ACID-BASE BALANCE AND ACID-BASE DISORDERS

- I. Concept of Balance
 - A. Determination of Acid-Base status
 - 1. Specimens used what they represent
- II. Electrolyte Composition of Body Fluids
 - A. Extracellular Compartment
 - 1. Vascular Plasma, RBC
 - 2. Interstitial fluid, CSF & bone
 - B. Intracellular Compartment
 - C. Mechanism for maintaining body water levels
 - D. Mechanisms for the movement of substances between compartments
 - 1. Gibbs-Donnan Equilibrium
 - 2. Active & Passive Transport
- III. Estimation of Vascular Compartment pH
 - A. Henderson-Hasselbalch Equation

pH = pK' + log ($cHCO_3^{-}/cdCO_2$) Average ratio of log term is about 20/1 pH imbalances of metabolic origin are classified as primary disturbances of [HCO_3^{-}], while those of respiratory origin are considered primary disturbances of [dCO_2]

IV. Acid-Base Parameters - Definitions and Abbreviations Bicarbonate - plasma bicarbonate, carbonate and CO_2 bound in plasma carbamino compounds Dissolved CO_2 (dCO_2) - free CO_2 + H₂CO₃ Partial Pressure of CO_2 (pCO_2) - αpCO_2 = [dCO_2] Total CO_2 (tCO_2) = [HCO_3^{-1}] + [dCO_2] Standard [HCO_3^{-1}] of blood Base Excess of the Extracellular fluid or Standard Base Excess: Concentration of titratable base when titrating a model of extracellular fluid to a pH of 7.4 at a p CO_2 of 40 mm Hg. pH: - log aH^+ . [H^+] = K($pCO_2/cHCO_3^{-1}$)

- V. Buffer Systems and Their Role in Regulating the pH of Body Fluids
 - A. Bicarbonate/Carbonic Acid Buffer System

$$\beta HCO_3^{-} = (\Delta [HCO_3^{-}]/\Delta pH)$$

 βHCO_3^{-} , closed = 2.303 [tHCO_3^{-}]{K'aH^+/(K' + aH)^2}

 βHCO_3^{-1} , open = 2.303[HCO_3^{-1}] = 56.6 mM

- B. Phosphate Buffer System
- C. Plasma Protein Buffer System: imidazole side chains
- D. Hemoglobin Buffer System
- VI. Isohydric & Chloride Shift
- VII. Respiratory Mechanism in the Regulation of Acid-Base Balance
- VIII. Renal Excretion of Acid, Ammonia Formation and Reabsorption of Bicarbonate - Renal Compensatory Mechanism
 - A. Excretion of Acids
 - B. Na^+-H^+ Exchange
 - C. Renal Production of Ammonia & Excretion of NH₄⁺
 - D. Excretion of H^+ as $H_2PO_4^-$
 - E. Reclamation of Filtered Bicarbonate

ACID BASE BALANCE AND ACID BASE DISORDERS - II

3

- 1. Conditions Associated with Abnormal Acid-Base Status and Abnormal Anion-Cation Composition of the Blood
- Assumes that extracellular composition is same as intracellular composition
- Anion & cation shifts accompany alterations in H⁺
 Anion to balance H⁺, cation to balance organic acid anions
- Separated into respiratory (acidosis and alkalosis) and metabolic (acidosis and alkalosis)
- Compensatory mechanisms may fully, partially or <u>not</u> restore acid-base balance

A. Metabolic Acidosis

1. Production of organic acids > excretion of these acids

- 2. Decreased urinary excretion of acids
- 3. Excessive loss of HCO_3^- due to loss of duodenal fluid

 $pH = pK' + log([HCO_3^-]/[dCO_2]]$

Symptoms: hyperventilation, acidic urine

- 4. Normal Anion Gap Acidoses
 - a. Hypokalemic
 - 1. Diarrhea
 - 2. Renal tubular acidosis
 - 3. Carbonic anyhydrase inhibitors
 - 4. Ureterosigmoidostomy

Acid Base II

- b. Normokalemic
 - 1. Early renal failure
 - 2. Hydronephrosis
 - 3. Treatment with NH_4^+ , Arg-HCl
 - 4. Hypoaldosteronism or aldosteroneantagonizing drugs
- c. Hyperkalemic
 - 1. Severe inhibition of renal NH_4^+ formation
 - 2. Severe reaction to aldosterone antagon-
 - ists, renin synthesis failure, advanced Addison's disease, renal resistance to aldosterone
- 5. Increased Anion Gap Acidosis
 - a. Renal Failure
 - b. Ketoacidosis
 - c. Salicylate intoxication
 - d. Lactic Acidosis

Type A - severe hypoxia

```
Type B - drugs & toxins, defects in gluconeo-
genesis enzymes, severe acidoses
```

Lactate + NAD⁺ <===> Pyruvate + NADH + H⁺

- 6. Compensatory Mechanisms
 - a. Respiratory (decreased dCO_2)
 - b. Renal
- 7. Lab Findings:

 $[HCO_3^{-}] + 15 = 25$ pH = 7.25 pCO₂ ± 2 = 1.5[HCO₃^{-}] + 8 Diabetic Ketoacidosis

- B. Metabolic Alkalosis
 - 1. Administration of excess alkali
 - 2. Excessive loss of HCI from stomach
 - 3. K^+ depletion
 - 4. Renal bicarbonate retention
 - 5. Prolonged administration of thiazide diuretics

Symptoms - hypoventilation

- 6. Compensatory Mechanisms hypoventilation
- 7. Lab Findings. Use formulas
- C. Respiratory Acidosis
 - 1. Respiratory Center Depression
 - 2. Obstruction both blockage & scarring of alveoli
 - 3. Abdominal Distention, extreme obesity, extreme scoliosis, sleep apnea
 - 4. Compensatory Mechanisms
 - a. Increased depth & volume of breathing
 - b. Renal
 - 5. Lab Findings: pH > 7.20, usually uncomplicated $\triangle cH^+ = 0.8(\triangle pCO_2)$
- D. Respiratory Alkalosis
 - 1. Nonpulmonary Stimulation of Respiratory Center
 - 2. Pulmonary Stimulation of Respiratory Center
 - 3. Ventilation-Induced

- 4. Compensatory
 - a. Renal
- 5. Lab Findings
- E. Anion Gap
- F. Osmolal Gap Calculation useful at identifying presence of osmotically active unknown substance

```
Osmolal Gap = Observed - Calculated
```

```
Calculated: 1.86[Na<sup>+</sup>] + [Glu] + [Urea] + 9
```

G. Use of acid-base nomograms