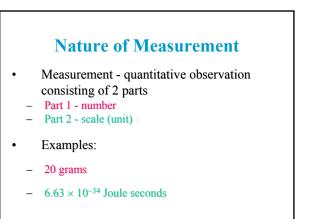


Steps in the Scientific Method

- 1. Observations
 - guantitative
 - a qualitative
- 2. Formulating hypotheses
- ▲ possible explanation for the observation
- 3. Performing experiments
- gathering new information to decide whether the hypothesis is valid

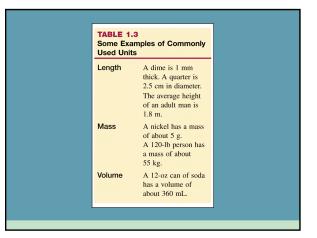


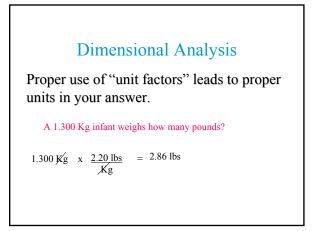
Outcomes Over the Long-Term

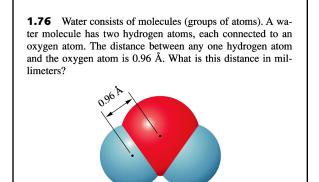
- Theory (Model)
 - A set of tested hypotheses that give an overall explanation of some natural phenomenon.
- Natural Law
 - The same observation applies to many different systems
- Example Law of Conservation of Mass

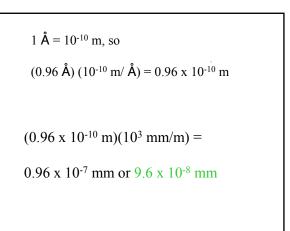
Law vs. Theory

- A law summarizes what happens;
- A theory (model) is an attempt to explain <u>why</u> it happens.




• Based on metric system and units derived from metric system.


ole 1.2 Base Units		
Quantity	Unit	Symbol
Length	meter	m
Mass	kilogram	kg
Time	second	s
Temperature	kelvin	K
Amount of substance	mole	mol
Electric current	ampere	А
Luminous intensity	candela	cd


Prefix	Symbol	Meaning	Exponentia Notation*
exa	Е	1,000,000,000,000,000,000	1018
peta	Р	1,000,000,000,000,000	1015
tera	Т	1,000,000,000,000	1012
giga	G	1,000,000,000	109
mega	М	1,000,000	106
kilo	k	1,000	10 ³
hecto	h	100	10 ²
deka	da	10	10 ¹
_	_	1	10 ⁰
deci	d	0.1	10^{-1}
centi	с	0.01	10^{-2}
milli	m	0.001	10^{-3}
micro	μ	0.000001	10-6
nano	n	0.00000001	10-9
pico	р	0.00000000001	10^{-12}
femto	f	0.00000000000001	10^{-15}
atto	a	0.0000000000000000000000000000000000000	10^{-18}

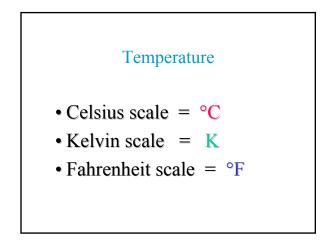


TABLE 1.4 English-Me	etric Equivalents
Length	1 m = 1.094 yd 2.54 cm = 1 in
Mass	1 kg = 2.205 lb 453.6 g = 1 lb
Volume	1 L = 1.06 qt $1 ft^3 = 28.32 L$

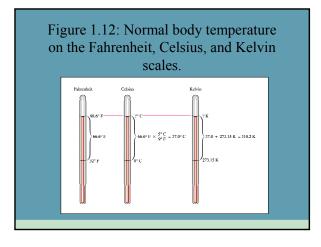
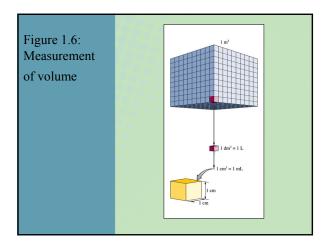
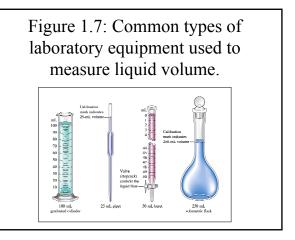
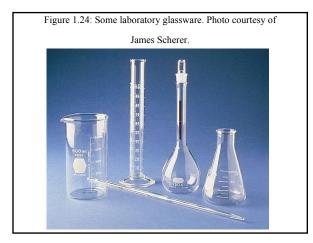
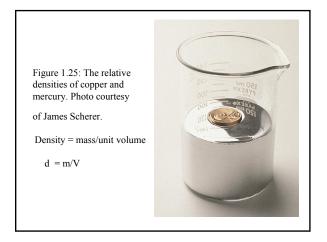


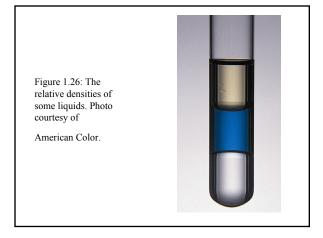
Figure 1.23: Comparison of	ĸ	°C	°F	
temperature	373-	100 -	212-	- Water boils
<u>^</u>	363-	90 -	194-	
scales.	353-	80 -	176-	
	343-	70 -	158-	
	333-	60 -	140-	
	323-	50 -	122-	
	313-	40 -	104-	
	303-	30 -	86-	
$^{\rm O}$ C = 5/9($^{\rm O}$ F - 32 $^{\rm O}$ F)	293-	20-	68 -	- Room temperature
	283-	10 -	50-	
$^{O}F = 9/5 (^{O}C) + 32 ^{O}F$	273-	0 -	32-	- Water freezes
	263-	-10-	14-	
	253-	-20 -	-4-	
	243-	-30 -	-22-	
	233-	-40-	-40-	
	Û			
K = O C (1 K / O C) + 2	273.13 K	9	0	


Derived Units


•Units which are composed of two or more single dimension units (mass, time, length)


Examples: area units (length x length) or 1.0 m²


volume units (length x length x length) or 1 cm³

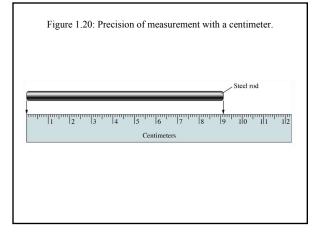

density units (mass/unit volume) or g/cm³

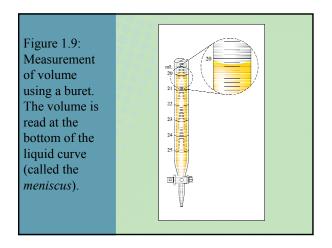
• A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

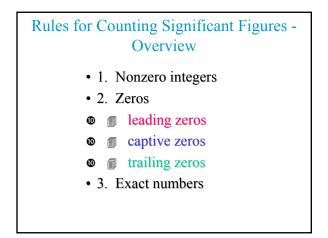
Precision and Accuracy

- Accuracy refers to the agreement of a particular value with the true value.
- Precision refers to the degree of agreement among several elements of the same quantity.

Figure 1.10: The results of several dart throws show the difference between precise and accurate. Both precise and accurate


Types of Error


- Random Error (Indeterminate Error)
 measurement has an equal probability of being high or low.
- Systematic Error (Determinate Error)
 Occurs in the same direction each time
- (high or low), often resulting from poor technique.


Types of Error

Why is it important to determine if an error is random or systematic?

- 1. For a measurement, we can estimate its mean value and uncertainty only when the error is random. In many cases, we cannot decrease random error – but we can estimate it.
- 2. Often we can correct systematic error. To correct a systematic error in a measurement, we must fix the cause of the error or compensate for it in some way

Rules for Counting Significant Figures - Details

- Nonzero integers always count as significant figures.
 - 3456 has 4 significant figs.

Rules for Counting Significant Figures - Details

- Zeros
 - Leading zeros do not count as
 - significant figures.
 - 0.0486 has 3 significant figs.

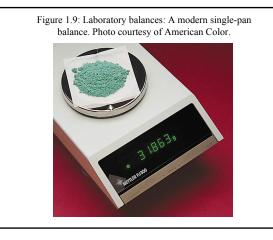
Rules for Counting Significant Figures - Details

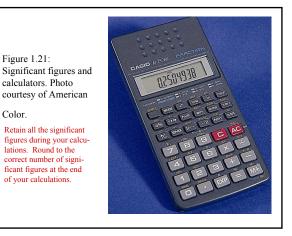
- Zeros
- Captive zeros always count as
 significant figures.
- 16.07 has 4 significant figs.

Rules for Counting Significant Figures - Details

- Zeros
- Trailing zeros are significant only if the number contains a decimal point.
- 9.300 has 4 significant figs.

Rules for Counting Significant Figures - Details

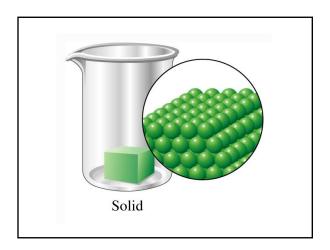

- Exact numbers have an infinite number of significant figures.
 - 1 inch = 2.54 cm, exactly

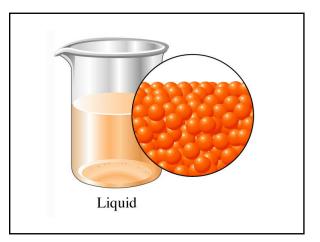

Rules for Significant Figures in Mathematical Operations

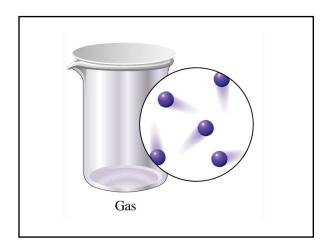
- Multiplication and Division: # sign. figs in the result equals the number in the least precise measurement used in the calculation.
- $6.38 \times 2.0 = 12.76 \rightarrow 13$ (2 sign. figs)

Rules for Significant Figures in Mathematical Operations

- Addition and Subtraction: # sig figs in the result is determined using the number of decimal places in the least precise measurement.
- 6.8 + 11.934 =22.4896 → 22.5 (3 sign. figs)

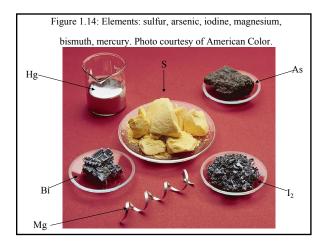





Matter: Anything occupying space and having mass.

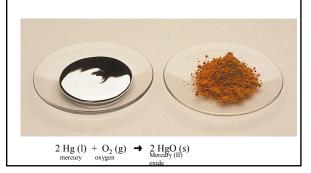
Classification of Matter

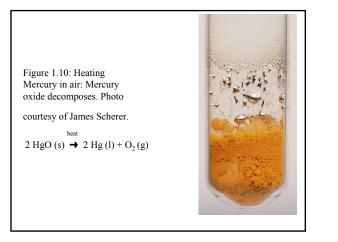
- Three States of Matter:
 - Solid: rigid fixed volume and shape
 - Liquid: definite volume but assumes the shape of its container
 - Gas: no fixed volume or shape assumes the shape of its container



e 1.1		
State of Matter	he States of Matter Fluidity or Rigidity	Compressibility
Solid	Rigid	Very low
Liquid	Fluid	Very low
Gas	Fluid	High

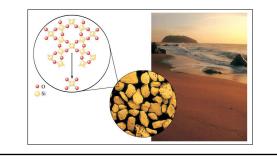
• Compound: A substance with a constant composition that can be broken down into elements by chemical processes.


• Element: A substance that cannot be decomposed into simpler substances by chemical means.



The element mercury (top left) combines with the element iodine (top right) to form the compound mercuric iodide (bottom). This is an example of a chemical change.

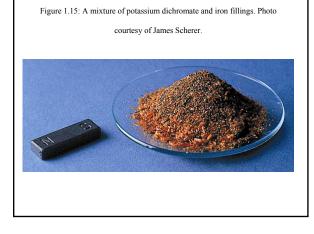
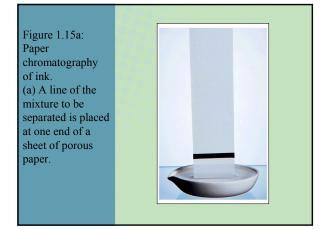
Figure 1.10: Heating mercury metal in air: Mercury metal reacts with Oxygen. Photo courtesy of James Scherer.

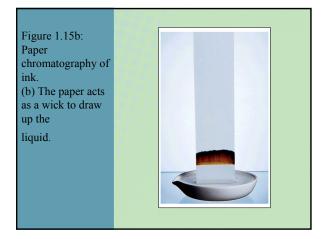


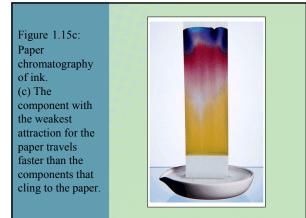
Types of Mixtures

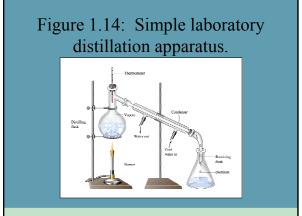
- Mixtures have variable composition.
- A homogeneous mixture is a solution (for example, vinegar)
- A heterogeneous mixture is, to the naked eye, clearly not uniform (for example, a bottle of ranch dressing)

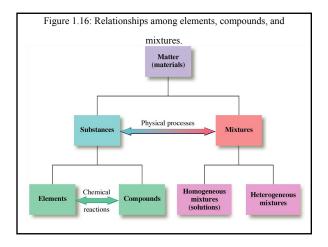
Figure 1.3: Sand on a beach looks uniform from a distance, but up close the irregular sand grains are visible.


Figure 1.15: A magnet separates the iron filling from the mixture. Photo courtesy of James Scherer.




Mixtures of Pure Substances


- Can be isolated by separation methods:
- Chromatography
- **Filtration**
- Distillation

