

A Gas

曾 Uniformly fills any container．

掼 Mixes completely with any other gas

Exerts pressure on its surroundings．

Pressure

－Force exerted per unit area of surface by molecules in motion．

$$
\mathbf{P}=\text { Force/unit area }
$$

－ 1 atmosphere $=14.7 \mathrm{psi}$
－ 1 atmosphere $=760 \mathrm{~mm} \mathrm{Hg}$
－ 1 atmosphere $=101,325$ Pascals
－ 1 Pascal $\quad=1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}^{2}$

Pressure

國 is equal to force／unit area
侑 SI units $=$ Newton $/$ meter $^{2}=1 \operatorname{Pascal}(\mathrm{~Pa})$
包 1 standard atmosphere $=101,325 \mathrm{~Pa}$
㐭 1 standard atmosphere $=1 \mathrm{~atm}=$

$$
760 \mathrm{~mm} \mathrm{Hg}=760 \text { torr }
$$

Figure 5.3: A simple manometer.

Pressure \times Volume $=$ Constant $\quad(T=$ constant)

$$
P_{1} V_{1}=P_{2} V_{2} \quad(T=\text { constant })
$$

$$
V \propto 1 / P \quad(T=\text { constant })
$$

(*Holds precisely only at very low pressures.)

As pressure increases, the volume of SO_{2} decreases.

Figure 5.4: A J-tube similar to the one used by Boyle.

Figure 5.5:
Plotting Boyle's data from Table 5.1. (a) A plot of P versus V shows that the volume doubles as the pressure is halved. (b) A plot of V versus $1 / P$ gives a straight line. The slope of this line equals the value of the constant k.

A gas that strictly obeys Boyle's Law is called an ideal gas.

Figure 5.6: A plot of $P V$ versus P for several gases at pressures below 1 atm.

A Problem to Consider

- A sample of chlorine gas has a volume of 1.8 L at 1.0 atm . If the pressure increases to 4.0 atm (at constant temperature), what would be the new volume?

$$
\text { using } \quad P_{f} \times V_{f}=P_{i} \times V_{i}
$$

$$
V_{f}=\frac{P_{i} \times V_{i}}{P_{f}}=\frac{(1.0 \mathrm{~atm}) \times(1.8 \mathrm{~L})}{(4.0 \mathrm{~atm})}
$$

$$
V_{f}=0.45 L
$$

Charles's Law

The volume of a gas is directly proportional to temperature, and extrapolates to zero at zero Kelvin.

$$
\begin{aligned}
& V=b T \quad(P=\text { constant }) \\
& b=\text { a proportionality constant }
\end{aligned}
$$

Figure 5.7: Effect of temperature on a volume of gas. (A)

Figure 5.8: Plots of V versus T $\left({ }^{\circ} \mathrm{C}\right)$ for several gases.

A Problem to Consider

- A sample of methane gas that has a volume of 3.8 L at $5.0^{\circ} \mathrm{C}$ is heated to $86.0^{\circ} \mathrm{C}$ at constant pressure. Calculate its new volume.

$$
\begin{gathered}
\text { using } \frac{V_{f}}{T_{\mathrm{f}}}=\frac{\mathrm{V}_{\mathrm{i}}}{T_{\mathrm{i}}} \\
\mathbf{V}_{\mathrm{f}}=\frac{\mathrm{V}_{\mathrm{i}} \times T_{\mathrm{f}}}{T_{\mathrm{i}}}=\frac{(3.8 \mathrm{~L})(359 \mathrm{~K})}{(278 \mathrm{~K})} \\
\mathrm{V}_{\mathrm{f}}=4.9 \mathrm{~L}
\end{gathered}
$$

Charles's Law

$$
\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}} \quad(P=\text { constant })
$$

Figure 5.9: Plots of V versus T as in Fig. 5.8 except here the Kelvin scale is used for temperature.

The Empirical Gas Laws

- Gay-Lussac's Law: The pressure exerted
by a gas at constant volume is directly proportional to its absolute temperature.
$\mathrm{P} \propto \mathrm{T}_{\text {abs }}$ (constant moles and V)

A Problem to Consider

- An aerosol can has a pressure of 1.4 atm at $25^{\circ} \mathrm{C}$. What pressure would it attain at $1200^{\circ} \mathrm{C}$, assuming the volume remained constant?

$$
\begin{gathered}
\text { using } \frac{P_{f}}{T_{\mathrm{f}}}=\frac{P_{i}}{T_{i}} \\
\mathbf{P}_{\mathrm{f}}=\frac{\mathbf{P}_{\mathrm{i}} \times T_{\mathrm{f}}}{T_{\mathrm{i}}}=\frac{(1.4 \mathrm{~atm})(1473 \mathrm{~K})}{(298 \mathrm{~K})} \\
\mathbf{P}_{\mathrm{f}}=6.9 \mathrm{~atm}
\end{gathered}
$$

CONCEPT CHECK 5.2

To conduct some experiments, a $10.0-\mathrm{L}$ flask equipped with a movable plunger, as illustrated here, is filled with enough H_{2} gas to come to a pressure of 20 atm .
a. In the first experiment, we decrease the temperature in the flask by $10^{\circ} \mathrm{C}$ and then increase the volume. Predict how the pressure in the flask changes during each of these events and, if possible, how the final pressure compares to your starting pressure.
b. Once again we start with the pressure in the flask at 20 atm . The flask is then heated $10^{\circ} \mathrm{C}$ followed by a volume decrease. Predict how the pressure in the flask changes during each of these events and, if possible, how the final pressure compares to your starting pressure.
A. Pressure will decrease and will be lower that P_{i} B. Pressure will increase and will be higher that P_{i}

Avogadro's Law

For a gas at constant temperature and pressure, the volume is directly proportional to the number of moles of gas (at low pressures).
$V=a n$
$a=$ proportionality constant
$V=$ volume of the gas
$n=$ number of moles of gas

The Empirical Gas Laws

- Avogadro's Law: Equal volumes of any two gases at the same temperature and pressure contain the same number of molecules.
- The volume of one mole of gas is called the molar gas volume, $\mathbf{V}_{\mathbf{m}}$.
- Volumes of gases are often compared at standard temperature and pressure (STP), chosen to be $0^{\circ} \mathrm{C}$ and 1 atm pressure.

Standard Temperature and Pressure

$P=1$ atmosphere
$T=0^{\circ} \mathrm{C}$
The molar volume of an ideal gas is 22.414 liters at STP

Table 5.4
Molar Volumes of Several Gases

Gas	Molar Volume (L) at $\mathbf{0 . 0 ^ { \circ }} \mathbf{C}, \mathbf{1 . 0 0}$ atm
He	22.40
H_{2}	22.43
O_{2}	22.39
CO_{2}	22.29
NH_{3}	22.09
Ideal gas*	22.41
*An ideal gas follows the empirical gas laws.	

The Ideal Gas Law

- This implies that there must exist a proportionality constant governing these relationships.
- Combining the three proportionalities, we can obtain the following relationship.

$$
\mathbf{V}={ }^{\prime \prime} \mathbf{R}^{\prime \prime}\left(\frac{n T_{a b s}}{\mathbf{P}}\right)
$$

where " R " is the proportionality constant referred to as the ideal gas constant.

The Ideal Gas Law

- The numerical value of R can be derived using Avogadro's law, which states that one mole of any gas at STP will occupy 22.4 liters.

$$
\begin{gathered}
\mathrm{R}=\frac{\mathrm{VP}}{\mathrm{nT}} \\
\mathbb{R}=\frac{(22.4 \mathrm{~L})(1.00 \mathrm{~atm})}{(1.00 \mathrm{~mol})(273 \mathrm{~K})} \\
=0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}
\end{gathered}
$$

Ideal Gas Law

An equation of state for a gas.
鱼 "state" is the condition of the gas at a given time.

$$
P V=n R T
$$

Ideal Gas Law

$$
P V=n R T
$$

$R=$ proportionality constant
$=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$
$P=$ pressure in atm
$V=$ volume in liters
$n=$ moles
$T=$ temperature in Kelvins
Holds closely at $P<1$ atm

A Problem to Consider

- An experiment calls for 3.50 moles of chlorine, Cl_{2}. What volume would this be if the gas volume is measured at $34^{\circ} \mathrm{C}$ and 2.45 atm ?

$$
\text { since } V=\frac{n R T}{P}
$$

Molecular Weight

Determination

- If we substitute this in the ideal gas equation, we obtain

$$
\mathrm{PV}=\left(\frac{\text { mass }}{\mathrm{M}_{\mathrm{m}}}\right) \mathrm{RT}
$$

If we solve this equation for the molecular mass, we obtain

$$
M_{m}=\frac{m R T}{P V}
$$

A Problem to Consider

- A 15.5 gram sample of an unknown gas occupied a volume of 5.75 L at $25^{\circ} \mathrm{C}$ and a pressure of 1.08 atm. Calculate its molecular mass.

$$
\text { Since } \quad M_{m}=\frac{m R T}{P V}
$$

then

$$
\begin{gathered}
\mathrm{M}_{\mathrm{m}}=\frac{(15.5 \mathrm{~g})\left(0.08206 \frac{\mathrm{Lamm}}{\operatorname{Lal})(298 \mathrm{~K})}\right.}{(1.08 \mathrm{~atm})(5.75 \mathrm{~L})} \\
\mathrm{M}_{\mathrm{m}}=61.0 \mathrm{~g} / \mathrm{mol}
\end{gathered}
$$

Molecular Weight Determination

- In Chapter 3 we showed the relationship between moles and mass.

$$
\begin{aligned}
& \text { noles }=\frac{\text { mass }}{\text { molecular mass }} \\
& \text { or } \\
& \mathbf{n}=\frac{\mathbf{m}}{\mathbf{M}_{\mathrm{m}}}
\end{aligned}
$$

Gas Density Determination

- If we look again at our derivation of the molecular mass equation,

$$
\mathbf{P V}=\left(\frac{\mathbf{m}}{\mathbf{M}_{\mathrm{m}}}\right) \mathbf{R} \mathbf{T}
$$

we can solve for m / V, which represents the gas density.

$$
\frac{\mathbf{m}}{\mathbf{V}}=\mathbf{D}=\frac{\mathbf{P} \mathbf{M}_{\mathbf{m}}}{\mathbf{R T}}
$$

Figure 5.14: (a) One mole of $\mathrm{N}_{2}(\mathrm{I})$ has a volume of approximately 35 mL and density of $0.81 \mathrm{~g} / \mathrm{mL}$.
b) One mole of $\mathrm{N}_{2}(g)$ has a volume of 22.4 L (STP) and a density of $1.2 \times 10^{-3} \mathrm{~g} / \mathrm{mL}$.
Thus the ratio of the volumes of gaseous N_{2} and liquid N_{2} is $22.4 / 0.035=640$ and the spacing of the molecules is 9 times farther apart in $\mathrm{N}_{2}(g)$.

A Problem to Consider

- Calculate the density of ozone, $\mathrm{O}_{3}\left(\mathrm{M}_{\mathrm{m}}=48.0 \mathrm{~g} / \mathrm{mol}\right)$, at $50^{\circ} \mathrm{C}$ and 1.75 atm of pressure.
Since $\quad D=\frac{P M_{m}}{R T}$
then
$\mathrm{D}=\frac{(1.75 \mathrm{~atm})(48.0 \mathrm{~g} / \mathrm{mol})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \mathrm{~K}}\right)(323 \mathrm{~K})}$
$\mathrm{D}=3.17 \mathrm{~g} / \mathrm{L}$

CONCEPT CHECK 5.3

Three 3.0-L flasks, each at a pressure of 878 mmHg , are in a room. The flasks contain He, Ar, and Xe , respectively.
a. Which of the flasks contains the most atoms of gas?
b. Which of the flasks has the greatest density of gas?
c. If the He flask was heated and the Ar flask cooled, which of the three flasks would be at the highest pressure?
d. If the temperature of the He was lowered while the Xe was raised, which of the three flasks would have the greatest number of moles of gas?
A. All have the same number of atoms
B. The flask with Xe because its M_{m} is greatest, so mass/V is the largest
C. The He flask $-(\mathrm{PV} / \mathrm{T})=$ constant If T increases, so must P
D. All have the same number of moles - we can't create or destroy mass!

Dalton's Law of Partial Pressures

For a mixture of gases in a container,

$$
P_{\text {Total }}=P_{1}+P_{2}+P_{3}+\ldots
$$

Figure 5.17: An illustration of Dalton's law of partial pressures.

Collecting Gases "Over Water"

- A useful application of partial pressures arises when you collect gases over water.
- As gas bubbles through the water, the gas becomes saturated with water vapor.
- The partial pressure of the water in this "mixture" depends only on the temperature.

A Problem to Consider

- Suppose a 156 mL sample of H_{2} gas was collected over water at $19{ }^{\circ} \mathrm{C}$ and 769 mm Hg . What is the mass of H_{2} collected?
- First, we must find the partial pressure of the dry H_{2}.

$$
\mathbf{P}_{\mathrm{H}_{2}}=\mathbf{P}_{\mathrm{tot}}-\mathbf{P}_{\mathrm{H}_{2} 0}
$$

Table 5.6

Vapor Pressure of Water at Various Temperatures

Temperature $\left(^{\circ} \mathrm{C}\right)$	Pressure $(\mathbf{m m H g})$	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	Pressure $(\mathbf{m m H g})$
0	4.6	27	26.7
5	6.5	28	28.3
10	9.2	29	30.0
11		9.8	3031.8
12	10.5	35	42.2
13	11.2	40	55.3
14	12.0	45	71.9
15	12.8	50	92.5
16	13.6	55	118.0
17	14.5	60	149.4
18	15.5	65	187.5
19	16.5	70	233.7
20	17.5	75	289.1
21	18.7	80	355.1
22	19.8	85	433.6
23	21.1	90	525.8
24	22.4	95	633.9
25	23.8	100	760.0
26	25.2	105	906.1

A Problem to Consider

- Suppose a 156 mL sample of H_{2} gas was collected over water at $19.5^{\circ} \mathrm{C}$ and 769 mm Hg . What is the mass of H_{2} collected?
- Table 5.6 lists the vapor pressure of water at $19^{\circ} \mathrm{C}$ as 17.0 mm Hg .

$$
\mathrm{P}_{\mathrm{H}_{2}}=769 \mathrm{~mm} \mathrm{Hg}-17.0 \mathrm{~mm} \mathrm{Hg}
$$

$$
\mathbf{P}_{\mathbf{H}_{2}}=752 \mathrm{~mm} \mathrm{Hg}
$$

A Problem to Consider

- Now we can use the ideal gas equation, along with the partial pressure of the hydrogen, to determine its mass.
$P_{\mathrm{H}_{2}}=752 \mathrm{~mm} \mathrm{Hg} \times \frac{1 \mathrm{~atm}}{760 \mathrm{~mm} \mathrm{Hg}}=0.989 \mathrm{~atm}$
$\mathrm{V}=156 \mathrm{~mL}=0.156 \mathrm{~L}$
$\mathrm{T}=(19+273)=292 \mathrm{~K}$
$\mathrm{n}=$?

A Problem to Consider

-From the ideal gas law, $\mathrm{PV}=\mathrm{nRT}$, you have

$$
\begin{aligned}
& \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}= \frac{(0.989 \mathrm{~atm})(0.156 \mathrm{~L})}{\left(0.08206 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(292 \mathrm{~K})} \\
& \mathbf{n}=\mathbf{0 . 0 0 6 4 4} \mathbf{~ m o l}
\end{aligned}
$$

- Next, convert moles of H_{2} to grams of H_{2}.
$0.00644 \mathrm{~mol} \mathrm{H}_{2} \times \frac{2.02 \mathrm{~g} \mathrm{H}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2}}=0.0130 \mathrm{~g} \mathrm{H}_{2}$

Partial Pressures of Gas Mixtures

- The composition of a gas mixture is often described in terms of its mole fraction.
- The mole fraction, χ, of a component gas is the fraction of moles of that component in the total moles of gas mixture.
$\chi_{\mathrm{A}}=$ Mole fraction of $\mathbf{A}=\frac{\mathbf{n}_{\mathrm{A}}}{\mathbf{n}_{\text {tot }}}=\frac{\mathbf{P}_{\mathrm{A}}}{\mathbf{P}_{\text {tot }}}$

Partial Pressures of Gas Mixtures

- The partial pressure of a component gas, " A ", is then defined as

$$
\mathbf{P}_{\mathrm{A}}=\chi_{\mathrm{A}} \times \mathbf{P}_{\mathrm{tot}}
$$

- Applying this concept to the ideal gas equation, we find that each gas can be treated independently.

$$
\mathbf{P}_{\mathrm{A}} \mathbf{V}=\mathbf{n}_{\mathrm{A}} \mathbf{R T}
$$

CONCEPT CHECK 5.4

A flask equipped with a valve contains 3.0 mol of H_{2} gas. You introduce 3.0 mol of Ar gas into the flask via the valve and then seal the flask.
a. What happens to the pressure of just the H_{2} gas in the flask after the introduction of the Ar? If it changes, by what factor does it do so?
b. How do the pressures of the Ar and the H_{2} in the flask compare?
c. How does the total pressure in the flask relate to the pressures of the two gases?
A. No change to pressure of hydrogen gas
B. They are the same (same V, T \& P)
C. $\mathrm{P}_{\text {total }}=\mathrm{P}_{\mathrm{H} 2}+\mathrm{P}_{\mathrm{Ar}}=2 \mathrm{P}_{\mathrm{H} 2}$

A Problem to Consider

- Given a mixture of gases in the atmosphere at 760 torr, what is the partial pressure of $\mathrm{N}_{2}(\chi=0.7808)$ at $25^{\circ} \mathrm{C}$?
since $\mathbf{P}_{\mathbf{N}_{2}}=\chi_{\mathbf{N}_{2}} \times \mathbf{P}_{\text {tot }}$
then

$$
\mathrm{P}_{\mathrm{N}_{2}}=(0.7808) \times(760 \text { torr })
$$

$$
\mathbf{P}_{\mathbf{N}_{2}}=593 \text { torr }
$$

TABLE 5.4
Atmospheric Composition Near Sea Level (Dry Air)*

Component	Mole Fraction
N_{2}	0.78084
O_{2}	0.20948
Ar	0.00934
CO_{2}	0.000345
Ne	0.00001818
He	0.00000524
CH_{4}	0.00000168
Kr	0.00000114
H_{2}	0.0000005
NO	0.0000005
Xe	0.000000087

The atmosphere contains various amounts of water vapor depending on conditions.
5.27 Consider the following setup, which shows identical containers connected by a tube with a valve that is presently closed. The container on the left has 1.0 mol of H_{2} gas; the con-
A. O_{2}
B. H_{2}
C. Each has the same number of molecules
D. No change
E. Mole fraction $=1 / 4$ so $\mathrm{P}_{\mathrm{H} 2}=0.25$ of total P
tainer on the right has 1.0 mol of O_{2}

Note: Acceptable answers to some of these questions might be "both" or "neither one."
a. Which container has the greatest density of gas?
b. Which container has molecules that are moving at a faster average molecular speed?
Which container has more molecules?
d. If the valve is opened, will the pressure in each of the containers change? If it does, how will it change (increase, decrease, or no change)?
e. 2.0 mol of Ar is added to the system with the valve open. What fraction of the total pressure will be due to the H_{2} ?
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})=2 \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{n}_{\mathrm{co}}=\mathrm{PV} / \mathrm{RT}=(0.500)(2.00) /(0.0821)(300)$
$=0.0406 \mathrm{~mol}$
$\mathrm{n}_{\mathrm{o} 2}=\mathrm{PV} / \mathrm{Rt}=(1.00)(1.00) /(0.0821)(300)$
$=0.0406 \mathrm{~mol}$
CO is the limiting reactant
0.0406 m ol CO require $0.0203 \mathrm{~mole} \mathrm{O}_{2}$ so
that $(0.0406 \mathrm{~mol}-0.0203 \mathrm{~mol})=0.0203 \mathrm{~mol}$
O_{2} remain.
$\mathrm{P}_{\mathrm{O} 2}=\mathrm{nRT} / \mathrm{V}=\frac{(0.0203)(0.0821)(300)}{3.0 \mathrm{~L}}=\underset{\mathrm{atm}}{0.167}$
$\mathrm{P}_{\mathrm{CO} 2}=\mathrm{nRT} / \mathrm{V}=(0.0406)(0.0821)(300)=0.334$ 3.0 L
atm
$\mathrm{P}_{\text {total }}=(0.167+0.334) \mathrm{atm}=0.501 \mathrm{~atm}$

Figure 5.15: The effects of decreasing the volume of a sample of gas at constant temperature and number of moles.

5.123 Carbon monoxide, CO , and oxygen, O_{2}, react according to

$$
2 \mathrm{CO}(g)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(g)
$$

Assuming that the reaction takes place and goes to completion, determine what substances remain and what their partial pressures are after the valve is opened in the apparatus represented in the accompanying figure. Also assume that the temperature is fixed at 300 K .

Kinetic Molecular Theory

1. Volume of individual particles is \approx zero.
2. Collisions of particles with container walls cause pressure exerted by gas.
3. Particles exert no forces on each other.
4. Average kinetic energy \propto Kelvin temperature of a gas.

Figure 5.16: The effects of increasing the temperature of a sample of gas at constant volume and number of moles.

Gay-Lussac's Law $\left(\mathbf{P}_{\mathrm{i}} / \mathbf{T}_{\mathrm{i}}\right)=\left(\mathbf{P}_{\mathrm{f}} / \mathbf{T}_{\mathrm{f}}\right)$

Figure 5.17: The effects of increasing the temperature of a sample of gas at constant pressure and number of moles.

Figure 5.19: Path of one particle in a gas. Any given particle will continuously change its course as a result of collisions with other particles, as well as with the walls of the container.

Figure 5.18: The effects of increasing the number of moles of gas particles at constant temperature and pressure.

The Meaning of Temperature

$$
(\mathrm{KE})_{\mathrm{avg}}=\frac{3}{2} R T
$$

Kelvin temperature is an index of the random motions of gas particles (higher T means greater motion.)

Diffusion: describes the mixing of gases. The rate of diffusion is the rate of gas mixing.

Effusion: describes the passage of gas into an evacuated chamber.

Figure 5.23: Relative molecular speed distribution of H_{2} and UF_{6}.

Figure 5.22: The effusion of a gas into an evacuated chamber.

Figure 5.24: (top) When $\mathrm{HCl}(g)$ and $\mathrm{NH}_{3}(g)$ meet in the tube, a white ring of $\mathrm{NH}_{4} \mathrm{Cl}(s)$ forms. (bottom) A demonstration of the relative diffusion rates of NH_{3} and HCl molecules through air.

Molecular Speeds; Diffusion and Effusion

- According to Graham's law, the rate of effusion or diffusion is inversely proportional to the square root of its molecular mass.
Rate of effusion of gas " A " $=M_{m}$ of Gas B
Rate of effusion of gas " $B^{\prime \prime}=\sqrt{M_{m}}$ of gas A

A Problem to Consider

- How much faster would H_{2} gas effuse through an opening than methane, CH_{4} ?

$$
\begin{aligned}
& \frac{\text { Rate of } \mathrm{H}_{2}}{\text { Rate of } \mathrm{CH}_{4}}=\sqrt{\frac{\mathrm{M}_{\mathrm{m}}\left(\mathrm{CH}_{4}\right)}{\mathrm{M}_{\mathrm{m}}\left(\mathrm{H}_{2}\right)}} \\
& \frac{\text { Rate of } \mathrm{H}_{2}}{\text { Rate of } \mathrm{CH}_{4}}=\sqrt{\frac{16.0 \mathrm{~g} / \mathrm{mol}}{2.0 \mathrm{~g} / \mathrm{mol}}}=2.8
\end{aligned}
$$

So hydrogen effuses 2.8 times faster than CH_{4}

Figure 5.25: Plots of $P V / n R T$ versus P for several gases (200 $\mathrm{K})$.

Effusion:

$\frac{\text { Rate of effusion for gas } 1}{\text { Rate of effusion for gas 2 }}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}$

Diffusion:

$\frac{\text { Distance traveled by gas } 1}{\text { Distance traveled by gas } 2}=\frac{\sqrt{M_{2}}}{\sqrt{M_{1}}}$

Figure 5.26: Plots of $P V / n R T$ versus P for nitrogen gas at three temperatures.

Figure 5.27: (a) Gas at low concentrationrelatively few interactions between particles.
(b) Gas at high concentration - many more interactions between particles.

Figure 5.28: Illustration of pairwise interactions among gas particles.

Figure 5.29: The volume taken up by the gas particles themselves is less important at (a) large container volume (low pressure) than at (b) small container volume (high pressure).

TABLE 5.3 Values of the van der Waals Constants for Some Common Gases		
Gas	$\boldsymbol{a}\left(\frac{\mathrm{atm} \cdot \mathrm{L}^{2}}{\mathrm{~mol}}\right)$	$\boldsymbol{b}\left(\frac{\mathrm{L}}{\mathrm{mol}}\right)$
He	0.0341	0.0237
Ne	0.211	0.0171
Ar	1.35	0.0322
Kr	2.32	0.0398
Xe	4.19	0.0511
H_{2}	0.244	0.0266
$\mathrm{~N}_{2}$	1.39	0.0391
O_{2}	1.36	0.0318
Cl_{2}	6.49	0.0562
CO_{2}	3.59	0.0427
CH_{4}	2.25	0.0428
NH_{3}	4.17	0.0371
$\mathrm{H}_{2} \mathrm{O}$	5.46	0.0305

A Problem to Consider

- If sulfur dioxide were an "ideal" gas, the pressure at $0{ }^{\circ} \mathrm{C}$ exerted by 1.000 mol occupying 22.41 L would be 1.000 atm . Use the van der Waals equation to estimate the "real" pressure.
Given are the following values for SO_{2}
$\mathrm{a}=6.865 \mathrm{~L}^{2} \cdot \mathrm{~atm} / \mathrm{mol}^{2}$
$b=0.05679 \mathrm{~L} / \mathrm{mol}$

A Problem to Consider

- First, let's rearrange the van der Waals equation to solve for pressure.

$$
P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

$\mathrm{R}=0.0821 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
$\mathrm{T}=273.2 \mathrm{~K} \quad \mathrm{a}=6.865 \mathrm{~L}^{2} \cdot \mathrm{~atm} / \mathrm{mol}^{2}$
$\mathrm{V}=22.41 \mathrm{~L} \quad \mathrm{~b}=0.05679 \mathrm{~L} / \mathrm{mol}$

A Problem to Consider

$$
P=\frac{n R T}{V-n b}-\frac{n^{2} a}{V^{2}}
$$

$\mathrm{P}=\frac{(1.000 \mathrm{~mol})\left(0.08206 \frac{\mathrm{Latm}}{\mathrm{mol} \cdot \mathrm{K}}\right)(273.2 \mathrm{~K})}{22.41 \mathrm{~L}-(1.000 \mathrm{~mol})(0.05679 \mathrm{~L} / \mathrm{mol})}-\frac{(1.000 \mathrm{~mol})^{2}\left(6.865 \frac{\mathrm{~L}^{2} \cdot \mathrm{~atm}}{\mathrm{~mol}^{2}}\right)}{(22.41 \mathrm{~L})^{2}}$

$$
P=0.989 \mathrm{~atm}
$$

- The "real" pressure exerted by 1.00 mol of SO_{2} at STP is slightly less than the "ideal" pressure of 1.000 atm .

Real Gases

Must correct ideal gas behavior when at high pressure (smaller volume) and low temperature (attractive forces become important).

