
1

GASES

A Gas

Uniformly fills any container.

Mixes completely with any other gas

Exerts pressure on its surroundings.

Pressure

• Force exerted per unit area of surface by 
molecules in motion.

•• 1 atmosphere = 14.7 psi
• 1 atmosphere = 760 mm Hg  (see Fig. 5.2)
• 1 atmosphere = 101,325 Pascals
• 1 Pascal         = 1 kg/m.s2

P = Force/unit area

Figure 5.2:  A 
torricellian 
barometer. The 
tube, completely 
filled with 
mercury, is 
inverted in a dish 
of mercury.

Figure 5.3: 
Atmospheric 
pressure from air 
mass.

P = gdh
To compare the height of
Hg and H2O columns at 1 atm
pressure:  Both = 1 atm, so

gdwaterhwaterwater = = gdgdHgHghhHgHg, , oror

((hhwaterwater//hhHgHg )  = ()  = (ddHgHg//ddwaterwater))

Pressure

is equal to force/unit area

SI units = Newton/meter2 = 1 Pascal (Pa)

1 standard atmosphere = 101,325 Pa

1 standard atmosphere = 1 atm =

760 mm Hg = 760 torr



2

Figure 5.3:  A simple manometer.
Boyle’s Law*

Pressure × Volume = Constant    (T = 
constant)
P1V1 = P2V2 (T = constant)
V ∝ 1/P (T = constant)

(*Holds precisely only at very low 
pressures.)

As pressure increases, the volume 
of SO2 decreases.

Figure 5.4:  
A J-tube 
similar to 
the one used 
by Boyle.

12

Figure 5.5:  
Plotting Boyle's data 
from Table 5.1. (a) A 
plot of P versus V shows 
that the volume doubles 
as the pressure is 
halved. (b) A plot of V
versus 1/P gives a 
straight line. The slope 
of this line equals the 
value of the constant k.
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A gas that strictly obeys Boyle’s 
Law is called an ideal gas.

Figure 5.6:  A plot of PV versus P
for several gases at pressures below 

1 atm.
A Problem to Consider

• A sample of chlorine gas has a volume of 1.8 L at 
1.0 atm. If the pressure increases to 4.0 atm (at 
constant temperature), what would be the new 
volume?

iiff VPVP   using ×=×

)atm 0.4(
)L8.1()atm 0.1(

P
VPV

f

ii
f

×=×=

L 45.0Vf =

Charles’s Law

The volume of a gas is directly proportional 
to temperature, and extrapolates to zero at 
zero Kelvin.

V =  bT (P = constant)
b = a proportionality constant

Figure 5.7: Effect of temperature on a volume of gas. (A)

Photo courtesy of James Scherer.
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Figure 5.7: Effect of temperature on a volume of gas. (B)

Photo courtesy of James Scherer. Charles’s Law

V
T

V
T

P1

1

2

2
= =( constant)
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Figure 5.8:  Plots of V versus T
(ºC) for several gases.

Figure 5.9:  Plots of V versus T as 
in Fig. 5.8 except here the Kelvin 
scale is used for temperature.

A Problem to Consider
• A sample of methane gas that has a volume of 3.8 L 

at 5.0 oC is heated to 86.0 oC at constant pressure.  
Calculate its new volume.

)K278(
)K359)(L8.3(

T
TV

f i

fiV == ×

L 9.4Vf =

i

i

f

f
T
V

T
V     using =

The Empirical Gas Laws

• Gay-Lussac’s Law: The pressure exerted 
by a gas at constant volume is directly 
proportional to its absolute temperature.

P  α Tabs (constant moles and V)
or

i

i

f

f

T
P

T
P =

PiVi = PfVf
Ti Tf

At constant n
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A Problem to Consider
• An aerosol can has a pressure of 1.4 atm at 25 oC. What 

pressure would it attain at 1200 oC, assuming the volume 
remained constant?

i

i

f

f
T
P

T
P    using =

)K298(
)K1473)(atm4.1(

T
TP

f i

fiP == ×

atm9.6Pf =
A. Pressure will decrease and will be lower that Pi
B. Pressure will increase and will be higher that Pi

Avogadro’s Law

For a gas at constant temperature and 
pressure, the volume is directly proportional 
to the number of moles of gas (at low 
pressures).

V =  an

a = proportionality constant
V = volume of the gas
n = number of moles of gas

Figure 5.10:  
These balloons 
each hold 1.0L 
of gas at 25ºC 
and 1 atm. Each 
balloon contains 
0.041 mol of 
gas, or 2.5 x 
1022 molecules.

– The volume of one mole of gas is called the
molar gas volume, Vm.  (See figure 5.10)

– Volumes of gases are often compared at 
standard temperature and pressure (STP), 
chosen to be 0 oC and 1 atm pressure.

The Empirical Gas Laws

• Avogadro’s Law: Equal volumes of any 
two gases at the same temperature and 
pressure contain the same number of 
molecules.

Standard Temperature 
and Pressure

“STP”
P = 1 atmosphere
T = 0°C
The molar volume of an ideal gas is 22.414 
liters at STP
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Figure 5.10: The molar volume of a gas. Photo courtesy of James Scherer.

Return to Slide 12

– Combining the three proportionalities, we can 
obtain the following relationship.

The Ideal Gas Law

• This implies that there must exist a 
proportionality constant governing these 
relationships.

)( P
nTabs R""V =

where “R” is the proportionality constant 
referred to as the ideal gas constant.

The Ideal Gas Law

• The numerical value of R can be derived using 
Avogadro’s law, which states that one mole of any 
gas at STP will occupy 22.4 liters.

nT
VP R =

K) mol)(273 (1.00
atm) L)(1.00(22.4 R =

Kmol
atmL 0.08206 ⋅
⋅=

Ideal Gas Law

An equation of state for a gas.
“state” is the condition of the gas at a given 
time.

PV =  nRT

Ideal Gas Law

PV = nRT
R = proportionality constant 

= 0.08206 L atm Κ−1 mol−1

P = pressure in atm
V = volume in liters
n = moles
T = temperature in Kelvins
Holds closely at P < 1 atm
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– An experiment calls for 3.50 moles of 
chlorine, Cl2.  What volume would this be if 
the gas volume is measured at 34 oC and 
2.45 atm?

A Problem to Consider

P
nRT V    since =

atm 2.45
K) )(307 06mol)(0.082 (3.50 Kmol

atmL

  Vthen   ⋅
⋅

=
L 36.0V    then =

Molecular Weight Determination

• In Chapter 3 we showed the relationship 
between moles and mass.

mass molecular 
massmoles =

or

mM
mn =

Molecular Weight 
Determination

• If we substitute this in the ideal gas equation, 
we obtain

RT)(PV
mM

mass=
If we solve this equation for the 
molecular mass, we obtain

PV
mRT Mm =

Figure 5.15: Finding the vapor density of a substance.

A Problem to Consider
• A 15.5 gram sample of an unknown gas occupied 

a volume of 5.75 L at 25 oC and a pressure of 1.08 
atm. Calculate its molecular mass.

PV
mRT M     Since m =

L) atm)(5.75 (1.08
K) )(298g)(0.08206 (15.5

 Mthen     Kmol
atmL

m
⋅

⋅

=

g/mol 61.0 Mm =

Gas Density Determination

• If we look again at our derivation of the 
molecular mass equation,

RT)(PV
mM

m=
we can solve for m/V, which represents 
the gas density.  

RT
PM D  

V
m m==
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Figure 5.14:  (a) One  mole of N2(l) has a volume of approximately 35 
mL and density of 0.81 g/mL. 
b) One mole of N2(g) has a volume of 22.4 L (STP) and a density of 
1.2 x 10-3 g/mL. 
Thus the ratio of the volumes of gaseous N2 and liquid N2 is 
22.4/0.035 = 640 and the spacing of the molecules is 9 times farther 
apart in N2(g).

A Problem to Consider
• Calculate the density of ozone, O3 (Mm = 48.0g/mol), at 

50 oC and 1.75 atm of pressure.

RT
PM D      Since m=

K) )(323(0.08206
g/mol) atm)(48.0 (1.75 Dthen      

Kmol
atmL

⋅
⋅

=

g/L 17.3D =

A.  All have the same number of atoms
B.  The flask with Xe because its Mm is greatest, so mass/V is the 

largest
C.  The He flask - (PV/T) = constant  If T increases, so must P
D.  All have the same number of moles - we can’t create or destroy 

mass!

Dalton’s Law of 
Partial Pressures

For a mixture of gases in a 
container,

PTotal =  P1 + P2 + P3 + . . . 

Figure 5.17: An illustration of Dalton’s law of partial pressures.

Return to Slide 29

• A useful application of partial pressures 
arises when you collect gases over water.  

Collecting Gases “Over Water”

• As gas bubbles through the water, the gas becomes 
saturated with water vapor.

• The partial pressure of the water in this “mixture” 
depends only on the temperature.  
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Figure 5.18: Collection 
of gas over water.

Zn (s) + 2 HCl (aq) º ZnCl2 (aq) + H2 (g)

A Problem to Consider

• Suppose a 156 mL sample of H2 gas was collected 
over water at 19 oC and 769 mm Hg. What is the 
mass of H2 collected?

– First, we must find the partial pressure of the 
dry H2.

0HtotH 22
P  P    P −=

A Problem to Consider
• Suppose a 156 mL sample of H2 gas was collected 

over water at 19.5 oC and 769 mm Hg. What is the 
mass of H2 collected? 

– Table 5.6 lists the vapor pressure of water at 19 oC
as 17.0 mm Hg.

Hg mm 17.0 - Hg mm 697    P
2H =

Hg mm 527  P
2H =

A Problem to Consider
• Now we can use the ideal gas equation, along 

with the partial pressure of the hydrogen, to 
determine its mass.

atm989.0 Hg mm 527    P Hg mm 760
atm 1

H2
=×=

L0.156   mL 156 V ==
K 292  273)  (19  T =+=

?  n =

•From the ideal gas law, PV = nRT, you have

A Problem to Consider

) 292)( (0.08206
L) atm)(0.156 (0.989  

RT
PV n 

atmL KKmol ⋅
⋅

==

 mol 0.00644n =
•Next,convert moles of H2 to grams of H2.

2
2

2
2 H g 0.0130  

H mol 1
H g 2.02  H mol 0.00644 =×
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Figure 5.12:  
The partial 
pressure of 
each gas in a 
mixture of 
gases in a 
container 
depends on the 
number of 
moles of that 
gas.

Ptotal = PA +  PB

Since  P = (nRT/V)
we can substitute this into
Dalton’s Law.

ntotal(RT/V)  = nA (RT/V)  +
nB (RT/V)

Dividing by (RT/V):
ntotal =  nA + nB or 

1 = (nA/ntotal) + (nB/ntotal)

Finally, multiplying by Ptotal:
Ptotal = (nA/ntotal)Ptotal + 

(nB/ntotal)Ptotal

• The composition of a gas mixture is often 
described in terms of its mole fraction.

Partial Pressures of Gas 
Mixtures

tot

A

tot

A
A P

P
n
n   Aof fraction Mole ===χ

• The mole fraction, χ , of a component gas is 
the fraction of moles of that component in the 
total moles of gas mixture.

• The partial pressure of a component gas, 
“A”, is then defined as

Partial Pressures of Gas 
Mixtures

totAA P   P ×= χ
• Applying this concept to the ideal gas equation, we 

find that each gas can be treated independently.

RTn VP AA =

A.  No change to pressure of hydrogen gas

B.  They are the same (same V, T & P)

C.   Ptotal =  PH2 + PAr = 2 PH2

A Problem to Consider

• Given a mixture of gases in the atmosphere 
at 760 torr, what is the partial pressure of 
N2 (χ = 0 .7808) at 25 oC?

torr) (760  (0.7808)  P    then
2N ×=

torr 593  P
2N =

totNN P   P   since
22
×= χ

60
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A.   O2

B.   H2

C.  Each has the same
number of mole-
cules

D.  No change

E.  Mole fraction = 1/4
so PH2= 0.25 of 

total P 

Practice problem 5.123

2  C O  ( g )  +  O 2  ( g )  =  2  C O 2  ( g )

n C O  =  P V / R T  =  ( 0 . 5 0 0 ) ( 2 .0 0 ) / ( 0 .0 8 2 1 ) ( 3 0 0 )      
                       =  0 . 0 4 0 6  m o l
n O 2  =  P V / R t    =  ( 1 . 0 0 ) ( 1 . 0 0 ) / ( 0 . 0 8 2 1 ) ( 3 0 0 )
                      =  0 .0 4 0 6  m o l

C O  i s  t h e  l i m i t i n g  r e a c t a n t

0 . 0 4 0 6  m o l  C O  r e q u i r e  0 . 0 2 0 3  m o l e  O 2  s o
t h a t  ( 0 .0 4 0 6  m o l  -  0 .0 2 0 3  m o l )  =  0 . 0 2 0 3  m o l
O 2  r e m a i n .

P O 2  =  n R T / V  =  ( 0 .0 2 0 3 ) ( 0 .0 8 2 1 ) ( 3 0 0 )  =  0 . 1 6 7
                                  3 . 0  L                        a t m

P C O 2  =  n R T / V =  ( 0 .0 4 0 6 ) ( ) . 0 8 2 1 ) ( 3 0 0 )  =  0 . 3 3 4  
        3 . 0  L                        a t m

P to ta l  =  ( 0 .1 6 7  +  0 .3 3 4 )  a t m  =  0 .5 0 1  a t m

Kinetic Molecular Theory

1. Volume of individual particles is ≈ zero.
2. Collisions of particles with container 

walls cause pressure exerted by gas.
3. Particles exert no forces on each other.

4. Average kinetic energy ∝ Kelvin 
temperature of a gas.

Figure 5.15:  The effects of decreasing 
the volume of a sample of gas at constant 

temperature and number of moles.

Boyle’s Law
V % 1/P

Figure 5.16:  The effects of increasing 
the temperature of a sample of gas at 

constant volume and number of moles.

Gay-Lussac’s Law
(Pi/Ti) = (Pf/Tf)
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Figure 5.17:  The effects of increasing 
the temperature of a sample of gas at 

constant pressure and number of moles.

Charles’ Law
V % T

Figure 5.18:  The effects of increasing 
the number of moles of gas particles at 

constant temperature and pressure.

Avogadro’s Law
V % n

Figure 5.20:  
A plot of 
the relative number of 
O2 molecules that 
have a given velocity 
at STP.

Figure 5.21:  
A plot of 
the relative number of 
N2 molecules 
that have a given 
velocity 
at three temperatures.

Figure 5.19:  Path of one particle in a gas. Any given particle 
will continuously change its course as a result of collisions 

with other particles, as well as with the walls of the container.

The Meaning of Temperature

Kelvin temperature is an index of the random motions 
of gas particles (higher T means greater motion.)

(KE) 3
2avg = RT
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Effusion:  describes the passage of 
gas into an evacuated chamber.

Diffusion:  describes the mixing of 
gases.  The rate of diffusion is the 
rate of gas mixing.

Figure 5.22:  The effusion of a 
gas into an evacuated chamber.

Figure 5.23:  Relative molecular 
speed distribution of H2 and UF6. Figure 5.24:  (top) When HCl(g) and NH3(g) meet in the tube, a 

white ring of NH4Cl(s) forms. (bottom) A demonstration of the 
relative diffusion rates of NH3 and HCl molecules through air.

A.  We use 1.0 mol of He for experiment X and 1.0 mol of Ar for 
experiment Y.  If both valves are opened at the same time, which
gas would you expect to reach the end of the long tube first?
Ans:  He - it has a lower molar mass

B.   If you wanted the Ar to reach the end of the tube at the same time
as the He, what experimental condition could you change  to
make this happen? 
Ans:  Heat the Ar

Molecular Speeds; Diffusion 
and Effusion

• According to Graham’s law, the rate of 
effusion or diffusion is inversely 
proportional to the square root of its 
molecular mass.  (See Figure 5.22)

 Agas of M
BGasofM

B"" gas of effusion of Rate
A"" gasofeffusionofRate

m

m=
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A Problem to Consider

• How much faster would H2 gas effuse through an 
opening than methane, CH4?

)(HM
)(CHM 

CH of Rate
H of Rate

2m

4m

4

2 =

8.2
g/mol 2.0
g/mol 16.0 

CH of Rate
H of Rate

4

2 ==

So hydrogen effuses 2.8 times faster than CH4

Rate of effusion for gas 1
Rate of effusion for gas 2

2

1
=

M
M

Distance traveled by gas 1
Distance traveled by gas 2

2

1
=

M
M

Effusion:Effusion:

Diffusion:Diffusion:

Figure 5.25:  Plots of PV/nRT
versus P for several gases (200 

K).

Figure 5.26:  Plots of PV/nRT
versus P for nitrogen gas at three 

temperatures.

Figure 5.27:  (a) Gas at low concentration—
relatively few interactions between particles. 
(b) Gas at high concentration—many more 

interactions between particles.

Figure 5.28:  
Illustration 
of pairwise 
interactions 
among gas 
particles.
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Figure 5.29:  The volume taken up by the gas 
particles themselves is less important at (a) large 
container volume (low pressure) than at (b) small 

container volume (high pressure).

Real Gases

[ ]P a V nb nRTobs
2( / )+ × −( ) =n V

↑↑ ↑↑
corrected pressurecorrected pressure corrected volumecorrected volume

PPidealideal VVidealideal

87

A Problem to Consider

• If sulfur dioxide were an “ideal” gas, the pressure 
at 0 oC exerted by 1.000 mol occupying 22.41 L 
would be 1.000 atm. Use the van der Waals 
equation to estimate the “real” pressure.

Given are the following values for SO2

a = 6.865 L2.atm/mol2

b = 0.05679 L/mol

A Problem to Consider

• First, let’s rearrange the van der Waals
equation to solve for pressure.

2

2

V
an - 

nb-V
nRT  P =

R= 0.0821 L. atm/mol. K
T = 273.2 K
V = 22.41 L

a = 6.865 L2.atm/mol2

b = 0.05679 L/mol

A Problem to Consider

• The “real” pressure exerted by 1.00 mol of SO2 at 
STP is slightly less than the “ideal” pressure of 
1.000 atm.

2

2

V
an - 

nb-V
nRT  P =

L/mol) (0.05679 mol) (1.000 - L 22.41
)2.273)( (0.08206 mol) (1.000  P Kmol

atmL K⋅
⋅

=
2

mol
atmL2

L) 41.22(
) (6.865mol) (1.000

- 2

2 ⋅

atm 0.989P =
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Real Gases

Must correct ideal gas behavior when 
at high pressure (smaller volume) 
and low temperature (attractive 
forces become important).


