

A Gas

Uniformly fills any container.

- Mixes completely with any other gas
- Exerts pressure on its surroundings.

Boyle's Law*

Pressure × Volume = Constant (T = constant) $P_1V_1 = P_2V_2$ (T = constant) $V \propto 1/P$ (T = constant) (*Holds *precisely* only at very low pressures.)

TABLE 5.1	Actual Data from Boyle	e's Experiment
Volume (in ³)	Pressure (in Hg)	Pressure \times Volume (in Hg \times in ³)
117.5	12.0	14.1×10^{2}
87.2	16.0	14.0×10^{2}
70.7	20.0	14.1×10^{2}
58.8	24.0	14.1×10^{2}
44.2	32.0	14.1×10^{2}
35.3	40.0	14.1×10^{2}
29.1	48.0	14.0×10^{2}

	P (atm)	V (L)	PV
	0.2500	2.801	0.7002
بو	0.5000	1.400	0.7000
essur	0.7500	0.9333 🛓	0.7000
Id B	1.000	0.6998	0.6998
reasi	2.000	0.3495	0.6990
Ë	3.000	0.2328	0.6984
	4.000	0.1744	0.6976
	5.000	0.1394	0.6970

Charles's Law The volume of a gas is directly proportional to temperature, and extrapolates to zero at zero Kelvin. V = bT (P = constant) b = a proportionality constant

Charles's Law

$$\frac{V_1}{T_1} = \frac{V_2}{T_2}$$
 (P = constant)

A Problem to Consider

• An aerosol can has a pressure of 1.4 atm at 25 °C. What pressure would it attain at 1200 °C, assuming the volume remained constant?

using
$$\frac{P_f}{T_f} = \frac{P_i}{T_i}$$

 $P_f = \frac{P_i \times T_f}{T_i} = \frac{(1.4 \text{ atm})(1473 \text{ K})}{(298 \text{ K})}$
 $P_f = 6.9 \text{ atm}$

Avogadro's Law For a gas at constant temperature and pressure, the volume is directly proportional to the number of moles of gas (at low pressures). V = ana = proportionality constant V = volume of the gas n = number of moles of gas

The Empirical Gas Laws

- Avogadro's Law: Equal volumes of any two gases at the same temperature and pressure contain the same number of molecules.
 - The volume of one mole of gas is called the molar gas volume, V_m. (See figure 5.10)
 - Volumes of gases are often compared at standard temperature and pressure (STP), chosen to be 0 °C and 1 atm pressure.

Standard Temperature and Pressure

"STP"

P = 1 atmosphere T = 0°C The molar volume of an ideal gas is 22.414 liters at STP

uas	Molar Volume (L) a
He	22.40
H_2	22.43
02	22.39
CO_2	22.29
NH3	22.09
ldeal gas*	22.41
NH ₃ [deal gas*	22.09 22.41

The Ideal Gas Law

• The numerical value of **R** can be derived using Avogadro's law, which states that one mole of any gas at STP will occupy 22.4 liters.

Ideal Gas Law

- An equation of state for a gas.
- " "state" is the condition of the gas at a given time.

$$PV = nRT$$

Ideal Gas Law

PV = nRT

R = proportionality constant $= 0.08206 \text{ L atm } \text{K}^{-1} \text{ mol}^{-1}$ P = pressure in atmV = volume in litersn = molesT = temperature in KelvinsHolds closely at P < 1 atm

Molecular Weight Determination

• In Chapter 3 we showed the relationship between moles and mass.

$$moles = \frac{mass}{molecular mass}$$
or
$$\mathbf{n} = \frac{\mathbf{m}}{\mathbf{M}_{m}}$$

A Problem to Consider • A 15.5 gram sample of an unknown gas occupied a volume of 5.75 L at 25 °C and a pressure of 1.08 atm. Calculate its molecular mass. Since $M_m = \frac{mRT}{PV}$ then $M_m = \frac{(15.5 \text{ g})(0.08206 \frac{Latm}{\text{mol-K}})(298 \text{ K})}{(1.08 \text{ atm})(5.75 \text{ L})}$ $M_m = 61.0 \text{ g/mol}$

Figure 5.14: (a) One mole of $N_2(I)$ has a volume of approximately 35 mL and density of 0.81 g/mL. b) One mole of $N_2(g)$ has a volume of 22.4 L (STP) and a density of

1.2 x 10⁻³ g/mL. Thus the ratio of the volumes of gaseous N₂ and liquid N₂ is 22.4/0.035 = 640 and the spacing of the molecules is 9 times farther apart in N₂(g).

A Problem to Consider • Calculate the density of ozone, $O_3 (M_m = 48.0 \text{g/mol})$, at 50 °C and 1.75 atm of pressure. Since $D = \frac{PM_m}{RT}$ then $D = \frac{(1.75 \text{ atm})(48.0 \text{ g/mol})}{(0.08206 \frac{\text{L-atm}}{\text{mol-K}})(323 \text{ K})}$ D = 3.17 g/L

CONCEPT CHECK 5.3

Three 3.0-L flasks, each at a pressure of 878 mmHg, are in a room. The flasks contain He, Ar, and Xe, respectively.

- a. Which of the flasks contains the most atoms of gas?
- b. Which of the flasks has the greatest density of gas?
- c. If the He flask was heated and the Ar flask cooled, which of the three flasks would be at the highest pressure?
- d. If the temperature of the He was lowered while the Xe was raised, which of the three flasks would have the greatest number of moles of gas?
- A. All have the same number of atoms
- B. The flask with Xe because its M_m is greatest, so mass/V is the largest
- C. The He flask (PV/T) = constant If T increases, so must P
- D. All have the same number of moles we can't create or destroy mass!

Collecting Gases "Over Water"

- A useful application of partial pressures arises when you collect gases over water.
 - As gas bubbles through the water, the gas becomes saturated with water vapor.
 - The partial pressure of the water in this "mixture" depends only on the temperature.

Temperature (°C)	Pressure (mmHg)	Temperature (°C)	Pressure (mmHg)
0	4.6	27	26.7
5	6.5	28	28.3
10	9.2	29	30.0
11		9.8	30 31.8
12	10.5	35	42.2
13	11.2	40	55.3
14	12.0	45	71.9
15	12.8	50	92.5
16	13.6	55	118.0
17	14.5	60	149.4
18	15.5	65	187.5
19	16.5	70	233.7
20	17.5	75	289.1
21	18.7	80	355.1
22	19.8	85	433.6
23	21.1	90	525.8
24	22.4	95	633.9
25	23.8	100	760.0
26	25.2	105	906.1

A Problem to Consider

- Suppose a 156 mL sample of H₂ gas was collected over water at 19 °C and 769 mm Hg. What is the mass of H₂ collected?
- First, we must find the partial pressure of the $dry H_2$.

$$\mathbf{P}_{\mathbf{H}_2} = \mathbf{P}_{\mathrm{tot}} - \mathbf{P}_{\mathbf{H}_2\mathbf{0}}$$

A Problem to Consider

- Suppose a 156 mL sample of H₂ gas was collected over water at 19.5 °C and 769 mm Hg. What is the mass of H₂ collected?
 - Table 5.6 lists the vapor pressure of water at 19 °C as 17.0 mm Hg.

 $P_{H_2} = 769 \text{ mm Hg} - 17.0 \text{ mm Hg}$ $P_{H_2} = 752 \text{ mm Hg}$

A Problem to Consider

• Now we can use the ideal gas equation, along with the partial pressure of the hydrogen, to determine its mass.

$$\begin{split} P_{H_2} &= 752 \text{ mm Hg} \times \frac{1 \text{ atm}}{760 \text{ mm Hg}} = 0.989 \text{ atm} \\ V &= 156 \text{ mL} = 0.156 \text{ L} \\ T &= (19 + 273) = 292 \text{ K} \\ n &= ? \end{split}$$

Partial Pressures of Gas Mixtures

- The composition of a gas mixture is often described in terms of its mole fraction.
 - The *mole fraction*, χ, of a component gas is the fraction of moles of that component in the total moles of gas mixture.

$$\chi_{\rm A} =$$
 Mole fraction of A $= \frac{n_{\rm A}}{n_{\rm tot}} = \frac{P_{\rm A}}{P_{\rm tot}}$

Partial Pressures of Gas Mixtures

• The partial pressure of a component gas, "A", is then defined as

 $\mathbf{P}_{\mathrm{A}} = \chi_{\mathrm{A}} \times \mathbf{P}_{\mathrm{tot}}$

• Applying this concept to the ideal gas equation, we find that each gas can be treated independently.

 $P_A V = n_A RT$

CONCEPT CHECK 5.4

A flask equipped with a valve contains 3.0 mol of $\rm H_2$ gas. You introduce 3.0 mol of Ar gas into the flask via the valve and then seal the flask.

- a. What happens to the pressure of just the $\rm H_2$ gas in the flask after the introduction of the Ar? If it changes, by what factor does it do so?
- b. How do the pressures of the Ar and the H_2 in the flask compare?
- c. How does the total pressure in the flask relate to the pressures of the two gases?
- A. No change to pressure of hydrogen gas
- B. They are the same (same V, T & P)
- $C. P_{total} = P_{H2} + P_{Ar} = 2 P_{H2}$

A Problem to Consider • Given a mixture of gases in the atmosphere at 760 torr, what is the partial pressure of $N_2 (\chi = 0.7808)$ at 25 °C? since $P_{N_2} = \chi_{N_2} \times P_{tot}$ then $P_{N_2} = (0.7808) \times (760 \text{ torr})$ $P_{N_2} = 593 \text{ torr}$

Atmospheric (Near Sea Leve	Composition el (Dry Air)*
Component	Mole Fraction
N ₂	0.78084
O ₂	0.20948
Ar	0.00934
CO_2	0.000345
Ne	0.00001818
He	0.00000524
CH_4	0.00000168
Kr	0.00000114
H_2	0.0000005
NO	0.0000005
Xe	0.00000087
*The atmosphere co of water vapor deper	ntains various amounts ading on conditions.

2 C O $(g) + O_2(g) = 2$ C O $_2(g)$
$ \begin{array}{l} n_{\rm CO} = \ PV/RT = (0.500)(2.00)/(0.0821)(300) \\ = \ 0.0406mol \\ n_{\rm O2} = \ PV/Rt = (1.00)(1.00)/(0.0821)(300) \\ = \ 0.0406mol \end{array} $
CO is the limiting reactant
0.0406 m ol C O require 0.0203 m ole O ₂ so that (0.0406 m ol - 0.0203 m ol) = 0.0203 m ol O ₂ rem ain.
$P_{02} = n R T / V = (0.0203)(0.0821)(300) = 0.167$ 3.0 L atm
$P_{CO2} = nRT/V = (0.0406)(0.0821)(300) = 0.334$ 3.0 L atm
$P_{total} = (0.167 + 0.334) \text{ atm} = 0.501 \text{ atm}$

Figure 5.15: The effects of decreasing the volume of a sample of gas at constant temperature and number of moles.

Figure 5.16: The effects of increasing the temperature of a sample of gas at constant volume and number of moles.

Figure 5.17: The effects of increasing the temperature of a sample of gas at constant pressure and number of moles.

Figure 5.18: The effects of increasing the number of moles of gas particles at constant temperature and pressure.

Figure 5.19: Path of one particle in a gas. Any given particle will continuously change its course as a result of collisions with other particles, as well as with the walls of the container.

Diffusion: describes the mixing of gases. The rate of diffusion is the rate of gas mixing.

Effusion: describes the passage of gas into an evacuated chamber.

Figure 5.22: The effusion of a gas into an evacuated chamber.

forms when and HCl me

Ans: Heat the Ar

Molecular Speeds; Diffusion and Effusion

• According to **Graham's law**, the rate of effusion or diffusion is inversely proportional to the square root of its molecular mass. (See Figure 5.22)

Rate of	effusion	of gas "A'	_	M _m	of	Gas B
Rate of	effusion	of gas "B"	1	M _m	of	gas A

Figure 5.29: The volume taken up by the gas particles themselves is less important at (a) large container volume (low pressure) than at (b) small container volume (high pressure).

TABLE 5.3 Values of the van der Waals Constants for Some Common Gases		
Gas	$\textit{a}\!\left(\!\frac{\textit{atm}\cdot\textit{L}^2}{\textit{mol}^2}\!\right)$	$b\left(\frac{L}{mol}\right)$
He	0.0341	0.0237
Ne	0.211	0.0171
Ar	1.35	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0511
H_2	0.244	0.0266
N ₂	1.39	0.0391
O_2	1.36	0.0318
Cl ₂	6.49	0.0562
CO_2	3.59	0.0427
CH_4	2.25	0.0428
NH ₃	4.17	0.0371
	EAC	0.0205

Real Gases

Must correct ideal gas behavior when at high pressure (smaller volume) and low temperature (attractive forces become important).