Atoms, Molecules, and Ions

Chapter 2

The Early History of Chemistry

Before 16th Century

Alchemy: Attempts (scientific or otherwise) to change cheap metals into gold

- 17th Century

 Robert Boyle: First "chemist" to perform quantitative experiments
- 18th Century

 George Stahl: *Phlogiston* flows out of a burning material.
 Joseph Priestley: Discovers oxygen gas, "dephlogisticated air."

Law of Conservation of Mass

- Discovered by Antoine Lavoisier
- Mass is neither created nor destroyed
- Combustion involves oxygen, not phlogiston

Other Fundamental Chemical Laws

Law of Definite Proportion

- A given compound always contains exactly the same proportion of elements by mass.
- Carbon tetrachloride is always 1 atom carbon per 4 atoms chlorine.

 $\frac{35.45 \text{ g Cl x 4}}{12.01 \text{ g C}} = \frac{11.83 \text{ g Cl}}{1.000 \text{ g C}} \qquad \text{CCl}_4$

Other Fundamental Chemical Laws

Law of Multiple Proportions

- When two elements form a series of compounds, the ratios of the masses of the second element that combine with 1 gram of the first element can always be reduced to small whole numbers.
- The ratio of the masses of oxygen in H₂O and H₂O₂ will be a small whole number ("2"). H₂O $\frac{8.0 \text{ gO}}{1.0 \text{ gH}}$, H₂O₂ $\frac{16.0 \text{ gO}}{1.0 \text{ gH}}$, so $\frac{16.0 \text{ gO}}{8.0 \text{ gO}}$ = 2.0

Dalton's Atomic Theory (1808)

- Each element is made up of tiny particles called atoms.
- X The atoms of a given element are identical; the atoms of different elements are different in some fundamental way or ways.

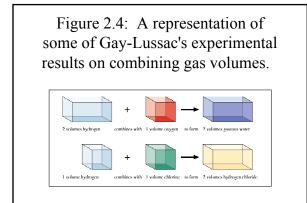
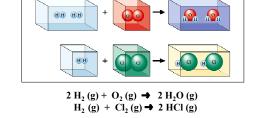
Dalton's Atomic Theory (continued)

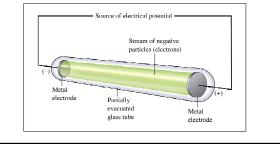
- Chemical compounds are formed when atoms combine with each other. A given compound always has the same relative numbers and types of atoms.
- Chemical reactions involve reorganization of the atoms - changes in the way they are bound together. The atoms themselves are not changed in a chemical reaction.

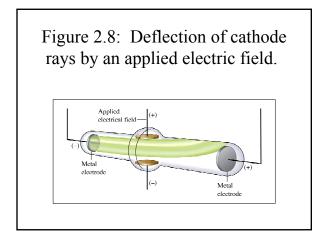
Avogadro's Hypothesis (1811)

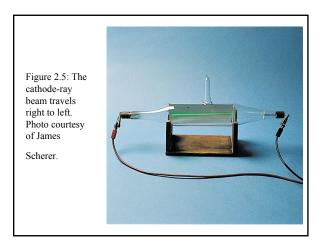
At the same temperature and pressure, equal volumes of different gases contain the same number of particles.

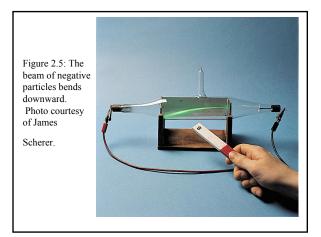
- 5 liters of oxygen
- 5 liters of nitrogen
- Same number of particles!

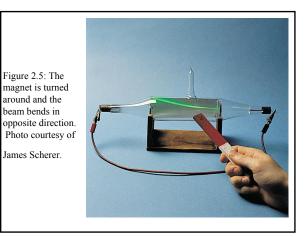



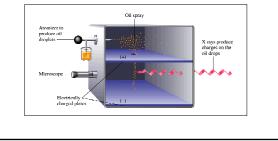

Figure 2.5: A representation of combining gases at the molecular level. The spheres represent atoms in the molecules.

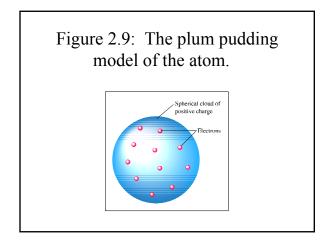


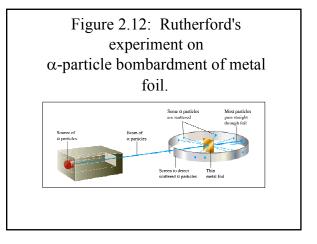

Early Experiments to Characterize the Atom

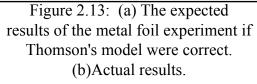

- J. J. Thomson postulated the existence of electrons using cathode ray tubes.
- Ernest Rutherford explained the nuclear atom, containing a dense nucleus with electrons traveling around the nucleus at a large distance.

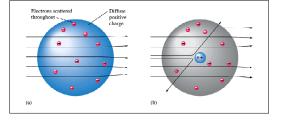

Figure 2.7: A cathode-ray tube. The fast-moving electrons excite the gas in the tube, causing a glow between the electrodes.

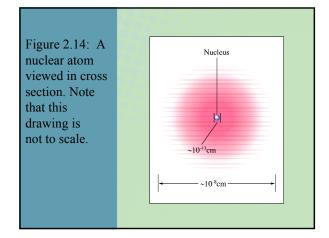



Atomic Theory of Matter

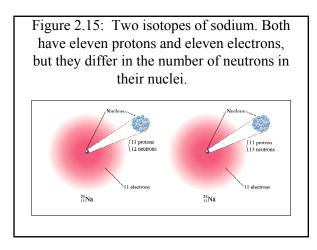

• The Structure of the Atom

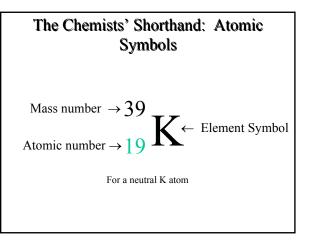

- In 1909, U.S. physicist, Robert Millikan had obtained the <u>charge</u> on the electron. (see Figure <u>2.6)</u>
- These two discoveries combined provided us with the electron's mass of 9.109×10^{-31} kg, which is more than 1800 times smaller than the mass of the lightest atom (hydrogen).
- These experiments showed that the electron was indeed a subatomic particle.


Figure 2.10: A schematic representation of the apparatus Millikan used to determine the charge on the electron.



The Modern View of Atomic Structure


The atom contains:


- electrons
- protons: found in the nucleus, they have a positive charge equal in magnitude to the electron's negative charge.
- neutrons: found in the nucleus, virtually same mass as a proton but no charge.

2.2 erties of the l	Electron, Proton, and	Neutron		
Particle	Mass (kg)	Charge (C)	Mass (amu)*	Charge (
Electron	9.10939×10^{-31}	-1.60218×10^{-19}	0.00055	-1
Proton	1.67262×10^{-27}	$+1.60218 imes 10^{-19}$	1.00728	+1
Neutron	1.67493×10^{-27}	0	1.00866	0

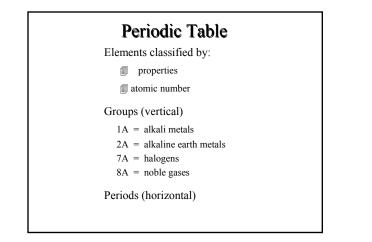
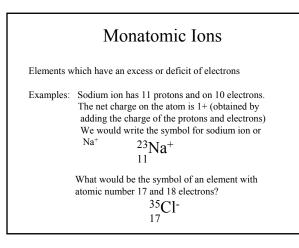

1 atomic mass unit (or Dalton) = 1/12 of a ${}^{12}C$ atom or 1.66054 x 10^{-27} kg. You cannot calculate the absolute mass of a ${}^{12}C$ nucleus by adding the masses of 6 protons and 6 neutrons - the mass that you calculate will be greater than (12)(1.66054 x 10^{-27} kg). While mass is conserved in chemical reactions it is not conserved in nuclear reactions and formation of the carbon nucleus from protons & neutrons results in a small mass loss (see Chapter 18, your text.)

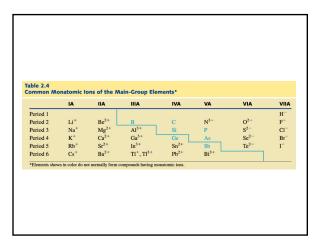
						Fig	ure 2	.14: A	. mod	ern fo	rm of	the p	eriodi	ic tabl	e.				
	Mai	in-Grou	p Elem	ients											Mai	n-Grou	p Elen	nents	
		1 IA					H Sy	tomic n mbol						_					18 VIIIA
	1	1 H 1.00794	2 IIA			1.0	6794 A	tomic w	reight					13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He 4.002602
	2	3 Li 6.941	4 Be 9.012182	_			Т	ransitic	n Meta					5 B 10.811	6 C 12.011	7 N 14.00674	8 0 15.9994	9 F 18.9984032	10 Ne 20.1797
	3	11 Na 22.989768	12 Mg 24,3050	3 111B	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	13 Al 26.981539	14 Si 28.0855	15 P 30.973762	16 S 32,056	17 Cl 35.4527	18 Ar 39,948
Period	4	19 K 39.0983	20 Ca 41.078	21 Se 44.953940	22 Ti 47.88	23 V 50.9415	24 Cr 51.9961	25 Mn 54.93805	26 Fe 55.845	27 Co 58.93320	28 Ni 58.6954	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.921.99	34 Se 78.96	35 Br 79.904	36 Kr 83.80
	5	37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	-29 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29
	6	55 Cs 132.90543	56 Ba 137.327	57 La* 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.85	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.08	79 Au 196.96654	80 Hg 200.59	81 TI 204,3833	82 Pb 207.2	83 Bi 208.98037	84 Po (209)	85 At (210)	86 Rn (222)
	7	87 Fr (223)	88 Ra (226)	89 Ac## (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 Uum (269)	111 Uuu (272)	112 Uub (277)		114 Uuq (289)		116 Uuh (289)		118 Uuo (293)
						_					Inne	r-Trans	ition M	letals					
		Metal		*Lanth	anides	58 Ce 140.115	59 Pr 140.90765	60 Nd 144.24	61 Pm (145)	62 Sm 150.36	63 Eu 151.965	64 Gd 157.25	65 Tb 158.92534	66 Dy 162.50	67 Ho 164.93032	68 Er 167.26	69 Tm 1680.93421	70 Yb 173.04	71 Lu 174.967
		Metallo	a	**Act	inides	90 Th 232.0381	91 Pa 231.03588	92 U 238.0289	53 Np (237)	94 Pu (244)	95 Am (243)	96 Cm (347)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (262)
		Nonmet	al			2.2000		2	200										

TABLE 2.2 The Symbols for the Elements That Are Based on the Original Names				
Current Name	Original Name	Symbol		
Antimony	Stibium	Sb		
Copper	Cuprum	Cu		
Iron	Ferrum	Fe		
Lead	Plumbum	Pb		
Mercury	Hydrargyrum	Hg		
Potassium	Kalium	ĸ		
Silver	Argentum	Ag		
Sodium	Natrium	Na		
Tin	Stannum	Sn		
Tungsten	Wolfram	W		


Ions

Cation: A positive ion Mg^{2+}, NH_4^+

Anion: A negative ion


Cl⁻, SO₄²⁻

Ionic Bonding: Force of attraction between oppositely charged ions.

Chemical Substances; Formulas and Names

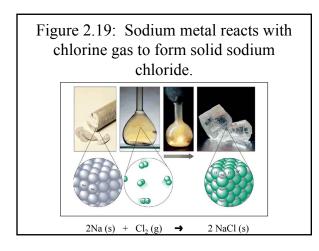
- Rules for predicting charges on monatomic ions
- Most of the main group metals form cations with the charge <u>equal to their group number</u>.
- The charge on a monatomic anion for a nonmetal equals the group number minus 8.
- Most transition elements form more than one ion, each with a different charge. (see Table 2.5)

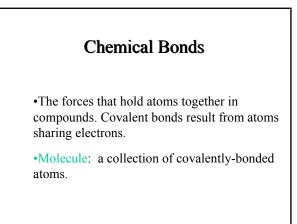
The Chemists' Shorthand: Formulas

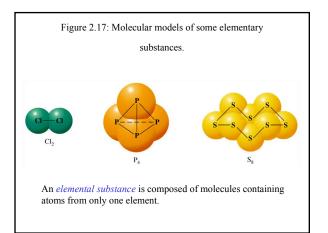
- Chemical Formula:
- Symbols = types of atoms
- Subscripts = relative numbers of each type of atom

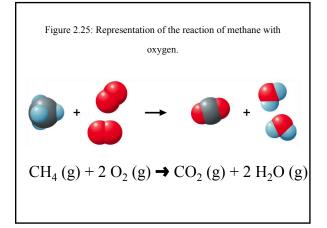
CO₂

- Structural Formula:
- Individual bonds are shown by lines.
 O=C=O

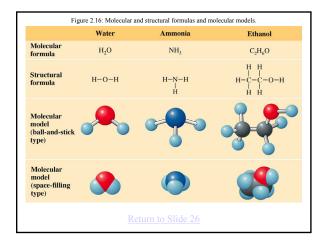

Chemical Formulas; Molecular and Ionic Substances


- Ionic substances
- The formula of an ionic compound is written by giving the smallest possible whole-number ratio of different ions in the substance.
- The **formula unit** of the substance is the group of atoms or ions explicitly symbolized by its formula.


CaCl₂


Chemical Formulas; Molecular and Ionic Substances

- Ionic substances
- When an atom picks up extra electrons, it becomes a negatively charged ion, called an **anion**.
- An atom that loses electrons becomes a positively charged ion, called a **cation**.
- An ionic compound is a compound composed of cations and anions held together by ionic bonds.



Chemical Formulas; Molecular and Ionic Substances

- Molecular substances (see Figure 2.16)
 - A molecule is a definite group of atoms that are chemically bonded together – that is, tightly connected by attractive forces.
 - A molecular substance is a substance that is composed of molecules, all of which are alike.
 - A molecular formula gives the exact number of atoms of elements in a molecule.
 - Structural formulas show how the atoms are bonded to one another in a molecule.

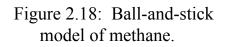
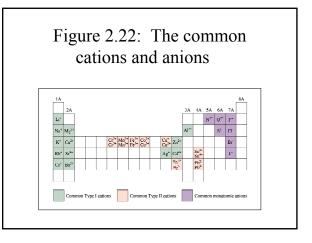


Figure 2.17: Space-filling model of methane. This type of model shows both the relative sizes of the atoms in the molecule and their spatial relationships.

Chemical Formulas; Molecular and Ionic Substances

- The chemical formula of a substance is a notation using atomic symbols with subscripts to convey the relative proportions of atoms of the different elements in a substance.
 - Consider the formula of aluminum oxide, Al₂O₃. This formula implies that the compound is composed of aluminum atoms and oxygen atoms in the ratio 2:3.

Chemical Substances; Formulas and Names


- Ionic compounds (Type I binary compounds
- Most ionic compounds *contain metal and nonmetal atoms*; for example, NaCl.
- You **name an ionic compound** by giving the name of the cation followed by the name of the anion.
- A monatomic ion is an ion formed from a single atom.

Naming Compounds

Binary Ionic Compounds:

- 1. Cation first, then anion
- 2. Monatomic cation = name of the element $Ca^{2+} = calcium$ ion
- 3. Monatomic anion = root + -ide Cl⁻ = chloride CaCl₂ = calcium chloride

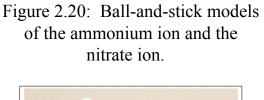
TABLE 2.3	Common Mona	atomic Cation	s and Anions
Cation	Name	Anion	Name
H+	Hydrogen	H-	Hydride
Li ⁺	Lithium	F^{-}	Fluoride
Na ⁺	Sodium	CI	Chloride
K ⁺	Potassium	Br ⁻	Bromide
Cs ⁺	Cesium	I_	Iodide
Be ²⁺	Beryllium	O^{2-}	Oxide
Be ²⁺ Mg ²⁺	Magnesium	S ²⁻ N ³⁻	Sulfide
Ca ²⁺	Calcium	N ³⁻	Nitride
Ba ²⁺	Barium	\mathbb{P}^{3-}	Phosphide
Al^{3+}	Aluminum		-
Ag ⁺	Silver		

Naming Compounds (continued)						
Binary Ionic Compounds (Type II):						
metal forms more than one cation (transition metals)use Roman numeral in name						
PbCl ₂						
Pb ²⁺ is the cation						
$PbCl_2 = lead$ (II) chloride						

TABLE 2.4 Cations	Common Type II
lon	Systematic Name
	Iron(III) Iron(II) Copper(I) Cobper(I) Cobalt(III) Cobalt(II) Tin(IV) Tin(IV) Lead(IV) Lead(IV) Lead(IV) Mercury(I) Mercury(I) Mercury(I) Silver† Zine† Cadmium† ry(I) ions asy occur form Hg. ²⁺ ions.
	are transition metals, they pe of ion, and a Roman ed.

Various chromium compounds dissolved in water. From left to right; CrCl₂, K₂Cr₂O₇, Cr(NO₃)₃, CrCl₃, K₂CrO₄.

Chemical Substances; Formulas and Names


- Polyatomic ions
- A polyatomic ion is an ion consisting of two or more atoms chemically bonded together and carrying a net electric charge.
- Table 2.6 lists some common polyatomic ions. Here a few examples.

SO₄²⁻ sulfate

 SO_3^{2-} sulfite

NO₃⁻ nitrate

NO₂⁻ nitrite

lon	Name	Ion	Name
Hg_2^{2+}	Mercury(I)	NCS ⁻	Thiocyanate
NH_4^+	Ammonium	CO32-	Carbonate
NO_2^-	Nitrite	HCO ₄	Hydrogen carbonate
NO ₃ ⁻	Nitrate		(bicarbonate is a widely
SO32-	Sulfite		used common name)
SO42-	Sulfate	CIO ⁻	Hypochlorite
HSO4	Hydrogen sulfate	CIO ₂ ⁻	Chlorite
	(bisulfate is a widely	CIO ₃ ⁻	Chlorate
	used common name)	CIO4	Perchlorate
OH-	Hydroxide	C ₂ H ₂ O ₂	Acetate
CN ⁻	Cyanide	MnO ₄ ⁻	Permanganate
PO4 ³⁻	Phosphate	$Cr_2O_7^{2-}$	Dichromate
IIPO ₄ 2-	Hydrogen phosphate	CrO42-	Chromate
H,PO,-	Dihydrogen phosphate	0, ²⁻	Peroxide
~ ~		$C_{2}O_{4}^{2-}$	Oxalate

Polyatomic Ions You Should Know

- NH_4^+ Ammonium
- OH⁻ Hydroxide
- CN⁻ Cyanide
- SO_4^2 Sulfate
- HSO_4 bisulfate
- ClO_4^- Perchlorate
- NO_3^- Nitrate
- NO_2^- Nitrite

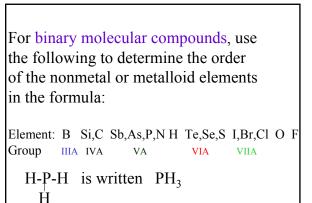
- O_2^{2-} Peroxide
- PO_4^{3-} Phosphate
- HPO₄²⁻ monohydrogen phosphate
- $H_2PO_4^-$ dihydrogen phosphate
- CO₃²⁻ Carbonate
- HCO3⁻ Bicarbonate

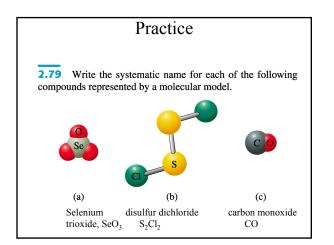
More Practice

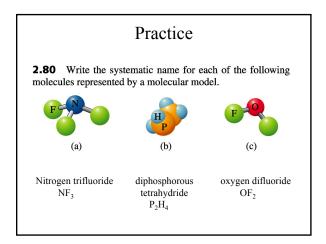
- Na₂SO₄ Sodium Sulfate
- AgCN Silver Cyanide
- Ca(OCl)₂ Calcium Hypochlorite

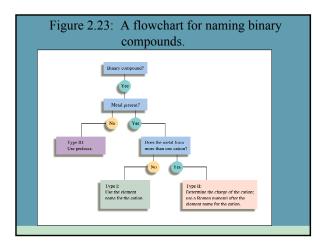
Na₂SO₃ Sodium Sulfite Cd(OH)₂ Cadmium Hydroxide KClO₄ Potassium Perchlorate

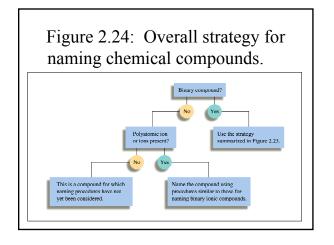
Naming Compounds (continued)


Binary molecular compounds (Type III):

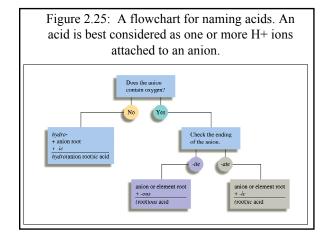

- Compounds between two nonmetals
- First element in the formula is named first.
- Second element is named as if it were an anion.
- Use prefixes

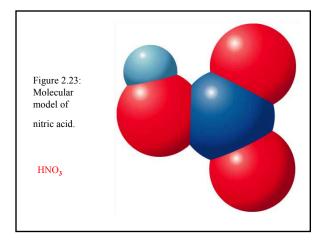

í


- $\textcircled{\sc l}$ Never use mono- for the first element in
 - formula
 - P_2O_5 = diphosphorus pentoxide


	.6 Prefixes Used to Number in Chemical
Prefix	Number Indicated
mono-	1
di-	2
tri-	3
tetra-	4
penta-	5
hexa-	6
hepta-	7
octa-	8
nona-	9
deca-	10

Chemical Substances; Formulas and Names


• Acids


– Acids are traditionally defined as compounds with a potential $H^{\rm +}$ as the cation.

- **Binary acids** consist of a hydrogen ion and any single anion. For example, HCl is hydrochloric acid.
- An oxoacid is an acid containing hydrogen, oxygen, and another element. An example is HNO₃, nitric acid. (see Figure 2.23)

	2.7 Names of Acids* Not Contain Oxygen
Acid	Name
HF	Hydrofluoric acid
HCl	Hydrochloric acid
HBr	Hydrobromic acid
HI	Hydroiodic acid
HCN	Hydrocyanic acid
H_2S	Hydrosulfuric acid
*Note that th	ese acids are aqueous solu-
	ing these substances.

	Names of Some ntaining Acids
Acid	Name
HNO ₃	Nitric acid
HNO ₂	Nitrous acid
H_2SO_4	Sulfuric acid
H_2SO_3	Sulfurous acid
H ₃ PO ₄	Phosphoric acid
$HC_2H_3O_2$	Acetic acid

