_3N < H_2O < HF$

Molecular Structure and Acid Strength

- Consider the oxoacids. An oxoacid has the structure: H O Y V
 - The acidic H atom is always attached to an O atom, which in turn is attached to another atom Y.
 - Bond polarity is the dominant factor in the relative strength of oxoacids.
 - This, in turn, depends on the electronegativity of the atom Y.

Molecular Structure and Acid Strength

- Consider the oxoacids. An oxoacid has the structure: H O Y
 - If the electronegativity of Y is large, then the O-H bond is relatively polar and the acid strength is greater.
 - We can predict the acid strength for compounds with Y in the same group:

HOCl > HOBr > HOI

TABLE 14.9 Series of Ox		Electronegativity of X and Ka	Value for a
Acid	x	Electronegativity of X	K _a for Acid
HOCI	Cl	3.0	4×10^{-8}
HOBr	Br	2.8	2×10^{-9}
HOI	I	2.5	2×10^{-11}
HOCH ₃	CH3	2.3 (for carbon in CH ₃)	$\sim 10^{-15}$

Molecular Structure and Acid Strength

- Consider the oxoacids. An oxoacid has the structure: H O Y X
 - Other groups, such as O atoms or O-H groups, may be attached to Y.
 - With each additional O atom, Y becomes effectively more electronegative.

Molecular Structure and Acid Strength

- Consider the oxoacids. An oxoacid has the structure: H O Y V
 - As a result, the H atom becomes more acidic.
 - The acid strengths of the oxoacids of chlorine increase in the following order.

 $HCIO < HCIO_2 < HCIO_3 < HCIO_4$

TABLE 14.8 Several Series of Oxyacids and Their K, Values Oxyacid Structure K_a Value HCIO₄ H-0-CI-0 Large (~107) HCIO₁ н-о-с(~1 н—о—сі—о 1.2×10^{-2} HCIO, HCIO H-O-Cl 3.5×10^{-8} H₂SO₄ н—о—s_о Large H-O-S 1.5×10^{-2} H₂SO₃ H-O-N HNO3 Large H-O-N-O HNO₂ 4.0×10^{-4}

Molecular Structure and Acid Strength

- Consider polyprotic acids and their corresponding anions.
 - Each successive H atom becomes more difficult to remove.
 - Therefore the acid strength of a polyprotic acid and its anions decreases with increasing negative charge.

 $HPO_4^{2-} < H_2PO_4^{-} < H_3PO_4$

Oxides

- Acidic Oxides (Acid Anhydrides): O-X bond is strong and covalent.
 - SO₂, NO₂, CrO₃
- Basic Oxides (Basic Anhydrides): O-X bond is ionic.
 - K₂O, CaO

Lewis Acids and Bases

- Lewis Acid: electron pair acceptor
- Lewis Base: electron pair donor

 $Al^{3+} + 6 \begin{pmatrix} O \\ H \end{pmatrix} \longrightarrow \begin{bmatrix} Al \\ O \\ H \end{pmatrix} \begin{bmatrix} O \\ H \end{bmatrix}^{3+}$

	Definition of Acid	Definition of Base
rrhenius	H ⁺ producer	OH ⁻ producer
rønsted–Lowry	H ⁺ donor	H ⁺ acceptor
ewis	Electron-pair acceptor	Electron-pair donor

Lewis Concept of Acids and Bases

- The Lewis concept defines an acid as an electron pair acceptor and a base as an electron pair donor.
 - This concept broadened the scope of acid-base theory to include reactions that did not involve H⁺.
 - The Lewis concept embraces many reactions that we might not think of as acid-base reactions.

 Al^{3+} + $6 H_2O \rightarrow Al(OH_2)_6^{3+}$

