Structure of (Free) Neutrons: The BONuS & BONuS12 Experiments

Sebastian Kuhn Old Dominion University

Overview

- Neutron Structure Functions (esp. at large x) Why?
- The Neutron No Free Lunch Target (Nucleon structure modifications in Nuclei)
- Spectator Tagging (Principle and Experimental Realization - the RTPC)
- The "BoNuS" experiment
- New ideas for recoil detectors
- The (11 GeV) Future of "BoNuS" (Conclusion and Outlook)

Fundamental Problem of Nuclear and Hadronic Physics

- Nearly all well-known ("visible") mass in the universe is due to hadronic matter
- Fundamental theory of hadronic matter exists since the 1960's: Quantum Chromo Dynamics
 - "Colored" quarks (u,d,c,s,t,b) and gluons; Lagrangian
- BUT: knowing the ingredients doesn't mean we know how to build hadrons and nuclei from them!
 - akin to the question:
 "Given bricks and mortar, how do you build a house?"
- Four related puzzles:
 - What is the "quark-gluon wave function" of known hadrons?
 - How are hadrons (nucleons) bound into nuclei?
 Does their quark-gluon wave function change inside a nucleus?
 - How do fast quarks and gluons propagate inside hadronic matter?
 - How do fast quarks and gluons turn back into observable hadrons?

What are Nucleons?

- Stationary solutions of the QCD Lagrangian with A = 1, $I = \frac{1}{2}$; S = B = C = T = 0 and $s = \frac{1}{2}$
- Bound systems of 3 light valence quarks (*uud* or *udd*) and a large number of sea quarks (*qq*) and gluons
- Bound states of effective "constituent quarks"
- Describable as a superposition of Fock states, including bare qqq, and excitations of the chiral condensate ("pion cloud"); solitons
- Characterized by SFs, FFs, GPDs, WFs.,
- ...your definition here...
- Classical Nuclear Physics: "Structure-less" hard objects

a quarks, gluons

orbital angular momentum

valence

correlations

qua

How Do We Study Hadron/Nuclear Structure?

- Energy levels: Nuclear and particle (baryon, meson) masses, excitation spectra, excited state decays -> Spectroscopy (What exists?)
- Elastic and inelastic scattering, particle production Reactions (*Relationships?*)
- Probing the internal structure directly Imaging (Shape and Content?)
- Particular way to encode this: Structure Functions
 - "Parton wave function"?
 5(6)-dim. Wigner distribution → …

Introduction

- The familiar (?) 1D world of Nucleon longitudinal structure:
 - Take a nucleon
 - Move it real fast along z \Rightarrow light cone momentum $P_+ = P_0 + P_z$ (>>M)
 - Hit a "parton" (q, g,...) inside
 - Measure **its** l.c. momentum $p_+ = p_0 + p_z$ (m≈0)
 - ⇒ Momentum Fraction $ξ = p_+ / P_+^{*}$
 - In DIS: $\xi = (q_z v)/M \approx x_{Bj} = Q^2/2Mv$
 - Probability: $F_1(x) = \frac{1}{2} \sum_{i} e_i^2 q_i(x)$
 - Because of spin-1/2: 2nd SF F₂(x)

*) Advantage: Boost-independent

Introduction

• So there we are:

Parton model: DIS can access

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 q_i(x) \text{ (and } F_2(x) \approx 2xF_1(x))$$

SIDIS: allows flavor tagging \Rightarrow separated q_i

Complications: Higher Twist and resonances:

- Non-zero $R = F_L/2xF_1$
- Further Q^2 -dependence (power series in $\frac{1}{O^n}$)

 $q(x;Q^2), \langle h \cdot H \rangle q(x;Q^2)$

Traditional "1-D" Parton Distributions (PDFs) (inclusive, integrated over many variables)

⇒ Our 1D View of the Nucleon

(also depends on the resolution of the virtual photon ~ $1/Q^2$

Jefferson Lab in Context

Structure Functions and Moments: Why large x? Why neutron?

 $\frac{d\sigma}{d\Omega dE'} = \sigma_{Mott} \left(\frac{F_2(x)}{v} + 2\tan^2 \frac{\theta_e}{2} \frac{F_1(x)}{M} \right); \quad F_2(x,Q^2) = x \qquad \sum z_f^2 \left(q_f(x,Q^2) + \overline{q}_f(x,Q^2) \right)$

- q_{down}/q_{up}(x→1) is a crucial test of valence quark models
 - SU(6) breaking, pQCD,...

f = up.down...

- Precise PDFs at large x needed as input for LHC, v experiments etc.
 - Large *x*, medium Q² evolves to medium *x*, large Q²
 - Also: NUCLEAR structure functions
- Moments can be directly compared with OPE (twist expansion), Lattice QCD and Sum Rules
 - All higher moments are weighted towards large x
- Quark-Hadron Duality

$$M_n^{CN}(Q^2) = \int_0^\infty dx x^{(n-2)} F_2(x, Q^2) = \sum_{\tau=2k}^\infty E_{n\tau}(\mu, Q^2) O_{n\tau}(\mu) \left(\frac{\mu^2}{Q^2}\right)^{\frac{1}{2}(\tau-2)} + \text{TM corr.}$$

Valence PDFs

xf(x)

- Behavior of PDFs still unknown for $x \rightarrow 1$
 - SU(6): d/u = 1/2, $\Delta u/u = 2/3$, $\Delta d/d = -1/3$ for all x
 - Relativistic Quark model: Δu , Δd reduced
 - Hyperfine effect (1-gluon-exchange): Spectator spin 1 suppressed, d/u = 0, $\Delta u/u = 1$, $\Delta d/d = -1/3$
 - Helicity conservation: d/u = 1/5, $\Delta u/u = 1$, $\Delta d/d = 1$
 - Orbital angular momentum: can explain slower convergence to $\Delta d/d = 1$
- Plenty of data on proton → mostly constraints on u and ∆u
- Knowledge on d limited by lack of free neutron target (nuclear binding effects in d, ³He)
- Large x requires very high luminosity and resolution; binding effects become dominant uncertainty for the neutron

Structure Functions and Resonances

- Precise structure functions in Resonance Region constrain nucleon models [Separate resonant from nonresonant background; isospin decomposition]
- Needed as input for spin structure function data, radiative corrections,...
- Compare with DIS structure functions to test duality

Present Knowledge of d/u (x \rightarrow 1)

Limited by "Nuclear Binding Uncertainties"

Neutron Data Are Important... ...but hard to get

• Free neutrons decay in 15 minutes.

• Radioactivity!

 Zero charge makes it difficult to create a dense target Magnetic bottle: 10³ - 10⁴ n/cm² [TU München]
 Typical proton target: 4·10²³ p/cm² [10 cm LH] – 10¹⁴ p/cm² [HERMES]

=> Alternative Solution: Deuterons, Tritons and Helium-3... *BUT*: Nuclear Model Uncertainties:

Fermi motion, off-shell effects (binding), structure modifications (EMC effect), extra pions/Deltas, coherent effects, 6-quark bags...

Nuclear Effects

	Deuteron ↑	³ He↑ (³ H)
0 th order approximation	p↑n↑	p↑p↓n↑
D-state and other configurations (S', P, …)	$\mu_{\rm D} = \mu_{\rm p} + \mu_{\rm n} - 0.022$	$\mu_{He} = \mu_n - 0.214$
Tensor polarization	P _{zz} ≈ 0.1	Not applicable
Kinematic "smearing"	p _{RMS} = 130 MeV/ c	p _{RMS} = 170 MeV/c
Binding and "off-shell"- effect	E _{bound} -E _{free} ≈ -10 MeV	E _{bound} -E _{free} ≈ -20 MeV
EMC-effect, final state interaction, coherent processes	A = 2, ρ ≈ 0.063 N/fm³	A=3, ρ ≈ 0.094 N/fm³
Extra pions?	2% ?	5% ?
Contributions from Delta resonances?	$P_{\Delta\Delta} < 0.5\%$	$P_{_{\rm NN\Delta}} \approx 2\%$?
Other exotic components?	6-quark bags?	6- and 9-quark bags?

Large x - Large Nuclear Effects

- Even simple "Fermi Smearing" leads to significant dependence on D wave function
- Different models for off-shell and "EMC" effects lead to large additional variations
- Contributions from MEC, Δ(1232) and "exotic" degrees of freedom unknown

• FSI?

EMC effect in deuteron

- using off-shell model, will get *larger* neutron cf. light-cone model
- → but will get smaller neutron cf. no nuclear effects or density model

Specific Model: Relativistic on-shell smearing model of Deuterium (Arrington et al.)

Estimating the EMC effect in Deuterium

CTEQ6x (CJ) Fit of world data with relaxed cuts, TMC, HT, and various deuteron models

Dependence on off-shell prescription

Dependence on WF

Total (worst case) uncertainty

Bound Neutron Structure Functions - 2 Questions:

- 1) How can we explore the structure of the neutron if all we have are neutrons bound in nuclei?
 - In many cases, a neutron bound in deuterium can be considered "nearly free".
 - BUT: For certain kinematics (large x > 0.5, resonance region W < 2) the high-momentum (short-distance tail) of the deuteron wave function plays a large role and might distort the result.
- 2) Can we learn something about what happens to a nucleon if it is part of a short-distance pair?
 - Many ideas: Off-shell modifications of on-shell structure functions, color delocalization, suppression of point-like components, $\Delta\Delta$ components, extra mesons or 6-quark bags
 - Fundamental question about QCD in bound hadron systems that we haven't understood yet. Relevant for QCD phase diagram (high baryon density, neutron stars, color superconductivity?)

Spectator Tagging

RTPC Cross Section

increasing invariant mass of X

The New RTPC (ii)

The New RTPC (iii)

Expected PID with fully calibrated RTPC

Better gain uniformity – better PID:

- ➢ new GEM foils
- stress free support
- \succ calibration system (α -source and elastic scattering)

Lower momentum threshold (250 MeV for α 's)

➤ thinner target walls

New Drift Gas NE-TME

- higher density, but similar speed
- Iarger signal

2nd RTPC Experiment - EG6

Detector calibration, 1st step analysis under way 1st results maybe in 1 year

Plans for 12 (really: 11) GeV

BoNuS12 **E12-06-113**

- Data taking of 35 days on D₂ and 5 days on H₂ with $\mathcal{L} = 2 \cdot 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$
- **Planned** BoNuS detector DAQ and trigger **upgrade**
- DIS region with
 - $Q^2 > 1 \text{ GeV}^2/c^2$
 - ₩*> 2 GeV
 - $p_s > 70 \text{ MeV}/c$
 - $10^{\circ} < \theta_{pq} < 170^{\circ}$
- Extend to higher momenta using central detector alone

Expected Results

Dark Symbols: $W^* > 2 \text{ GeV} (x^* \text{ up to } 0.8, \text{ bin centered } x^* = 0.76)$ Open Symbols: "Relaxed cut" $W^* > 1.8 \text{ GeV} (x^* \text{ up to } 0.83)$

The future: JLab at 11 GeV

Backup Slides

Simple (Constituent) Quark Model

Flavor	Isospin I	I_3	Strangeness S	Charge Q	Baryon Number B
U	1/2	+1/2	0	+2/3	1/3
D	1/2	-1/2	0	-1/3	1/3
S	0	0	-1	-1/3	1/3

$$\begin{split} |\Delta^{++}\uparrow\rangle &= |U\uparrow U\uparrow U\uparrow\rangle\\ |\Delta^{+}\uparrow\rangle &= 1/\sqrt{3}\left(|U\uparrow U\uparrow D\uparrow\rangle + |U\uparrow D\uparrow U\uparrow\rangle + |D\uparrow U\uparrow U\uparrow U\uparrow\rangle\right) \end{split}$$

The case of the proton is a bit more complicated, since the wave function cannot be symmetric in spin and flavor separately. The most intuitive way to derive the proton wave function is by observing that 2 of the 3 quarks are equal (U), and therefore their relative spin wave function should be symmetric also. This leads to the conclusion that the two U-quarks couple their spins to a total spin of one. Let's denote the case where this spin has a z-projection of +1 as $(UU \Uparrow) := |U \uparrow U \uparrow\rangle$, while the projection with $S_z = 0$ will be indicated by $(UU \Rightarrow) := 1/\sqrt{2} (|U \uparrow U \downarrow\rangle + |U \downarrow U \uparrow\rangle)$. We can now combine the spin 1/2 of the remaining D quark with the spin 1 of the UU pair in two ways to get total spin and projection 1/2; the proper way follows simply from insertion of the correct Clebsch-Gordon coefficients:

$$|P\uparrow\rangle = 1/\sqrt{3} \left(\sqrt{2} |(UU\uparrow)D\downarrow\rangle - |(UU\Rightarrow)D\uparrow\rangle\right).$$
(2)

Quark Model:

• SU(6)-symmetric wave function of the proton in the quark model:

$$|p\uparrow\rangle = \frac{1}{\sqrt{18}} \left(3u\uparrow [ud]_{S=0} + u\uparrow [ud]_{S=1} - \sqrt{2}u\downarrow [ud]_{S=1} - \sqrt{2}d\uparrow [uu]_{S=1} - 2d\downarrow [uu]_{S=1} \right)$$

- In this model: d/u = 1/2, $\Delta u/u = 2/3$, $\Delta d/d = -1/3$ for all x => $A_{1p} = 5/9$, $A_{1n} = 0$, $A_{1D} = 1/3$ *)
- Hyperfine structure effect: S=1 suppressed => d/u = 0, $\Delta u/u = 1$, $\Delta d/d = -1/3$ for x -> 1 => $A_{1p} = 1$, $A_{1n} = 1$, $A_{1D} = 1$
- pQCD: helicity conservation (q↑↑p) => d/u =2/(9+1) = 1/5, ∆u/u = 1, ∆d/d = 1 for x -> 1
- Wave function of the neutron via isospin rotation: replace u -> d and d -> u => using experiments with protons and neutrons one can extract information on u, d, Δu and Δd in the valence quark region.

*)
$$A_{1p} = \frac{4/9 \cdot u \cdot \Delta u/u + 1/9 \cdot d \cdot \Delta d/d}{4/9 \cdot u + 1/9 \cdot d} = \frac{4 \cdot \Delta u/u + (d/u) \cdot \Delta d/d}{4 + (d/u)}$$

 $\alpha_s = \frac{E_s - p_{s_{||}}}{M_s}$

 $x^* = \frac{Q^2}{2n_{\nu}^{\mu}a^{\mu}} \approx \frac{Q^2}{2M\nu(2-\alpha_s)} = \frac{x}{2-\alpha_s}$

- plane-wave impulse approximation
- backward-emitted p is spectator
- struck neutron is off-shell
- momenta are equal and opposite
- Lorentz invariants are corrected for initial neutron 4-momentum

PWIA Spectator Formalism

$$\begin{aligned} \frac{d\sigma}{dx^* dQ^2} &= \frac{4\pi \alpha_{\rm EM}^2}{x^* Q^4} \begin{bmatrix} y^{-2} \\ 2(1+R) + (1-y_{-}) \\ &+ \frac{M^{*2} x^{*2} y^{-2} }{Q^2} \frac{1-R}{1+R} \end{bmatrix} F_2(x^*, \alpha_s, p_T, Q^2) \\ &+ \frac{M^{*2} x^{*2} y^{-2} }{Q^2} \frac{1-R}{1+R} \end{bmatrix} F_2(x^*, \alpha_s, p_T, Q^2) \\ &\times S(\alpha_s, p_T) \frac{d\alpha_s}{\alpha_s} d^2 p_T, \end{aligned}$$

Reat/or

Light Cone

Spectral Function

Nonrelativistic w.f.
$$P(\vec{p}_s) = J |\psi_{\rm NR}(p_s)|^2 \\ J = 1 + \frac{p_{\rm SII}}{E_{\rm R}^*} = \frac{(2-\alpha_s)M_d}{2(M_d - E_s)} \\ S(\alpha_s, p_T) \frac{d\alpha_s}{\alpha_s} d^2 p_T = P(\vec{p}_s) d^3 p_s \end{aligned}$$

$$S(\alpha_s, p_T) \frac{d\alpha_s}{\alpha_s} d^2 p_T = P(\vec{p}_s) d^3 p_s$$

$$Cross Section
Off-Shell F_2
Constrained
Off-Shell F_2
Constrained
Constra$$

Final State Interactions

Target Fragmentation

Palli et al, PRC80(09)054610

- target fragmentation enhances the proton yield only at forward angles ($\cos \Theta_{pq} > 0.6$)
- this can be ignored

RTPC Cross Section

Simulation Overview

Evgen (fsgen or other event generators) \rightarrow RTPC (BONUS) CLAS(gsim) \rightarrow Gsim Post Processing (gpp) \rightarrow Reconstruction (user_ana) \rightarrow Skim \rightarrow Higher Level Simulation Ntuple

What can be done with simulation?

- Help to design the detector and choose the best configurations of HV and Drift Gas
- Debug/optimize reconstruction code of RTPC
- · Generate energy loss correction tables, radiation length tables
- Detector's acceptance and efficiency study

Kinematic Coverage - 2.1, 4.2 & 5.3 GeV

RTPC Performance

e⁻ reconstructed in CLAS & RTPC

Minimizing Nuclear Uncertainties: "Spectator Tagging"

Preliminary Results from BoNuS

Baryonic Resonances, $D(e,e'\pi-p)p$ E = 5.26 GeV, Accepance and momentum not corrected yet

- Measured tagged n / inclusive d
- Multiplied with F_{2d}/F_{2p}
- Normalized at small x
- Acceptance corrections underway

D(e, e' $\pi^- p_{CLAS})p_s$ + D(e, e' $\pi^- p_{RTPC})p_{decay}$

Deviations from free structure function: Off-shell Effects [should depend on α (p_s), x, Q²]

- The Ratio Method
 - * measure tagged counts divided by inclusive counts
 - correct this ratio for backgrounds
 - * one scale factor gives F2ⁿ/F2^d
- The Monte Carlo Method
 - ★ measure tagged counts
 - * divide by spectator model Monte Carlo results
 - * multiply by F_2^n used in the model
- The two methods have different systematic errors, but give very similar results.

- Z is the position along the beam direction
- Tracking of the electron gives Z(CLAS)
- Tracking of the spectator proton gives Z(BoNuS)
- ΔZ=Z(CLAS)-Z(BoNuS) shows a coincidence peak and a triangular background
- Fits to the triangular background allows us to measure backgrounds underneath the peak
- Blue area = R_{bg} x Pink area
- R_{bg} is independent of kinematics

BoNuS F₂ⁿ

4 of 16 spectra: $0.8 < Q^2 < 4.5$; E_{beam} = 4.2 & 5.3 GeV; Bosted/Christy world fits

 $R(data/MC) = \frac{F_{2n}^{eff}(W^*, Q^2, \vec{p_s})}{F_{2n}^{model}(W, Q^2)}$

Left: Black=raw tagged data; blue=accidental subtracted data; red=elastic and radiative tail

Final 4 GeV Data F_{2n}

BoNuS data compared to a state of the art nuclear physics extraction of neutron structure functions from deuterium (red points, Malace, et al.)

and a model (green line by Christy et al.)

BoNuS F_2^n/F_2^p

- $F_2^n/F_2^n vs. x$
- Curves are CETQ error bands
- CETQ cuts off at low x because Q² is too low
- Lower cuts in W* imply higher x but the inclusion of resonance contributions.
- Results are consistent with CETQ trends at high x.

5 GeV Data

Results from BoNuS (iv)

Testing the Spectator Assumption - dependence on p_s

- Data have radiative elastic tail subtracted
- Simulation uses simple spectator model, radiative effects, full model of RTPC and CLAS

Results from BoNuS (v)

Testing the Spectator Assumption - dependence on θ_{pq}

- So far, no strong deviations from naïve PWIA spectator picture at lower spectator momenta
- Possible indication of θ-dependence at higher p_s
- Have systematics for a wide range in Q², W* and beam energies

W* = 1.73 GeV Q² = 1.66 (GeV/c)²

High spectator momenta (0.25 - 0.7 GeV/c): "Deeps"

CLAS

Results from "Deeps": Momentum Distribution

Vertical axis: Number of events

Horizontal axis: Proton momenta from 250 to 700 MeV/c

Left: Angular range > 107.5^o Right: Angular range 72.5^o - 107.5^o

3 different ranges in the final state mass W of the unobserved struck neutrons

PWIA model with "light cone"-wave function for deuterium

Results from "Deeps": Ratio Method

Ratio =

$$\frac{\sigma(x^* = 0.55, \alpha_s)}{\sigma(x^* = 0.25, \alpha_s)} \text{(bound n)}$$

$$\frac{\sigma(x = 0.25, \alpha_s)}{\sigma(x = 0.55)} \text{(free n)}$$

- Independent of deuteron WF, acceptance, kinematic factors
- Should be sensitive to off-shell effects at large x, but also influenced by FSI and target fragmentation
- Fixed p_T = 0.3 GeV/c -TOO LARGE!

What can we say about the

EMC effect in Deuterium?

Deeps backward angles > 110° Slope approx. -0.4 - -0.5 nearly independent of p_s

Slope for most tightly bound nuclei (20% SRC) about -0.4!

BoNuS results for low p_s indicate little dependence on x^*

What can we say about the EMC effect in Deuterium?

see talk by L. Weinstein

Ratio $F_{2n}(x, p_s)/F_{2n}(x, p_s=78 \text{ MeV/c})$ as function of spectator momentum p_s

Results from "Deeps": Comparison w/ FSI model (CdA et al.)

Testing FSI Models in the quasi-elastic channel

 W. Van Orden and S. Jeschonnek have developed a fully relativistic description of cross sections, vector and tensor asymmetries for D(e,e'p)n, including (spin-dependent) FSI (based on known phase shifts)

5^{th} structure Function in d(e,e'p) – J. Gilfoyle

- Arenhövel (black) Non-relativistic Schrödinger Equation with RC, MEC, IC, and FSI. Averaged over the CLAS acceptance.
- 2. Laget (green) Diagrammatic approach for $Q^2 = 1.1 \ {\rm GeV}^2$ (lower panel) and $Q^2 = 0.7 \ {\rm GeV}^2$ (upper panel).
- 3. Jeschonnek and Van Orden (JVO in red) - Relativistic calculation in IA, Gross equation for the deuteron ground state, SAID parameterization of the NN scattering amplitude for FSI. Off-shell form factor cutoff set to $\Lambda_N =$ 1.0 GeV (PRc, 81, 014008, 2010). Averaged over the CLAS acceptance.

CLAS data mining

- Joint effort of a large group of people (many of them here) to re-analyze existing nuclear target data from CLAS
- Proposal to DOE for funding (mostly for a dedicated postdoc) - presently "in limbo"
- Relevant for spectator physics:
 - E6 data, d(e,e'p_s)X : extend Q² range, lower p momentum threshold
 - E6 data: Look for d(e,e' Δ_s) Δ and other "exotic" final states
 - EG1/EG4/EG1-DVCS: study d(e,e'p)n vs. missing momentum to learn more about spin effects and FSI
- Discussion Friday afternoon

Plans for Jefferson Lab at 11-12 GeV

- CLAS12 will have central detector for medium-low momentum large angle particles
- Can be replaced by "BoNuS" type RTPC for much lower spectator momenta
- Can insert polarized target inside Central Detector study tagged pol. SFs? (Polarized EMC effect LOI [Brooks] approved by PAC35)

11111 Central Detector

Forward Detector for e-, π, K,...

The New RTPC (ii)

DAQ with new Readout Control Unit board

- Data taking of 35 days on D₂ and 5 days on H₂ with $\mathcal{L} = 2 \cdot 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$
- **Planned** BoNuS detector DAQ and trigger **upgrade**
- DIS region with
 - $Q^2 > 1 \text{ GeV}^2/c^2$
 - ₩*> 2 GeV
 - $p_s > 70 \text{ MeV}/c$
 - $-10^{\circ} < \theta_{pq} < 170^{\circ}$
- Largest value for $x^* = 0.80$ (bin centered $x^* = 0.76$)
- Extend to higher momenta using central detector alone

Expected Results -

BoNuS12 E12-06-113

Data taking of 35 days on D₂ and 5 days on H₂ with $\mathcal{L} = 2 \cdot 10^{34} \text{ cm}^{-2} \text{ sec}^{-1}$

•DIS region with

 $-Q^{2} > 1 \text{ GeV}^{2}/c^{2}$ - W*> 2 GeV - p_{s} > 70 MeV/c -10° < $\theta_{pq} < 170^{\circ}$

New methods – DIS from *A*=3 ("MARATHON")

extract n/p ratio from ratio of A=3 structure functions

$$\frac{F_2^n}{F_2^p} = \frac{2\mathcal{R} - F_2^{^3\mathrm{He}}/F_2^{^3\mathrm{H}}}{2F_2^{^3\mathrm{He}}/F_2^{^3\mathrm{H}} - \mathcal{R}}$$

→ ratio of ³He to ³H EMC ratios cancels to ~1% for x < 0.85

PR12-11-107

Conclusion

- Few-body nuclei (D and ³He) continue to be "neutron targets of choice"
- Interpretation of results complicated by off-shell effects, possible structure modifications and final state interaction...
- ...but we can also learn a lot about NN interaction and few-body nuclear structure by studying these effects
- New, more precise theoretical calculations are becoming available and can be tested experimentally
- New experimental techniques allow us to minimize binding effects or study them in detail
- Started new initiative to "mine" CLAS data for more insight into the interplay between Nuclear and Quark d.o.f.
- Lots more data at 12 GeV!

Conclusion -Status of Spectator Experiments

- Lots of data with coincident spectator detection already exist, many have been (partially) analyzed
 - FSI seems very important in perpendicular and forward kinematics
 - simple spectator picture with LC wave functions seems to work reasonably in some kinematic regions
 - Possible modifications of internal nucleon structure (dependent on spectator momentum) still an open question
- New data from EG6 will extend this study to ⁴He target
- Data mining initiative will unlock much more information from all nuclear data taken with CLAS
- Lots more exciting experiments after JLab energy upgrade!
- Requires theory-experiment interaction: Agree on definition of "reduced cross section"; need predictions of this cross section including FSI over large kinematic range (not only for p_T = 0;-)
- ULTIMATE GOAL: EIC can smoothly map out p_{spect.} from 0 to 1 GeV/c

Announcement

- Satellite Meeting of the Jefferson Lab Users Group TODAY at 12:30 in the Santa Fe Hilton, Mesa A room
- Lunch (sandwiches) will be served
- Find out what's going on at JLab and what the Users Group Board of Directors is up to