Nuclear Physics with Electromagnetic Probes
Lectures 3 & 4

Lawrence Weinstein
Old Dominion University
Norfolk, VA USA

Hampton University Graduate School
2012
Course Outline

- **Lecture 1**: Beams and detectors
- **Lecture 2**: Elastic Scattering:
 - Charge and mass distributions
 - Deuteron form factors
- **Lectures 3+4**:
 - Single nucleon distributions in nuclei
 - Energy
 - Momentum
 - Correlated nucleon pairs.
- **Lecture 5**: Quarks in Nuclei
 - Nucleon modification in nuclei
 - Hadronization
 - Color transparency
Comprehensive Theory Overview

Nuclear Theory, circa 1980

Nuclear Theory, circa 2000

Nuclear Theory - today: 1, 2, 3, ... 12, ... many
It's all photons!

- An electron interacts with a nucleus by exchanging a single* virtual photon.

Real photon:
- Momentum $q = $ energy ν
- Mass $= Q^2 = |q|^2 - \nu^2 = 0$

$$\lambda = \frac{\hbar}{|\vec{q}|}$$

Virtual photon:
- Momentum $q > $ energy ν
- $Q^2 = -q_\mu q^\mu = |q|^2 - \nu^2 > 0$
- Virtual photon has mass!

(ν and ω are both used for energy transfer)

HUGS 2012 Nuclear Physics Weinstein
(e, e') spectrum

Generic Electron Scattering at fixed momentum transfer

HUGS 2012 Nuclear Physics Weinstein
Experimental goals:

- **Elastic scattering**
 - structure of the nucleus
 - Form factors, charge distributions, spin dependent FF

- **Quasielastic (QE) scattering**
 - Shell structure
 - Momentum distributions
 - Occupancies
 - Short Range Correlated nucleon pairs
 - Nuclear transparency and color transparency

- **Deep Inelastic Scattering (DIS)**
 - The EMC Effect and Nucleon modification in nuclei
 - Quark hadronization in nuclei
Inclusive electron scattering (e,e')

\[k'^\mu = (E', \vec{k}') \]
\[k^\mu = (E, \vec{k}) \]
\[p'^\mu = (E_p, \vec{p}_p) \]
\[q^\mu = (\omega, \vec{q}) \]
\[q^\mu = k^\mu - k'^\mu \]
\[p^\mu = (M, \vec{0}) \]

Lab frame kinematics

Invariants:

\[p^\mu p_\mu = M^2 \]
\[p_\mu q^\mu = M \omega \]
\[Q^2 = -q^\mu q_\mu = |\vec{q}|^2 - \omega^2 \]
\[W^2 = (q^\mu + p^\mu)^2 = p'_\mu p'^\mu \]

HUGS 2012 Nuclear Physics Weinstein
\((e,e')\) Elastic cross section \((p'^2 = M^2) \)

Recoil factor

\[
\frac{d\sigma}{d\Omega} = \sigma_M \left(\frac{E'}{E} \right)^2 \left[\frac{F_1^2(Q^2) + \frac{Q^2}{4M^2} \kappa^2 F_2^2(Q^2)}{1 + \tau} \right]
\]

\[
= \sigma_M \left(\frac{E'}{E} \right)^2 \left[\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} \right]
\]

\[
= \sigma_M \left(\frac{E'}{E} \right)^2 \left[\frac{Q^4}{q^4} R_L(Q^2) + \left(\frac{Q^2}{2q^2} + \tan^2 \frac{\theta}{2} \right) R_T(Q^2) \right]
\]

Mott cross section

\[
\sigma_M = \frac{\alpha^2 \cos^2 \left(\frac{\theta_e}{2} \right)}{4E^2 \sin^4 \left(\frac{\theta_e}{2} \right)}
\]

For inelastic scattering:

\[R_L(Q^2) \rightarrow R_L(Q^2, \nu) \]

\[F_1, F_2: \text{ Dirac and Pauli form factors} \]

\[G_E, G_M: \text{ Sachs form factors (electric and magnetic)} \]

\[G_E(Q^2) = F_1(Q^2) - \tau F_2(Q^2) \quad \tau = Q^2/4M^2 \]

\[G_M(Q^2) = F_1(Q^2) + F_2(Q^2) \]

\[R_L, R_T: \text{ Longitudinal and transverse response fn} \]

HUGS 2012 Nuclear Physics Weinstein
Notes on form factors

• G_E, G_M, F_1 and F_2 refer to nucleons
 - $F_1^p(0) = 1, F_2^p(0) = \kappa_p = 1.79$
 - $F_1^n(0) = 0, F_2^n(0) = \kappa_n = -1.91$
 - $G_E^p(0) = 1, G_M^p(0) = 1 + \kappa_p = 2.79$
 - $G_E^n(0) = 0, G_M^n(0) = \kappa_n = -1.91$

• R_L and R_T refer to nuclei
Structure of the nucleus

- nucleons are bound
- energy (E) distribution
- shell structure
- nucleons are not static
- momentum (k) distribution

determined by the N-N potential

on average:
Net binding energy: ≈ 8 MeV
distance: ≈ 2 fm

Strong repulsion

NN correlations
Shell Structure (Maria Goeppert-Mayer, Jensen, 1949, Nobel Prize 1963)

nuclear density 10^{18} kg/m3

With the enormous strong force acting between them and with so many nucleons to collide with, how can nucleons possibly complete whole orbits without interacting?

Pauli Exclusion Principle: nucleons can not scatter into occupied levels: Suppression of collisions between nucleons

But: there is experimental evidence for shell structure
Independent Particle Shell model (IPSM)

- **single particle approximation:**
 - nucleons move independently from each other
 - in an average potential created by the other nucleons (mean field)

- **spectral function** $S(E,k)$:
 - probability of finding a proton with initial momentum k and energy E in the nucleus

- **factorizes into energy & momentum part**

nuclear matter:

\[
Z(E) \
\]

\[
Z(k) \
\]

\[
E_F = \frac{k_F^2}{2m_p}
\]

\[
S(\vec{p}, E) = \sum_i | \Phi_a(p) |^2 \delta(E + \epsilon_a)
\]

Not 100% accurate, but a good starting point

HUGS 2012 Nuclear Physics Weinstein
Electron-nucleus interactions

I. Elastic

\(\frac{Q^2}{2A} \)

II. Quasielastic

\(\frac{Q^2}{2m} \)

\(\frac{Q^2}{2m} + 300 \text{ MeV} \)

III. Nucleus

DEEP INELASTIC “EMC”

PROTON

DEEP INELASTIC “QUARKS”

HUGS 2012 Nuclear Physics Weinstein
II. Quasielastic scattering

\[\frac{Q^2}{2A} \]

\[\frac{Q^2}{2m} \]

\[\frac{Q^2}{2m} + 300 \text{ MeV} \]

HUGS 2012 Nuclear Physics Weinstein
Fermi gas model: how simple a model can you make?

Initial nucleon energy: \(KE_i = \frac{p_i^2}{2m_p} \)

Final nucleon energy: \(KE_f = \frac{p_f^2}{2m_p} = \frac{(\vec{q} + \vec{p}_i)^2}{2m_p} \)

Energy transfer: \(\nu = KE_f - KE_i = \frac{\vec{q}^2}{2m_p} + \frac{\vec{q} \cdot \vec{p}_i}{m_p} \)

Expect:

- Peak centroid at \(\nu = \frac{q^2}{2m_p} + \varepsilon \)
- Peak width \(2q p_{\text{fermi}} / m_p \)
- Total peak cross section = \(Z\sigma_{ep} + N\sigma_{en} \)
Early 1970’s Quasielastic Data

- Getting the bulk features

500 MeV, 60 degrees

\[\vec{q} \approx 500 \text{MeV/c} \]

Compared to Fermi model: fit parameter \(k_F \) and \(\varepsilon \)

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>(k_F) MeV/c</th>
<th>(\varepsilon) MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^6\text{Li})</td>
<td>169</td>
<td>17</td>
</tr>
<tr>
<td>(^{12}\text{C})</td>
<td>221</td>
<td>25</td>
</tr>
<tr>
<td>(^{24}\text{Mg})</td>
<td>235</td>
<td>32</td>
</tr>
<tr>
<td>(^{40}\text{Ca})</td>
<td>251</td>
<td>28</td>
</tr>
<tr>
<td>nat\text{Ni}</td>
<td>260</td>
<td>36</td>
</tr>
<tr>
<td>(^{89}\text{Y})</td>
<td>254</td>
<td>39</td>
</tr>
<tr>
<td>nat\text{Sn}</td>
<td>260</td>
<td>42</td>
</tr>
<tr>
<td>(^{181}\text{Ta})</td>
<td>265</td>
<td>42</td>
</tr>
<tr>
<td>(^{208}\text{Pb})</td>
<td>265</td>
<td>44</td>
</tr>
</tbody>
</table>

R.R. Whitney et al.,
PRC 9, 2230 (1974).

HUGS 2012 Nuclear Physics Weinstein
Nuclear mass \((A)\) dependence

\[x = \frac{Q^2}{(2m_p \nu)} \]

\[x = 1 \rightarrow \nu = \frac{Q^2}{(2m_p)} \]

Heavier nucleus

\(\Rightarrow\) higher nucleon momenta

\(\Rightarrow\) broadened peak

\(Q^2 = 2.5 \text{ GeV}^2\)

\((\text{same plot, log scale})\)
Inclusive Electron Scattering from Nuclei: Two processes

Quasielastic from nucleons

\[\vec{q} \rightarrow \vec{k}, \quad W^2 = M^2 \]

- \(M_A \)
- \(M_A^{*} - 1, -\vec{k} \)

Inelastic from nucleons (including Deep Inelastic Scattering (DIS))

\[\vec{q} \rightarrow \vec{k} \]

- \(W^2 \geq (M_n + m_{\pi})^2 \)

\[\sigma_{\text{nucleon}} \sim (\text{nucleon elastic form factor})^2 \]

\[\sigma_{\text{DIS}} \sim \ln(Q^2) \quad \text{(at large } Q^2) \]

Inclusive final state means cannot separate two processes

Exploit their different \(Q^2 \) dependencies

x

- \(x > 1 \)
- \(x < 1 \)

Cross section

- QE
- DIS
- \(\Delta \)
- coh
- \(\pi \)

\(\omega \) (MeV)

- 0
- 200
- 400
- 600
- 800
- 1000
As $Q^2 \gg 1$ inelastic scattering from the nucleons begins to dominate

Quasi Elastic scattering is still dominant at low energy loss (ν), even at high Q^2
Scaling

• The dependence of a cross section, in certain kinematic regions, on a single variable.
 • If the data scales, it validates the scaling assumption
 • Scale-breaking indicates new physics
• At moderate Q^2 and $x>1$ we expect to see evidence for y-scaling, indicating that the electrons are scattering from quasifree nucleons
 • $y =$ minimum momentum of struck nucleon
• At high Q^2 we expect to see evidence for x-scaling, indicating that the electrons are scattering from quarks.
 • $x = Q^2/2mv =$ fraction of nucleon momentum carried by struck quark (in infinite momentum frame)
Galileo realized that if one simply scaled up an animal's size, its weight would increase significantly faster than its strength, "...you can plainly see the impossibility of increasing the size of structures to vast dimensions...if his height be increased inordinately, he will fall and be crushed under his own weight".

\[
\begin{align*}
\text{Strength} &\propto \frac{\text{Area}}{\text{Weight}} \propto \frac{L^2}{L^3} \propto \frac{1}{\text{Weight}^{1/3}}
\end{align*}
\]

Smaller animals appear stronger.

Explains why small animals can leap as high as large one...

G. West, LANL report
Metabolism

Metabolic rate B: heat lost by a body in a steady inactive state

Should be dominated by sweating and radiation (proportional to surface area or weight $^{2/3}$)

$B \propto W^{2/3}$

Best fit slope $\approx 3/4$
Therefore not just pure geometry
• Different shape animals
• Different insulation (elephants have less fur)

Deviations from the geometrical or kinematic analysis reflects the dynamics of the system.

Deviations from naive scaling probe other features of the system
Scaling: Selecting the relevant variables

The Dace, a fresh water fish

Scaling and scaling violations reveal information about the dynamics of the system

Knut Schmidt-Nielsen, from Scaling: Why is Animal Size So Important?
y-scaling in inclusive electron scattering from 3He

3He(e,e') at various Q^2

\[F(y) = \frac{\sigma_{\text{exp}}}{(Z\bar{\sigma}_p + N\bar{\sigma}_n)} \cdot K \]

\[n(k) = -\frac{1}{2\pi y} \frac{dF(y)}{dy} \]

Assumption: scattering takes place from a quasi-free proton or neutron in the nucleus.

y is the momentum of the struck nucleon parallel to the momentum transfer:

$y \approx -q/2 + mv/q$ (nonrelativistically)

IF the scattering is quasifree, **then** $F(y)$ is the integral over all perpendicular nucleon momenta (nonrelativistically).

Goal: extract the momentum distribution $n(k)$ from $F(y)$.
Assumptions & Potential Scale Breaking Mechanisms

- No Final State Interactions (FSI)
- No internal excitation of (A-1)
- Full strength of Spectral function can be integrated over at finite q
- No inelastic processes (choose $y<0$)
- No medium modifications (discussed later)
Y-scaling works!

Cross section $d\sigma/d\Omega dE$ for ^3He and Iron. The graphs show the energy transfer ν (GeV) on the x-axis and the scaled variable y (GeV/c) on the y-axis. The plots demonstrate the scaling behavior for different nuclei ($Z, A = 2\ 3, 26\ 56$).
$F(y,q)$ converges to $F(y)$ at moderate momentum transfer

- For ^{3}He, $y=-0.2$
 - $F(y,q)$ vs $1/q$ (GeV/c)$^{-1}$
 - 3He, $y = -0.2$
 - slope = 0.12

- For ^{3}He, $y=-0.4$
 - $F(y,q)$ vs $1/q$ (GeV/c)$^{-1}$
 - 3He, $y = -0.4$
 - slope = 5(-3)

- For Fe, $y=-0.2$
 - $F(y,q)$ vs $1/q$ (GeV/c)$^{-1}$
 - Fe, $y = -0.2$
 - slope = 0.25

- For Fe, $y=-0.4$
 - $F(y,q)$ vs $1/q$ (GeV/c)$^{-1}$
 - Fe, $y = -0.4$
 - slope = 35(-3)

$q \to \infty$
Final State Interactions (FSI) complicate this simple picture.

$^{4}\text{He}(e,e')$ at 3.595 GeV, 30°

Benhar et al. PRC 44, 2328
Benhar, Pandharipande, PRC 47, 2218
Benhar et al. PLB 3443, 47

FSI
FSI + color transparency
No FSI
Now let's separate R_L (longitudinal) and R_T (transverse): $^4\text{He}(e,e')$

$$\frac{d\sigma}{d\Omega dE'} = \sigma_M \frac{E'}{E} \left[\frac{Q^4}{q^4} R_L(Q^2, \omega) + \left(\frac{Q^2}{2q^2} + \tan^2 \frac{\theta}{2} \right) R_T(Q^2, \omega) \right]$$

Fix Q^2 and ω

1. Measure $d\sigma/d\omega dE'$ at large E_e and small θ
2. Measure $d\sigma/d\omega dE'$ at small E_e and large θ
3. Take linear combination to extract R_L, R_T

Von Reden et al, PRC 41, 1084 (1990)
Fermi Gas Model: Too good to be true?

\[
\frac{d\sigma}{d\Omega dE} = \sigma_M \frac{E'}{E} \left[\frac{Q^4}{q^4} R_L(Q^2, \omega) + \left(\frac{Q^2}{2q^2} + \tan^2 \frac{\theta}{2} \right) R_T(Q^2, \omega) \right]
\]

\(y = \text{minimum initial nucleon momentum} = m\omega/q - q/2 \) (nonrelativistic only!)

\(f = \text{reduced response function} \)

\[
f_L(Q^2, \omega) \propto \frac{R_L(Q^2, \omega)}{\tilde{G}_E^2(Q^2)}
\]

\[
f_T(Q^2, \omega) \propto \frac{R_T(Q^2, \omega)}{\tilde{G}_M^2(Q^2)}
\]

- \(L \) scales
- \(T \) scales
- \(T \neq L!! \)

To be explained later.

P. Barreau et al, NPA 402, 515 (1983)

Finn et al, PRC 29, 2230 (1984)
What causes the T/L difference?

- 3He: $F_T = F_L$ (at $y < 0$)
- 4He and C: $F_T > F_L$
- Extra transverse reaction mechanism in dense nuclei!
- Gets smaller at higher q

What is it? To be continued …
(e,e') summary

• Go to low ω side of QE peak (y<0 or x>1)
• Scaling \rightarrow knockout is quasifree
• Measure momentum distribution of nucleons in nuclei
• But there are some complications
Get more information:
Detect the knocked out nucleon (e,e’p)

coincidence experiment

measure: momentum, angles

electron energy: \(E_e \)
proton: \(\vec{P}_p' \)
scattered electron: \(\vec{k}_e' \) \(E_e' = |\vec{k}_e'| \)

reconstructed quantities:
missing energy: \(E_m = \nu - T_{p'} - T_{A-1} \)
missing momentum: \(\vec{p}_m = \vec{q} - \vec{p}_p' \)

in Plane Wave Impulse Approximation (PWIA):
direct relation between measured quantities and theory:

\[
|E| = E_m \quad \vec{p}_{init} = -\vec{p}_m
\]
Formalism (repeat from previous lecture)

- Inclusive scattering:
 - measure scattering angle θ_e and energy E'_e ($\nu = E_e - E'_e$) and the cross section $d\sigma/d\Omega d\nu$

- One photon exchange:

\[M_n = \frac{e^2}{q^2} \bar{u}(k') \gamma_\mu u(k) < n | J_\mu(0) | p, S > \]

\[
d\sigma = \frac{1}{4Mk} \sum_n |M_n|^2 (2\pi)^4 \delta^4(p + q - p') \frac{d^3k'}{(2\pi)^3 2E'} \]

\[= \frac{|\vec{k}'| \alpha^2}{MEQ^4} L_{\mu\nu} H_{\mu\nu} d\omega d\Omega \]

$L_{\mu\nu}$ and $H_{\mu\nu}$ are the lepton and hadron tensors.
Formalism Extension to (e,e'p)

Lepton tensor known (QED):

\[L_{\mu \nu} = \sum_{s'} (\bar{u}(k', s') \gamma_{\mu} u(k, s)) (\bar{u}(k', s') \gamma_{\nu} u(k, s)) * (u(k', s') \gamma_{\nu} u(k, s)) \]

\[= 2(k_{\mu} k'_{\nu} + k_{\nu} k'_{\mu}) + q^2 g_{\mu \nu} + \frac{2im_1 \epsilon_{\mu \nu \alpha \beta} q^\alpha s_1^\beta}{s} \]

Hadron tensor unknown:

\[H_{\mu \nu} = \frac{1}{4\pi} \sum_n <p, S| \hat{J}_\mu(0)|n> <n| \hat{J}_\nu(0)|p, S > (2\pi)^4 \delta^4(p + q - p') \]

\[= \frac{1}{4\pi} \int d^4 \xi \exp(iq \cdot \xi) <p, S| \{ \hat{J}_\mu(\xi), \hat{J}_\nu(0) \}|p, S > \]

Now we have another 4-vector \((p')\) to make our Lorentz scalars and tensors from.

Available independent four vectors for \((e,e'p)\):

- target momentum \(p_\mu\)
- photon momentum \(q_\mu\)
- proton momentum \(p'_\mu\) (new for \((e,e'p)\))
And then there were four
(response functions, that is)

(When you include electron and proton spin, there are 18. Yikes!)

(And if you scatter from a polarized spin-1 target, there are 41. Double Yikes!!)
(e,e′p) Plane Wave Impulse Approximation (PWIA)

1. Only one nucleon absorbs the virtual photon
2. That nucleon does not interact further
3. That nucleon is detected

Cross section factorizes:
\[
\frac{d\sigma^{fi}}{dE_1 dQ_1 dE_2 dQ_2} = KS(k, E) \frac{d\sigma^{free}}{dQ}
\]

Single nucleon pickup reactions [eg: (p,d), (d,^3\text{He}) ...] are also sensitive to \(S(p,E) \) but only sensitive to surface nucleons due to strong absorption in the nucleus

DWIA: If the struck nucleon interacts with the rest of the nucleus, then the cross section still factorizes (usually) but we measure a **distorted** spectral function.
(e,e’p) Distorted Wave Impulse Approximation (DWIA)

- Low momentum \((p < 0.5 \text{ GeV/c})\): use optical potential
- High momentum \((p > 1 \text{ GeV/c})\): use Glauber approximation

Distortions (FSI) make it harder to measure the nucleon initial momentum distributions, especially at high momenta.
Measuring $O(e,e'p)$ in Hall A

Fissum et al, PRC 70, (2004) 034606
O(e,e'p) and shell structure

Momentum distribution as expected for \(l = 0, 1 \)

1p_{1/2}, 1p_{3/2} and 1s_{1/2} shells visible

Fissum et al, PRC 70, 034606 (2003)
But we do not see enough protons!
Now separate R_L and R_T

$^{12}\text{C}(e,e'\text{p})$
$q = 0.4 \text{ GeV and } x = 1$

$(S_T \text{ and } S_L \text{ are just scaled versions of } R_T \text{ and } R_L.)$

There is extra transverse strength starting at the two-nucleon knockout threshold

(e,e'p) summary

• Measure shell structure directly
• Measure nucleon momentum distributions
• Extra transverse strength seen in (e,e') due to:
 • Two nucleon knockout via
 • Meson exchange currents and correlations
• But:
 • Not enough nucleons seen!
Short Range Correlations (SRCs)

Mean field contributions: $p < p_{\text{Fermi}} \approx 250 \text{ MeV/c}$
Well understood, Spectroscopic Factors ≈ 0.65

High momentum tails: $p > p_{\text{Fermi}}$
Calculable for few-body nuclei, nuclear matter.
Dominated by two-nucleon short range correlations

Poorly understood part of nuclear structure

NN potential models not applicable at $p > 350 \text{ MeV/c}$

Uncertainty in SR interaction leads to uncertainty at $p > p_{\text{Fermi}}$, even for simplest systems

Nucleons are like people ...

HUGS 2012 Nuclear Physics Weinstein
What are Correlations?

Average Two Nucleon Properties in the Nuclear Ground State
Not Two-Body Currents

An Experimentalist’s Definition:

- A high momentum nucleon whose momentum is balanced by one other nucleon
 - NN Pair with
 - Large Relative Momentum
 - Small Total Momentum
 - Whatever a theorist says it is
Why are Correlations Interesting?

Responsible for high momentum part of Nuclear WF

Ciofi degli Atti, PRC 53 (1996) 1689
Correlations should be universal

Many-body calculations predict that the high momentum distribution for all nuclei has the same shape:

\[\frac{n_A(k)}{n_d(k)} = a_2(A/d) \]

O. Benhar, Phys Lett B 177 (1986) 135
Inclusive Electron Scattering at $x_B > 1$

- At fixed Q^2, x_B determines a minimum initial momentum for the scattered nucleon (remember y-scaling?)
- If the momentum distributions of two nuclei have the same shape, then the ratios of their cross sections should be flat

$1 \leq x_B \leq A$

momentum scaling $\leftrightarrow x_B$ scaling
Correlations are Universal

Scaling (flat ratios) indicates a common momentum distribution.

$1 < x < 1.5$: dominated by different mean field $n(k)$

$1.5 < x < 2$: dominated by 2N SRC $n(k)$

$\alpha_{2N} \approx 20\%$

$\alpha_{3N} \approx 1\%$

Day et al, PRL 59, 427 (1987)
Frankfurt et al, PRC 48 2451 (1993)
Egiyan et al., PRL 96, 082501 (2006)
Fomin et al., PRL 108, 092502 (2012)
Short Range Correlations (SRC)

- 2N-SRC are pairs of nucleons that:
 - Are close together (overlap) in the nucleus.
 - Have high relative momentum and low center-of-mass (cm) momentum, where high and low is compared to the Fermi momentum of the nucleons (≈250 MeV/c in heavy nuclei)
Exclusive SRC Studies

A(e,e'pN): detect electron + two nucleons

- **Pros:** Measure the both nucleons to characterize the 2N-SRC pairs

- **Cons:**
 - **Interpretation difficulties:**
 - Competing processes,
 - Final State Interactions (FSI)
 - Transparency.
 - **Experimental difficulties:**
 - Large backgrounds,
 - Low rates,
 - Large installation,
 - Dedicated detectors

Who knew nuclear physics could be so complicated
Measurement Concept:

1. Hit a high momentum proton hard ($Q^2 > 1\ \text{GeV}^2$)

2. Reconstruct the initial (missing) momentum of the struck nucleon

3. Look for a recoil nucleon with momentum that balanced that of the struck proton

$$\vec{p}_{\text{miss}} = \vec{q} - \vec{p}_p = -\vec{p}_{\text{initial}}$$
JLab Hall-A E01-015 (2004)

- Goal: Study both pn and pp SRC in ^{12}C over an $(e,e'p)$ missing momentum range of 300-600 MeV/c

- Kinematics:
 - High Q^2 to minimize Meson Exchange Currents (MEC)
 - $x > 1$ to suppress Delta production
JLab Hall-A

Physicists Tend To Fill Empty Space

©D. Higinbotham
Physicists Tend To Fill Empty Space ©D. Higinbotham
Physicists Tend To Fill Empty Space
Now detect yet another nucleon

JLab Hall A C(e,e'pN) - selected kinematics

\[Q^2 = 2 \text{ GeV}^2 \]
\[x_B = \frac{Q^2}{2mv} = 1.2 \]
\[P_{\text{miss}} = 300-600 \text{ MeV/c} \]

\[E_e = 4.627 \text{ GeV} \]
\[E_{e'} = 3.724 \text{ GeV} \]
\[p = 300-600 \text{ MeV/c} \]
\[P_{\text{initial}} = 300, 400, 500 \text{ MeV/c} \]

Detect the proton, look for its partner nucleon
The \((e,e'pN)/(e,e'p)\) ratio gives the probability for a high momentum proton to be part of a pN-SRC pair.

- All high \(p_{\text{initial}}\) protons have a correlated partner.
- np pairs dominate
 - Importance of tensor force at \(0.3<p_{\text{initial}}<0.6\) GeV/c

2N-SRC from inclusive and exclusive measurements

1. The probability for a nucleon to have $p \geq 300$ MeV/c in medium nuclei is 20-25%.
2. More than $\sim 90\%$ of all nucleons with $p \geq 300$ MeV/c belong to 2N-SRC.
3. 2N-SRC dominated by np pairs
 - → Tensor interaction

~80% of kinetic energy of nucleon in nuclei is carried by nucleons in 2N-SRC.
$^3\text{He}(e,eX)$ in JLab CLAS

- 2.2 and 4.7 GeV electrons
- Inclusive trigger
- Almost 4π detector

Diagram Details:
- **Drift Chambers:** 35,000 wires, $\sigma_R = 350$ μm
- **Superconducting Toroidal Magnet:** $\int B dl \approx 1.7$ T-m
- **Cerenkov Counters:** 216 channels, 99.5% efficient over 50 m² area
- **Time of Flight Counters:** 500+ channels, 145 ps resolution
- **Electromagnetic Shower Calorimeters:** 1700+ channels, $\sigma/E = 10%/E^{0.5}$
CLAS in Maintenance Position
CLAS

3He(e,e'pp)

Detect 2 protons, reconstruct the neutron

Huge electron acceptance

\[<Q^2> \sim 0.8 \]
Select peaks in Dalitz plot

\[^3\text{He}(e,e'pp)n\] nucleon energy balance: \(p > 250\) MeV/c

Pair has back-to-back peak

\(P_{\perp} < 300\) MeV/c

Fast pn opening angle

4.7 GeV

Proton 1 Kinetic Energy/Omega

Proton 2 Kinetic Energy/Omega

\(P_N > 250\) MeV/c
I don’t want to get involved: spectator correlated pairs

Isotropic!

Small forward momentum (described by theory)
Measured momentum distributions:

- 2.2 GeV ($Q^2 \approx 0.8 \text{ GeV}^2$)
- 4.7 GeV ($Q^2 \approx 1.5 \text{ GeV}^2$)

(4.7 GeV scaled by 5.3)

Similar momentum dist
- Relative
- Total
pn:pp ratio ~ 4

Theory (Golak)
- Describes 2 GeV OK
 - P_{rel} too low
- Too low at 4.7 GeV
pp to pn comparison

<table>
<thead>
<tr>
<th>E_{beam}</th>
<th>$<Q^2>$</th>
<th>pn to pp ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall A / BNL</td>
<td>2 / ??</td>
<td>18</td>
</tr>
<tr>
<td>CLAS</td>
<td>0.8—1.5</td>
<td>3 — 4.5</td>
</tr>
</tbody>
</table>

Contradiction???
Why is pp/np so small at $300 < p_{\text{rel}} < 500$ MeV/c?

The s-wave momentum distribution has a minimum
The np minimum is filled in by strong tensor correlations

Ciofi degli Atti, Alvioli; Schiavilla, Wiringa, Pieper, Carlson Sargsian, Abrahamyan, Strikman, Frankfurt
pp to pn resolution:

pp/pn ratio increases with pair total momentum P_{tot}

300 < P_{relative} < 500 MeV/c

Small $P_{\text{tot}} \Rightarrow pp$ pair in s-wave (no tensor)
\Rightarrow wave fn minimum at $p_{\text{rel}}=400$ MeV/c

Hall A: small $P_{\text{tot}} \Rightarrow$ less pp
Hall B: large $P_{\text{tot}} \Rightarrow$ more pp
Correlations and Neutron Stars

‘Classical’ neutron star: fermi gases of e, p and n
Low temperature \Rightarrow almost filled fermi spheres
\Rightarrow limited ability of $p \rightarrow n$ decays (Urca process)

Correlations \Rightarrow high momentum tail and holes in the fermi spheres

Why does this matter?

Cooling should be dominated by the Urca process:

$$n \rightarrow p + e^- + \bar{\nu}_e$$
$$p + e^- \rightarrow n + \nu_e$$

Correlations-caused holes in the proton fermi sphere should enhance this process by large factors and speed neutron star cooling.

L. Frankfurt, PANIC 2008
Quasielastic summary: \((e,e'), (e,e'p)\) and \((e,e'pN)\)

\(\bullet\) \((e,e')\) scaling shows the electron is (mostly) scattering from single nucleons
\(\bullet\) \((e,e')\) ratios measure the probability of short range correlations (SRC) in nuclei
\(\bullet\) \((e,e'p)\) measures E and p distributions of single nucleons
\(\bullet\) \((e,e'pN)\) measures E and p distributions of nucleon pairs

The nucleus:
60-70% single particle - E + p dists measured
20\(\pm\)5% SRC - starting to measure
10-20% LRC