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In these lectures, I describe measurements of the polarized and unpolarized struc-
ture functions of the proton and the neutron. The main emphasis is on a clear,
straightforward description of what is being measured and how it can be interpreted
in a simple quark model of the nucleon. The intended audience are graduate stu-
dents who are beginning their work in Nuclear or Particle Physics. More advanced
students are referred to the extensive literature.

1 Introduction

Deep inelastic structure functions of the nucleon have been studied for three
decades. The initial measurements at the Stanford Linear Accelerator Center
(SLAC) confirmed the quark-parton picture of the nucleon. Since then, more
and more precise measurements have been conducted at several accelerators
(SLAC, CERN, Fermilab, DESY), and there seems to be no end to new and
surprising results, from the original “EMC-Effect” (the modification of nu-
cleon structure functions in nuclei) over the violation of the Gottfried sum rule
(the apparent breakdown of flavor symmetry in the quark-antiquark sea of the
proton) to the most recent indications of quark substructure at HERA/DESY.

Polarized structure functions have been measured since the late 1970’s,
and these measurements have also contributed their share of surprising re-
sults, in particular the so-called “spin crisis”. The study of both polarized and
unpolarized structure functions remains very much an active field, with new
theoretical papers appearing at a rate of several per week. Experimental re-
sults are published at only slightly longer intervals (typically each of the active
experimental collaborations publishes several new papers every year), and even
new comprehensive overviews of the field are written every few months (see,
e.g., the reviews by Cooper-Sarkar et al. 1 for unpolarized structure functions
and Ramsey or Böttcher 2 for polarized ones). There are no signs of a slow-
down, with several ongoing and new experiments underway and new initiatives
planned.

In this context, yet another survey or review article would not make much
sense. Instead, the purpose of this article is to give a simple, intuitive intro-
duction into the physics and the experimental techniques of structure function
measurements, and to offer a starting point for more in-depth study of the vast
literature. It is based on six lectures on the subject given by the author dur-
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ing the 1997 Hampton University Graduate Summer School (HUGS ’97). The
intended audience includes graduate students who are relatively new to the
field of Particle Physics. A suitable introductory textbook would be that by
Halzen 3, by Povh et al. 4 or by Wong5. Additional useful background material
can be found in the Particle Data Group Collection 6 and the monograph by
Roberts 7, as well as the conference proceedings of many recent conferences 8,9.

In the following section, I introduce a simple “toy model” for the quark
structure of the nucleon, and derive some relevant properties of spin-dependent
observables in this model. In Section 3, I give a coherent description of electron
scattering in the elastic, resonance and deep inelastic regime. The emphasis
is again on a simple(–minded?) interpretation of the measured quantities. In
Section 4, I discuss modifications of this simple picture at finite momentum
transfer, including scaling violations and higher-twist effects. The next two
sections (5 and 6) treat spin structure functions, both in the scaling limit and
at lower momentum transfer, and in the final section (7) I give a brief outlook
on future planned experiments.

2 A Simple Quark Model of Nucleons and other Baryons

One of the original successes of the quark model was the explanation of the
“light” ground-state baryons (p, n,Σ−,Σ0,Σ+,Λ0,Ξ− and Ξ0) and their ex-
cited states (∆’s, Σ∗’s and Ξ∗’s) as bound states of just three different types
of quarks, U (up), D (down) and S (strange). These 3 quarks could be un-
derstood as members of a 3-dimensional (triplet) representation of the flavor
symmetry group SU(3) corresponding to the Isospin and Strangeness quantum
numbers in hadrons, assigning them quantum numbers as shown in Table 1. In
this picture, the proton (with Charge Q = 1 and Baryon Number B = 1) can
be described as a combination of 2 up and 1 down quark (|UUD〉), while the
neutron has 1 up and 2 down quarks (|UUD〉). Assigning each quark a spin of
Sq = 1/2 could also accommodate the overall S = 1/2 spin of the ground state
baryons above as well as the overall S = 3/2 spin of excited baryons like the
∆; however, only after introduction of the additional Color quantum number
(r, g and b) could one understand the internal wave function of these baryons.
By assuming that the quark wave function in each case is totally antisymmet-
ric in the Color quantum number, one can constrain the combination of the
remaining quantum numbers (Flavor, Spin and Angular Momentum) to be to-
tally symmetric. In the ground state, total angular momentum is assumed to
be zero (therefore symmetric), which leaves us with the task to construct fully
symmetric wave functions in spin×flavor space.

This is easy in the case of the excited baryon states, where the total spin
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Table 1: Quantum numbers of the three lightest quarks.

Flavor Isospin I I3 Strangeness S Charge Q Baryon Number B
U 1/2 +1/2 0 +2/3 1/3
D 1/2 −1/2 0 −1/3 1/3
S 0 0 −1 −1/3 1/3

of S = 3/2 requires a wave function which is separately symmetric in spin and
flavor. In a (hopefully) intuitive short hand notation, we can therefore write
the wave function of the ∆++ as |∆++ ↑〉 = |U ↑ U ↑ U ↑〉 and that of the ∆−

as |∆− ↑〉 = |D ↑ D ↑ D ↑〉. a States with more than one type of quark are
only slightly more complicated, e.g., the ∆+ can be written as

|∆+ ↑〉 = 1/
√

3 (|U ↑ U ↑ D ↑〉+ |U ↑ D ↑ U ↑〉+ |D ↑ U ↑ U ↑〉) . (1)

However, from now on we will use the more simple form, for instance |∆+ ↑ 〉 =
|U ↑ U ↑ D ↑〉, where a symmetrization over all flavors is understood implicitly.

The case of the proton is a bit more complicated, since the wave function
cannot be symmetric in spin and flavor separately. The most intuitive way
to derive the proton wave function is by observing that 2 of the 3 quarks are
equal (U), and therefore their relative spin wave function should be symmetric
also. This leads to the conclusion that the two U–quarks couple their spins to
a total spin of one. Let’s denote the case where this spin has a z-projection of
+1 as (UU ⇑) := |U ↑ U ↑〉, while the projection with Sz = 0 will be indicated
by (UU ⇒) := 1/

√
2 (|U ↑ U ↓〉+ |U ↓ U ↑〉). We can now combine the spin

1/2 of the remaining D quark with the spin 1 of the UU pair in two ways to
get total spin and projection 1/2; the proper way follows simply from insertion
of the correct Clebsch-Gordon coefficients:

|P ↑〉 = 1/
√

3
(√

2|(UU ⇑)D ↓〉 − |(UU ⇒)D ↑〉
)
. (2)

The neutron wave function can be gotten from Eq. 2 by replacing all U ’s with
D’s and vice versa (and inserting an overall minus sign).

Once in hand, one can use these wave functions to try and explain some
of the other well-known properties of the nucleons, for instance their anoma-
lous magnetic moments. Relativistic quantum mechanics predicts that the
magnetic moment for a pointlike particle with charge Z, spin S and mass MN

should be µ = ZµN2S, where µN = e/2MN is the (nuclear) magneton. For the
proton and the neutron one finds experimentally µ = (Z+κN )µN2S (Z = 1 for

aThese wave functions are for the case Sz = S; wave functions with different spin projections
can be derived from this form by using the spin lowering operator σ−.

3



     

the proton and Z = 0 for the neutron) with the anomalous magnetic moments
for proton and neutron, κp = 1.79 and κn = −1.91. This clearly points to the
composite character of these particles.

If we want to explain these magnetic momenta in terms of the quark ones,
we need to know what to use for their masses (assuming the quarks themselves
follow the rule for pointlike objects). An “obvious” choice would be Mq =
330 MeV for both types of quarks (q = U and q = D), since the mass of the
nucleon could be explained in this way as simply the sum of the masses of
its three constituent quarks, minus a small binding energy (also, this choice
gives us the right answer – see below). The predicted magnetic moment of
the up and down quarks in this picture would be µq = zq(MN/mq)µN , which
yields µU = 2

3 (939 MeV/330 MeV)µN = 1.897µN for the up quark and µD =
− 1

3 (939 MeV/330 MeV)µN = −0.949µN for the down quark.

From Eq. 2, we take the probability of finding an up quark in the proton
with its spin pointing up, minus the probability for the spin to point down,
to be ∆U = 2

32 + 1
30 = 4/3, while the corresponding probability difference

for the down quark is ∆D = 2
3 (−1) + 1

31 = −1/3. Multiplying this with
the magnetic moments from above, we get µp = 4

31.897µN − 1
3 (−0.949µN ) =

2.85µN , corresponding to a “predicted” κp = 1.85. For the neutron, the roles
of ∆U and ∆D are simply interchanged (this follows from Isospin symmetry
and is true even if the actual quark wave functions are much more complicated,
as surely they are). This yields µn = 4

3 (−0.949µN ) − 1
31.897µN = −1.90µN ,

in nearly perfect agreement with the measured κn.

Obviously, this good agreement in both cases can be “fine-tuned” by the
choice of quark masses (one can get exactly the correct values for κp and κn if
one allows for a small mass difference between U and D quarks). However, the
remarkable result is that the required quark masses are perfectly reasonable
in the overall frame of the Constituent Quark Model (CQM), since they also
explain (approximately) the mass of the proton. This agreement is actually
very surprising, as we will soon see, since constituent quarks really aren’t
elementary objects at all (they are more like “quasi-particles” with a rich
internal structure of their own). The CQM is much less successful in explaining
other static properties of the nucleon, for example the axial vector coupling
constant gA measured in β–decay. We now turn our attention to this quantity.

The hadronic part of the matrix element for weak charged current tran-
sitions like β–decay or electron capture contains two parts, one which trans-
forms like a vector (V ) and one which transforms like an axial vector (A). The
combination V − A of these two parts, which behave in opposite ways under
the parity operation (coordinate inversion), is responsible for the fact that the
weak interaction violates parity. The vector part of the hadronic current can be
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written as V = gV 〈n|τ−|p〉 b, where the isospin lowering operator τ− turns the
proton into a neutron (which means that the matrix element 〈n|τ−|p〉 simply
equals to one). The factor gV accounts for the fact that the weak interaction
acts on the level of quarks, not nucleons. In our example, electron capture
on the proton, the elementary process is the conversion of an U quark into
a D quark, with simultaneous emission of an electron–neutrino. Therefore,
we can write V = 〈n|∑q τ

−
q |p〉, where the sum goes over all quarks in the

nucleon and τ−q |U〉 = |D〉 and τ−q |D〉 = 0. This expression can be evaluated
directly within our model, using Eq. 2 (the reader is strongly encouraged to try
this). However, it is more instructive to make use of an important result from
(Isospin–SU(2)) group theory: The matrix element of any isospin-lowering op-
erator τ− between two members of an iso–doublet (e.g., the proton and the
neutron or the U and D quarks) yields the same result as the matrix element
of the operator τ3 sandwiched between two I3 = +1/2 states:

〈n|
∑

q

τ−q |p〉 = 〈p|
∑

q

τ3
q |p〉. (3)

The operator τ3
q simply “measures” twice the third component of the isospin

for each quark q (τ3|U〉 = +1, τ3|D〉 = −1), and the right hand side of
Eq. 3 therefore yields simply twice the I3 quantum number of the proton
(2(1/2 + 1/2− 1/2) = 1). This must be equal to gV 〈n|τ−|p〉 = gV , and we can
conclude that gV must be equal to 1. Since the third component of the isospin
is directly related to the charge of a particle (Q = B/2 + I3), our conclusion
follows simply from the fact that charge is conserved (no matter how many
quarks there are in a proton, their total charge must add up to 1 and their
total baryon number to 1 also). This is the reason why the simple fact that
gV = 1 is often referred to as “Charged Vector Current Conservation” (CVC).

Things are a bit more complicated in the case of the axial vector, A.
The three spatial components of this axial 4–vector c are given by Ai =
gA〈n|σiτ−|p〉, where the Pauli spin matrices σi act on the spin wave function
in the same way the τ ’s act on isospin. Again, the fundamental matrix element
is to be taken at the quark level, Ai = 〈n|∑q τ

−
q σ

i
q|p〉. For our purpose, it

suffices to look at only one component of the axial vector, the z-component. d

In addition, we can also use the Isospin symmetry argument from before to

bThis is actually the zero-component of a 4-vector, which is the only relevant contribution
at very low energies, as in the case of nuclear β–decay.
cAgain, this is the dominant term at low energies.
dThe others can be related to Az using spin operators.
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finally write

gA〈p ↑ |σzτ3|p ↑〉 = Az = 〈p ↑ |
∑

q

τ3
q σ

z
q|p ↑〉. (4)

The left hand side simply gives gA, but the right hand side is not equal to one.
The operator combination τ3

q σ
z
q, applied to a given quark, yields the product

of twice its isospin projection times twice its spin projection:

τ3
q σ

z
q|U ↑〉 = +|U ↑〉, τ3

q σ
z
q|U ↓〉 = −|U ↓〉,

τ3
q σ

z
q|D ↑〉 = −|D ↑〉, τ3

q σ
z
q|D ↓〉 = +|D ↓〉. (5)

In other words, the result for the U quarks in the proton alone gives the same
quantity ∆U that we defined before, and for the D quarks we get −∆D. Our
final result is therefore gA = ∆U−∆D = 4/3−(−1/3) = 5/3, indeed not unity
(the reader is again urged to calculate this number “by hand”, starting directly
from Eq. 4). It is important to note that the relationship gA = ∆U−∆D is true
regardless of the “true” wave function of the proton (it follows from Isospin
symmetry and the assumption that the axial vector is given by quark degrees of
freedom, as in Eq. 4). Only the numerical result (5/3) depends on our explicit
assumption about the make–up of the proton, and it is this number that is
unfortunately a bit off. Indeed, the experimental value is gA = 1.26, which is
only 75% of our result.

This “failure” of the CQM (or at least its most naive version used here) has
been attributed to several possible causes. For one, even a quark with a mass
of 330 MeV is at least semi–relativistic if enclosed in the rather confined space
of a proton (with its radius of less than 1 fm), according to the Heisenberg
uncertainty principle. But in relativistic quantum mechanics, spin and orbital
angular momentum are not separately conserved quantum numbers, so that
our assumption L = 0 is no longer exactly true. This means that some of the
total angular momentum of the proton is due to orbital motion of the quarks,
and therefore less of its spin is carried by the quark spins (only about 75%,
if we believe our result). A refinement of our model along these lines, the
Relativistic CQM has been developed by several authors 10,11 and is generally
better able to describe this and other properties of the nucleon.

However, there is a more fundamental reason why we shouldn’t expect gA
to come out right in our simple model. As already mentioned before, con-
stituent quarks are not really fundamental particles, but rather quasiparticles
which themselves can have a complicated “internal” structure. As we now
know (see Section 4), the real fundamental building blocks of all hadrons are
the so–called “current” quarks, which carry the same quantum numbers but
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are much lighter (few MeV’s) and truly pointlike (until further notice). Each
constituent quark must contain at least one “valence” current quark with the
same quantum numbers, but can also contain a number of quark–antiquark
pairs of all kinds of different flavors (up, down, strange,...). In the following,
we will denote these fundamental quarks with lower case letters u, d, s and
so on, to distinguish them from the constituent quarks. The corresponding
antiquarks are u, d, and s. These fundamental quarks are bound inside the
nucleon by Color forces transmitted by the exchange of gluons, which can also
carry spin and orbital angular momentum. It is these fundamental quarks that
the weak interaction really couples to (since its range is essentially zero and
certainly much smaller than even the size of constituent quarks). It is there-
fore perhaps not surprising that the CQM is better at explaining large-range
properties of the nucleon (like its magnetic moment) than short-range ones.
We will see additional examples of this later on.

Nevertheless, our result that gA = ∆u−∆d is still true, once we apply it to
the current quarks inside the nucleon instead. We have to amend our definition
of ∆f , though, to include both quarks and antiquarks of the same flavor f .
This works out since the antiquarks that take part in the weak interaction
have the opposite isospin than the corresponding quarks, but also opposite
helicity (the weak interaction couples to lefthanded particles and righthanded
antiparticles), which yields overall the same sign.

One can expand our arguments to the case of strangeness-changing weak
interactions, for instance the β–decay of a Λ into a proton, electron and
electron–antineutrino. The basic process here is the change of an s quark
into an u quark, and one can again define a vector and an axial vector part
for this transition. By expanding our group theory arguments to the (approx-
imate) SU(3) symmetry group of Isospin and Strangeness, one can show that
in this case the axial vector coupling gA can be related to the combination
∆u + ∆d − 2∆s, again taken for the proton (the Λ and the proton belong to
the same SU(3) octet). This quantity is often denoted as 3F −D (for histori-
cal reasons, I assume). In our CQM, we would simply get back the total spin
of the proton (if we ignore relativistic effects and orbital motion), since there
are no constituent strange quarks in the proton. We therefore would predict
gA = 1 in this case, while the experimental result is gA = 0.72, which is again
a ≈ 75% reduction. A global fit to all hyperon β–decays yields 3F −D = 0.58
(even smaller), which could be interpreted as a breakdown of the underlying
SU(3) symmetry or as an indication that ∆s is not zero after all (there are
other possible explanations).

In spite of these shortcomings, the CQM has many successes explaining
hadron structure (especially its refined versions like the relativistic CQM).
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For instance, one can describe the transition from the nucleon to the Delta
resonance as a spin flip transition, where a quark with its spin opposite to the
overall proton spin changes its spin direction, leading to an S = 3/2 state.
One can also introduce a phenomenological potential for the three constituent
quarks, and predict the masses and other properties for excited states. Indeed,
many of these excited states have been found at about the right masses, and
can be explained as orbital angular momentum excitations (with L > 0) or
even radial excitations of the 3–quark state. For example, the S11 resonance
(at about 1535 MeV) has total spin J = 1/2, but opposite parity to the
nucleon, which can be interpreted as an L = 1, S = 1/2 state where L and
S couple to a total J of 1/2. Conversely, the D13 resonance (at nearly the
same mass, 1520 MeV) has also negative parity, but J = 3/2, which means
that here L = 1 and S = 1/2 couple additively. As a final example, the F15

resonance at 1680 MeV has JP = 5/2+, which indicates an L = 2 state. Many
more resonances are predicted and observed (mostly in pion scattering), but
the three listed above are the most prominent in electromagnetic transitions
(including electron scattering).

3 Lepton Scattering and Structure Functions

Lepton scattering is a very powerful method for unraveling the internal struc-
ture of composite systems (like nuclei, nucleons, or even atoms). There are
two reasons for this: the underlying electroweak interaction is both well un-
derstood, and it is sufficiently weak to allow perturbative treatment. Indeed,
it is often sufficient to calculate cross sections in first order of perturbation
theory, which corresponds to the exchange of a single virtual photon γ∗ or a
Z or W boson. e

Before we proceed to write down the cross section for inclusive lepton
scattering in this (so–called “Born”) approximation, we will first describe the
measurement process from an experimental point of view. In all cases, one
needs first an abundant source of incident leptons (electrons, positrons, muons
or neutrinos) at a well-defined energy E and with a well-defined initial direc-
tion. In the case of an electron beam, one uses a source of free electrons (like
a thermionic gun or a photo-emission source) which are then accelerated to
the desired energy. This can be done either in a linear accelerator (SLAC 12,
CEBAF 13) or in a storage ring (HERA at the DESY accelerator center 14). In
the case of muon scattering, one uses a high energy proton beam impinging on

eIn fact, higher order corrections (called “radiative corrections”) are important for high-
precision experiments; however, these are typically left for the experimentalists to calculate,
which could be attributed either to a complete trust of the theorists in our ability to handle
the equations of QED, or, less flattering, to their unwillingness to do the work themselves.
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a production target (CERN 15, Fermilab 16). Some of the secondary particles
produced (mostly π+) decay into muons which carry a large fraction of the
initial beam energy. These muons can be selected according to their energy
and transported to the target under study. Conversely, one can also use the
muon (anti-)neutrinos produced in the decay as probes.

The incident lepton beam is directed at a target made of the nuclear species
under investigation (hydrogen for protons, deuterium or 3He for neutrons, or
heavier nuclei in some cases). Fixed solid state or cryogenic liquid targets are
most commonly used, but some of the more recent results have been obtained
with a counterrotating proton beam of 800 GeV at the HERA f accelerator in
Hamburg (Germany).

The outgoing scattered leptons are momentum-analyzed by magnetic fields
and detected by a system of particle detectors, like drift chambers, scintillator
counters (hodoscopes), C̆erenkov or transition radiation (TRC) counters, and
electromagnetic calorimeters (shower counters) or muon counters. (See Fig. 5
for an example.) The information from these counters is collected and stored
by a data acquisition computer.

During offline analysis, the detector data for each event are analyzed to
determine whether the detected particle is indeed the scattered lepton of in-
terest, and to calculate its momentum and direction. The events are then
accumulated in bins of the kinematic variables, e.g. the final energy E′, polar
scattering angle θ and azimuthal angle φ. The total number of events recorded
in a given kinematic bin will be proportional to the following quantities:

1. The total number of incident leptons, Ni. This can be expressed as the
current of incoming leptons per unit time, Ii, integrated over time.

2. The density of target atoms per unit area, t = NT /area = ρ[g/cm3] ×
L[cm]×6.022·1023/A, where A is the atomic weight of the nuclear species
in the target. The product of t with Ii is called the luminosity L and has
units of 1/cm2/s.

3. The size of the kinematic bin, e.g. ∆E′∆Ω = ∆E′sin(θ)∆θ∆φ.

The ratio of the detected number of events in a given bin over the product
Nit has dimensions of area and is called the partial cross section ∆σ for this
bin. In the limit where the size of the kinematic bin becomes very small, the
ratio ∆σ/∆E′∆Ω approaches a finite limit value which is called the (double)
differential cross section dσ/dE′dΩ.

fHERA stands for Hadron Electron Ring Anlage or Accelerator. However, it was found that
positrons are preferable to electrons as probes - for purely technical reasons - and therefore
the “E” is somewhat unjustified at present.
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Theoretically, the partial cross section for inclusive lepton scattering can
be written to lowest order following Fermi’s Golden Rule:

∆σ =
1

jin

2π

h̄
|Mfi|2∆Φ. (6)

Here, jin is the current density of the incoming lepton and ∆Φ is the phase
space spanned by the kinematic bin. In the following, we want to concentrate
on elastic electromagnetic scattering first.

In this case the transition matrix element Mfi = 〈ψf |Hint|ψi〉 can be
written as Mfi = ejleptonµ (1/Q2)ezjµtarget where z is the charge of the target
in units of e and Q2 = −qµqµ is the (negative) square of the four momentum
q = (ν,q) = (E−E′,ki−kf ) transferred to the target. (Q2 can be calculated
in the target rest system as Q2 = 4EE′sin2(θ/2).)

For the (hypothetical) case of spinless leptons scattering off a spin- and
structureless target, the result is

∆σ =
4z2α2(h̄c)2

Q4
E′2∆Ω (7)

(α is the fine structure constant). The magnetic interaction due to the lepton
spin adds an additional factor (1− β2sin2(θ/2)) which simplifies to cos2(θ/2)
for high energy leptons. Similarly, a spin-1/2 (point) target yields another
factor (1 + 2ν2/Q2tan2(θ/2)). Finally, the target recoil results in a factor
E′/E, so that the differential cross section has the form

∆σ

∆Ω
=

4z2α2(h̄c)2E′2

Q4

E′

E
cos2(θ/2)(1 + 2ν2/Q2tan2(θ/2)). (8)

This cross section does not contain a term ∆E′ since for elastic scattering, E′

is uniquely determined by kinematics alone.
The form of the cross section, Eq. 8, is only valid for a structureless point

target (“Dirac” particle), where the wave function (and therefore the electro-
magnetic current, jµtarget) can be written down exactly. In the case of a finite
size target with internal structure (like the proton), the cross section gets mod-
ified by the insertion of so-called form factors (GE and GM , the electric and
magnetic form factors, in case of a spin-1/2 target). These form factors depend
on the momentum transfer squared, Q2, and parameterize the distribution of
charges and currents inside the target. In fact, the charge form factor GE(Q2)
can be interpreted as the Fourier transform of the charge distribution inside
the target, and GM (Q2) as the Fourier transform of the distribution of electric
current and magnetic moment throughout the target. For a pointlike Dirac
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target, GE(Q2) = GM (Q2) ≡ z. In the case of a finite size target, the electric
form factor GE(Q2) converges to z for Q2 → 0, since the wavelength of the ex-
changed photon becomes too large to resolve the inner structure of the target.
However, GM (Q2) does not necessarily have the same limit; if the target has
an anomalous magnetic moment (µ 6= µN ), GM (Q2) converges towards µ/µN
instead. The complete elastic cross section for targets with internal structure
becomes

∆σ

∆Ω
=

4α2(h̄c)2E′2cos2 θ
2

Q4

E′

E

(
G2
E(Q2) + τG2

M (Q2)

1 + τ
+ 2τ tan2 θ

2
G2
M (Q2)

)
,

(9)
where τ = ν2/Q2.

As an example, both the magnetic and electric form factor of the proton
have been found to follow approximately a so-called dipole form: GE(Q2) =
GM (Q2)/(µ/µN ) = (1 + Q2/0.71 GeV2)−2 which can be interpreted as the
Fourier transform of an exponentially falling charge distribution.

In the following, we want to discuss how the cross section Eq. 9 changes
in the case of inelastic scattering. For this purpose, it is useful to introduce
some more kinematic variables. Of great importance is the invariant mass of
the unobserved final state (the sum of all energies of the target fragments in
their center-of-mass system), W . Since in the target rest system, the final
state has four momentum P ′µ = (M + ν,q), we can calculate W 2 = P ′µP ′µ =
M2+2Mν+ν2−q2 = M2+2Mν−Q2. In the case of elastic scattering, we must
have W 2 = M2 and therefore 2Mν = Q2, or x ≡ 1 where x ≡ xBj = Q2/2Mν.
If we transfer more energy to the target, we can excite higher mass resonant
states, with W = Mres. At even higher energy transfer (deep inelastic region),
we can create a continuous spectrum of multi-particle final states. In these
cases, the cross section becomes a function of θ and E′. Figure 1 shows an
example for the cross section for electron scattering off protons. The marks
indicate the positions of some well-known nucleon resonances, some of which
can be clearly seen as peaks in the cross section (these correspond to the ∆+,
S11 and D13, and F15 resonances discussed in Section 1.)

Clearly, we have to replace the form factors in Eq. 9 with functions of both
Q2 and ν to describe the inelastic cross section. Specifically, the expression
G2
E(Q2)+τG2

M (Q2)
1+τ is replaced by the structure function W2(Q2, ν) and τG2

M (Q2)

is replaced by a second structure function, W1(Q2, ν). From this substitution,
it is clear that W1(Q2, ν) parameterizes the transverse part of the electro-
magnetic transition matrix element |Mfi|2, now taken between the target ini-
tial ground state i and an unbound (continuum) final state f . The structure
function W2, on the other hand, contains both transverse and longitudinal
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Figure 1: Cross section dσ/dΩdE′ in nb/sr/GeV for electron-proton scattering at 9.71 GeV
electron energy and 7 degree scattering angle. The large peak below W 2 = 1 GeV2 is the
elastic peak, which is smeared out due to resolution and radiative effects included in this
calculation.

(“charge”) transition matrix elements. Alternatively, one often introduces a
longitudinal structure function WL(Q2, ν) in analogy with GE(Q2), so that

W2(Q2, ν) = WL(Q2,ν)+W1(Q2,ν)
1+τ . The ratio R = WL(Q2, ν)/W1(Q2, ν) indi-

cates the relative importance of longitudinal and transverse transition strength.
Using these newly defined structure functions, one can write the inelastic

inclusive cross section as

∆σ

∆Q2∆ν
=

4πα2(h̄c)2E′cos2(θ/2)

Q4E
(W2(Q2, ν) + 2 tan2(θ/2)W1(Q2, ν)), (10)

where we have replaced the kinematic bin ∆Ω∆E′ with the kinematic bin
∆Q2∆ν = (EE′/π)∆Ω∆E′. Using our alternative set of structure functions,
Eq. 10 can also be written (after some lengthy but elementary algebra) as

∆σ

∆Q2∆ν
=

4πα2(h̄c)2E′cos2(θ/2)

Q4E

W1(Q2, ν)

ε(1 + τ)
(1 + εR(Q2, ν)), (11)

with ε = (1 + 2(1 + τ)tan2(θ/2))−1.
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In the case of a transition to a resonant state, W1(Q2, ν) is peaked around
the energy transfer needed to excite the resonance, νR = (W 2

Res−M2+Q2)/2m,
but it is not a delta function δ(ν−νR). This is due to the fact that all nucleon
resonances decay with very short life time, leading to a finite width Γ ∝ 1/T
of their mass peaks. The Q2–dependence of the structure functions once again
reflects the finite spatial extent of both the nucleon ground state and the excited
resonant state. Therefore, for any given resonance, W1(Q2, ν) falls off rapidly
with high Q2, just like the nucleon form factors (often with the same “dipole”–
like behavior). However, if the wave length λ ∝ 1/Q of the exchanged virtual
photon becomes sufficiently small (Q2 À 1 GeV2) and the energy transfer is
high enough (W > 2− 3 GeV - the deep inelastic region), one can think of the
scattering process as elastic scattering off the quarks inside the nucleon target,
and the structure functions exhibit scaling behavior. We will now discuss this
limit of deeply inelastic scattering (DIS) in detail.

Since (elementary) quarks are Dirac particles, we would expect that the
cross section simplifies to Eq.8, and the structure functions would become delta
functions δ(ν − νq(el)) with νq(el) = Q2/2mq (this implies xq(el) = mq/MN ).
However, since quarks are bound inside nucleons, they are not at rest, which
leads to a “Doppler” smearing of the possible energy transfers ν, as well as
x. To understand the meaning of the variable x in that case, it is useful to
consider a different coordinate system, the so-called Breit frame.

We start by noting that since Q2 > 0 in electron scattering, and since
q2 = Q2 + ν2, we have always |q| > ν, so we can find a coordinate system
(using a Lorentz boost along the direction of the virtual photon) in which

ν = 0 (and obviously |q| =
√
Q2 = Q), the Breit frame. The necessary boost

parameters are Γ = |q|/Q and Γβ = ν/Q. The nucleon’s four momentum
in this system is Pµ = (M |q|/Q, 0, 0,−M ν/Q). Now let’s assume that the
virtual photon strikes a quark with initial longitudinal momentum −pqz(i) in
the Breit frame. Since the photon carries no energy, it cannot change the
overall energy or momentum of the quark, if we neglect binding effects (this is
justified by the property of asymptotic freedom, which is one of the hallmarks
of QCD). Therefore, we must require that the longitudinal momentum after
scattering pqz(f) = −pqz(i)+Q has the same magnitude, pqz(i), as the initial one.
This requires that pqz(i) = Q/2. In other words, the virtual photon can only
scatter off a virtual quark that carries just the right longitudinal momentum,
Q/2, in the Breit frame. By taking the ratio between this momentum and
the longitudinal momentum of the whole nucleon, we get −pqz(i)/(−Mν/Q) =
Q2/(2Mν) ≡ x. We thus realize that the quantity x gets a new meaning
in deep inelastic scattering: it is the fraction of the nucleon’s longitudinal
momentum carried by the struck quark, calculated in the Breit frame. If we
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call the probability to find a quark with momentum fraction x q(x), we can
incorporate this probability function in Eq. 8 to get the partial cross section
for deep inelastic scattering:

∆σ =
4πz2

qα
2(h̄c)2E′cos2(θ/2)

Q4E
(q(x)∆x+ 2ν2/Q2tan2(θ/2)q(x)∆x)∆Q2.

(12)
We can use the relation ∆x = −Q2/(2Mν2)∆ν = −x∆ν/ν to rewrite this as

∆σ

∆Q2∆ν
=

4πα2(h̄c)2E′cos2(θ/2)

Q4E
(
x

ν
z2
qq(x) +

1

M
tan2(θ/2)z2

qq(x)). (13)

Finally, we have to include contributions from all different quark flavors
f , each with its own probability distribution f(x) and charge zf . If we define
new structure functions F1(x) = 1

2

∑
f z

2
ff(x) and F2(x) = x

∑
f z

2
ff(x), we

can write down the final form for the deep inelastic cross section as

∆σ

∆Q2∆ν
=

4πα2(h̄c)2E′cos2(θ/2)

Q4E
(
1

ν
F2(x) + 2 tan2(θ/2)

1

M
F1(x)). (14)

Comparison with Eq. 10 immediately shows that F1(x) = MW1(Q2, ν) and
F2(x) = νW2(Q2, ν). This means that in this kinematic region, the structure
functions become functions of one variable alone (x), while the dependence on
Q2 vanishes — they “scale”. Furthermore, we expect the relationship F2(x) =
2xF1(x) to hold, which follows directly from our expressions for F1 and F2

above in terms of the quark distribution functions f(x).

4 Unpolarized Structure Functions F1 and F2

From our result in the previous section, it is clear that one can learn a lot
about the internal (quark-) structure of the nucleon by studying the structure
functions F1 and F2. The value of F1(x) at a given x can be directly interpreted
as (one–half of) the likelihood of finding a quark with longitudinal momentum
fraction x, summed over all quark flavors weighted with the corresponding
quark charges squared. While this interpretation is, strictly speaking, frame
dependent (the way we introduced it, it refers to the Breit frame), one can
see that in the limit Q2 → ∞ but x fixed the Breit frame coincides with the
infinite momentum frame (IMF) in which the third component of the nucleon
momentum, P 3

Breit = −Mν/Q = −Q/2x, approaches infinity, P 3 → −∞. In
this (scaling) limit, x measures the momentum fraction of the quarks in the
IMF, which is independent of the other kinematic variables of the reaction.
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One of the important results from early deep inelastic scattering (DIS)
experiments was the (approximate) confirmation of the Callan-Gross relation-
ship 17 F2(x) = 2xF1(x). g Our derivation of this relationship at the end
of the previous Section depends crucially on the assumption that the elastic
cross section on a single quark can be described by Eq. 8, i.e. the cross sec-
tion for a pointlike spin-1/2 (Dirac) particle. If quarks had no spin, we would
have F1(x) = 0 instead. The confirmation of scaling and the Callan-Gross
relationship therefore show that nucleons are indeed made of (nearly) mass-
less elementary spin-1/2 particles which become asymptotically free at large
momentum transfers.

More information can be obtained by writing down the quark decomposi-
tion of the structure functions explicitly:

F1(x) =
1

2

(
4

9
[u(x) + ū(x)] +

1

9

[
d(x) + d̄(x) + s(x) + s̄(x)

]
+ ...

)
, (15)

if we neglect the heavier c, b and t quarks. Measuring F1(x) over a wide range
of x should give us information on the quark distribution functions q(x). In
practice, one often measures F2(x) instead, since this quantity has no (typically
small) factor tan2(θ/2) in front of it. Either way, measuring one of these
structure functions alone will not be enough to unravel the contributions of all
different quark flavors (6 unknown functions of x in Eq. 15).

One possibility is to assume that the “sea” quarks s, ū, d̄, s̄ do not con-
tribute significantly, and that u(x) ≈ 2d(x) in the proton. These assumptions
are in line with our naive CQM, and cannot be expected to be a realistic de-
scription of the current quark distributions. However, they hold approximately
“on average”, so that we can at least estimate the integral

∫ 1

0

F2(x)dx =

∫ 1

0

x

(
4

9
u(x) +

1

9
d(x)

)
dx =

∫ 1

0

xd(x)dx. (16)

Using again our assumption, u(x) ≈ 2d(x), one sees that this integral
should equal 1/3 of the overall quark momentum distribution, weighed by the
momentum fraction x. In other words, from this integral we can determine the
longitudinal momentum fraction carried by all quarks in the proton together,

as 3
∫ 1

0
F2(x)dx = xtotal. From our CQM, we would of course expect the

gOne can measure both F1 and F2 independently by using a method called “Rosenbluth
separation”. Basically, one varies the scattering angle θ while simultaneously changing the
beam energy to keep x and Q2 constant. Since F1 has an extra factor tan2(θ/2) in front of
it, it’s contribution will be different for these different kinematics and by a linear fit both F1

and F2 can be extracted.
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number to be 1 (since there is nothing else but quarks inside a proton in this
model). However, the experimental result is about 0.5, which means that only
1/2 of the proton momentum is carried by quarks. The other half is carried
by the exchange bosons of the strong force, the gluons, which are responsible
for binding the quarks inside the proton. Since these gluons carry no electric
charge, they are invisible to lepton scattering experiments (except for indirect
effects like the “missing momentum” described above).

A second integral we could calculate is 3
∫ 1

0
[F2(x)/x]dx, which should sim-

ply yield the total number of quarks in the proton. From the CQM, we would
expect the number to be 3 (it certainly can not be less than that in any quark-
based model). However, experimentally it turns out that the integral does not
even seem to converge (it grows without bounds towards smaller and smaller
x). The reason for this is that there are an infinite number of virtual quark-
antiquark pairs constantly being created and annihilated in the proton, most
of which carry only a tiny fraction x of the proton momentum. We will discuss
this picture in more detail later in this section.

If we want to go beyond the simplifying assumptions of the CQM, we
need additional information to unravel the individual contributions of the dif-
ferent quark flavors to F1 and F2. One possible angle comes from the in-
sight that the quark distributions of protons and neutrons must be related
via Isospin symmetry. If we take a proton with quark distribution func-
tions up(x), ūp(x), dp(x), d̄p(x), sp(x) and s̄p(x) and rotate it by 180 degrees
in Isospin space, it becomes a neutron, while the quark flavors become trans-
formed like u → d, d → u, s → s, and equivalently for the antiquarks. Since
Isospin is a very good symmetry of the strong interaction, we expect that
the corresponding quark distributions are the same: up(x) = dn(x), ūp(x) =
d̄n(x), dp(x) = un(x), d̄p(x) = ūn(x), while the s and s̄ distributions are the
same in both nucleons (s quarks are iso-singlets). This relationship has become
so widely ingrained that most people don’t bother to make the distinction, and
simply refer to, e.g., u(x) ≡ up(x) = dn(x) (we will follow that convention from
now on).

This means that Eq. 15 describes the structure function F p1 (x) for the
proton, while the neutron one becomes

Fn1 (x) =
1

2

(
4

9

[
d(x) + d̄(x)

]
+

1

9
[u(x) + ū(x) + s(x) + s̄(x)] + ...

)
, (17)

all expressed in the “universal” isospin-symmetric distribution functions. Com-
bining Eq. 15 and Eq. 17 allows us to gain additional information on the quark
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distributions. Of particular interest is the (isovector) difference

F p1 (x)− Fn1 (x) =
1

2

(
3

9
(u(x) + ū(x))− 3

9
(d(x) + d̄(x))

)
, (18)

which has no contribution from strange quarks. We can further separate the
distributions u(x) and d(x) into a valence part uV (x) and dV (x) and a “sea”
part uS(x) = u(x)−uV (x) and dS(x) = d(x)−dV (x), where the valence quarks
are the carriers of the nucleon quantum numbers (therefore, their total must
be exactly

∫
uV (x)dx = 2 and

∫
dV (x)dx = 1). This means that the integral

over x of the difference (Eq. 18) should be equal to

2

∫ 1

0

[F p1 (x)− Fn1 (x)] dx =
1

3
(2− 1 + (NuS +Nū)− (NdS +Nd̄))

=
1

3
+

2

3
(Nū −Nd̄). (19)

In the second line, we made use of the fact that sea quarks can only be created
in quark-antiquark pairs, and therefore the sum of sea quarks and antiquarks
of a given flavor simply equals twice the number of antiquarks. If we assume
that the quark distributions are the same for ū and d̄, we should expect the
result to be simply equal to 1/3 (this is known as the Gottfried sum rule 18).

Experimentally, it is not quite straightforward to evaluate the integral
Eq. 19, since there are no free neutron targets. The next best thing are targets
made of deuterium, which can be interpreted as an equal number of protons
and neutrons. Figure 2 shows a parameterization19 of the world’s data on both
the proton and deuterium which can be used for that purpose. However, one
has to worry about binding effects and Fermi-smearing (due to the motion of
the nucleons in deuterium) as well as possible modifications of the free nucleon
structure functions for nucleons bound in nuclei (like deuterium). These devi-
ations from the free nucleon structure functions are collectively known as the
“EMC–effect”, named after the collaboration at CERN that first discovered
them experimentally 20. Nevertheless, the best present estimate of the integral
Eq. 19 from data taken on protons and deuterons yields 0.235±0.02621, which
is considerably different from the prediction 1/3. At face value, this result can
be interpreted to mean that on average there are 0.15 more d̄ quarks than ū
quarks. This has been related to the fact that the proton can dissociate into a
neutron and a π+ meson (with the CQM composition |UD̄〉), while π− mesons
are less easy to produce.

Another quantity of interest is the ratio Fn1 (x)/F p1 (x) in the limit of large
x, where one expects valence quarks to dominate. In that case, we can write
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Figure 2: Parameterization of the world’s data on the structure function F p2 (x,Q2) of the

proton and F d2 (x,Q2) of the deuteron. The neutron structure functions Fn2 (x,Q2) is ap-
proximately equal to the difference between these two sets of curves. (Note that in most
publications, F d2 (x,Q2) is defined per nucleon, meaning the values given in the literature
will be half those shown in this figure). Notice that the ratio Fn2 (x,Q2)/F p2 (x,Q2) is clearly
decreasing towards higher x. The evolution of F2(x,Q2) can also be clearly seen; strength is
“moved” from high x towards small x. The curve for each Q2 is shown up to the boundary
of the scaling region W 2 > 4.0 GeV2.
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this ratio as

Fn1 (x)/F p1 (x) =

(
4
9dV (x) + 1

9uV (x)
)

(
1
9dV (x) + 4

9uV (x)
) . (20)

If one assumes that the shape of the uV and dV distributions are the same at
high x (and therefore uV (x) = 2dV (x)), the result should equal 2/3. On the
other hand, the data 21 seem to favor a ratio closer to 1/4, which would imply
that uV (x) À dV (x) at large x. This means that u quarks are much more
likely to carry nearly all of the proton momentum than d quarks; however,
the difficulties stemming from the EMC effect discussed above are especially
pronounced in the high-x region, so that this result is not uncontroversial 22.
There are some intriguing theoretical arguments why uV (x) À dV (x) should
be true at large x, though. It is thought that the strong interaction between
two quarks favors the state where the quark spins point in opposite direction,
leading to a total S = 0 state. This means that one needs more energy for a
S = 1 qq state (hence the higher mass for the ∆ versus the nucleon). From
this it can be concluded that the two valence u quarks in the proton which
do couple to S = 1 tend to carry a larger fraction of the total proton mass
than the valence d quark, which translates to a higher likelihood for a large
momentum fraction x in the Breit frame.

If we want to find additional information on the contribution of the differ-
ent quark flavors to the proton structure functions, we have to turn to neutrino
scattering. There are important differences in the cross sections for the reac-
tions (i) N(νµ, µ

−) and (ii) N(ν̄µ, µ
+) relative to charged lepton (electron or

muon) scattering, all due to the fact that these reactions proceed through the
Weak Interaction (charged W boson exchange) instead of the electromagnetic
one:

1. Reaction (i) involves a W+ boson which must be absorbed by the struck
quark. Therefore, it can only occur on quarks which have negative charge
initially, i.e., d, s and ū. Conversely, reaction (ii) involves a W− boson
and can only occur on positively charged quarks, namely u, d̄ and s̄. This
allows us to separate the contribution from these two different groups of
quarks by comparing νµ and ν̄µ – induced reactions.

2. The coupling strength to each type of quark is the same for all flavors,
i.e. the structure functions contain no weighing factors z2

q . In the case of
u and d type quarks, this follows simply from the structure of the weak
interaction that we have already discussed in Section 2. For s quarks,
the statement above is true only if we have enough energy to create
not only u quarks but also c quarks in the final state. Otherwise, the
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contribution from s quarks would be suppressed by the Cabbibo factor
sin(θCabibbo) ≈ 0.22. h

3. Due to the V −A structure of the Weak Interaction, all leptons in reaction
(i) must be left-handed, with spins pointing opposite to their momentum.
If the reaction occurs on a d or s quark, these have to be left-handed as
well. In the center-of-mass system, it follows that the total spin in the
direction of the relative momentum is zero. This means that there are
no restrictions on the scattering angle from angular momentum conser-
vation. On the other hand, if the struck quark is a ū, it must be right-
handed, leading to an overall spin of 1 in its initial direction. The final
state contains again a left-handed lepton and a right-handed antiquark,
with overall spin 1. Conservation of angular momentum requires that
this spin points in the same direction as the initial one. This leads to a
suppression of events where the lepton scatters by a large angle in the
center of mass, equivalent to a large energy loss ν in the lab. By mea-
suring the angular (or ν) dependence of the structure functions, one can
separate the parts coming from quarks and antiquarks. This works in
full analogy for reaction (ii) as well.

4. As one would expect, the cross section is vastly smaller than for elec-
tromagnetic scattering, since it is proportional to G2

FM
4
W /(M

2
W + Q2)2

instead of α2/Q4 (GF is the Fermi coupling constant for weak charged
current interactions and MW ≈ 80 GeV is the mass of the W boson).

Combining these features, one can write the cross section (in the scaling
limit, and assuming the Callan-Gross relationship) for reaction (i) as

∆σ

∆Q2∆ν
=

G2
FM

4
W

π(M2
W +Q2)2

x

ν
(d(x) + s(x) + (1− ν

E
)2ū(x)), (21)

where we have assumed that θ is small and all momenta involved are large
relative to the nucleon mass (more accurate formulae can be found in the
Particle Data Group collection 6). Similarly, the cross section for reaction (ii)
is

∆σ

∆Q2∆ν
=

G2
FM

4
W

π(M2
W +Q2)2

x

ν
(d̄(x) + s̄(x) + (1− ν

E
)2u(x)). (22)

Equations 21 and 22 allow us to extract 4 of our 6 unknowns. One more un-
known can be gotten from electromagnetic scattering on the proton and the

hStrictly speaking, the contribution from d quarks would be likewise suppressed by
cos(θCabibbo), but this is numerically close to 1.
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neutron, but the resulting six equations are not linearly independent, which
still leaves us short by one. However, this linear relationship between the struc-
ture functions measured in electromagnetic and weak processes can be tested
experimentally and the agreement found is a strong confirmation of the quark-
parton picture of deep inelastic scattering and the electro-weak interaction.

For an unambiguous solution, one could again do experiments on pro-
tons as well as neutrons, determining 2 more equations analog to Eqs. 21 and
22, with u and d interchanged. This would indeed overdetermine the solu-
tion. However, the experimental problems of neutrino-induced reactions are
too formidable to achieve high statistical precision that way. This is partially
due to the small size of the cross section, which requires immensely massive
targets for finite count rates. In addition, the initial lepton (neutrino) is not
observed, so its energy is not known and must be inferred from the observed
reaction products (including the hadronic debris of the struck quark). This re-
quires that the massive target must be either itself a detector, or interspersed
with a large number of sampling detectors.

The smallest statistical errors were achieved by the CCFR experiment
at Fermilab 23 which used a 18 m long stack of iron plates alternating with
scintillator detectors (corresponding to a target mass of hundreds of tons).
The CDHS experiment 24 at CERN used a similar setup. Some lower statistics
data were also taken with a hydrogen and deuterium bubble chamber at CERN
(BEBC 25). In practice, one attempts an overall fit to these as well as the
electron and muon scattering data to find the best constraints on the individual
quark distribution functions.

In the remainder of this Section, we will outline some of the deviations
from our simple (scaling) picture of deep inelastic scattering. It was soon
observed that the structure functions F1 and F2 do not scale exactly, i.e., they
depend not only on x but also on the momentum transferred. At high Q2,
there are 2 principal sources of these so-called scaling violations: perturbative
QCD corrections to the cross section for point-like quarks, and the evolution
of the quark distribution functions with Q2. Both effects lead to logarithmic
corrections depending on ln(Q2). They are described in detail for example in
Ref. 1. Here, we can only give an intuitive outline.

The perturbative QCD (pQCD) corrections have their origin in the fact
that quarks are strongly interacting particles, which can radiate extra gluons in
the reaction process. These pQCD corrections can be understood as the QCD
analogue of the (QED) radiative corrections briefly discussed in Section 3, ex-
cept that they are governed by the much larger strength of the strong coupling
constant, αs/2π. One of the peculiarities of the theory of strong interac-
tions, QCD, is that this coupling constant depends quite strongly on the mass
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scale (Q2 in our case). One speaks of the “running” of the coupling constant
αs(Q

2). i For instance, the value for αs at moderate scales (Q2 ≈ 3 GeV2)
is nearly 3 times larger than at the scale of the Z mass M2

Z . This fall-off of
αs at high energies leads to the phenomenon of “asymptotic freedom”, which
means that at very high Q2 the quarks behave as if they were free objects. The
flip side of asymptotic freedom is the large value of the coupling at low energy
scales which is believed to lead to the confinement of quarks inside hadrons
(this is the reason why free quarks have never been observed). At sufficiently
low energy scales, the coupling reaches order unity and pQCD can no longer
be applied.

The evolution of the quark distribution functions, on the other hand, de-
pends on the resolving power of our scattering probe. In the Breit frame, the
wave length of the exchanged boson (photon or W/Z vector boson) is directly
given by 2π/Q. At very high Q2, finer details of the proton structure can
be resolved than at lower values of Q2. This finer resolution can reveal that
what looked like an ordinary quark carrying momentum fraction x is actually
composed of a quark, maybe additional gluons, and sea quark-antiquark pairs,
each carrying a smaller fraction x′ < x than the original quark. This leads to
an increase of the quark distribution functions at low x and a corresponding
decrease at higher x as Q2 increases. This is indeed born out by the data, as
shown in Fig. 2. This figure shows a parameterization 19 of the medium-high
Q2 data on proton and deuteron structure functions. Formally, the evolution
of the distribution functions is described by the DGLAP evolution equations26.
It should be noted that to first order (and only to first order) perturbation the-
ory, both pQCD effects and the DGLAP evolution can be incorporated into
scale-dependent quark distribution functions q(x,Q2).

One consequence of the Q2–dependent evolution of the distribution func-
tions is that one gets a handle on the gluon distribution function g(x,Q2) which
cannot be observed directly in lepton-nucleon scattering, since gluons do not
interact electromagnetically or weakly. We have already observed earlier in
this section that one can infer that gluons must account for roughly 1/2 of the
nucleon momentum. By studying the Q2 dependence of the structure functions
one can extract the gluon distribution functions in more detail. This works
because a gluon can split up into a quark-antiquark pair perturbatively – this
process is part of the the pQCD corrections of the scattering process. The
lepton probe can interact with this quark or antiquark, leading to information
on the original gluon. This process is termed “photon-gluon fusion” (in the
case of electromagnetic scattering). The overall program of DIS then requires

iStrictly speaking, the electromagnetic coupling constant also depends on Q2; however, this
dependence is rather weak in the region below Q2 ≈ 10, 000 GeV2 ≈M2

Z .
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a global fit to all measured structure functions, over a wide range of x and
Q2, with a model distribution function for both quarks (q(x,Q2

0)) and gluons
(g(x,Q2

0)) at some fixed scale Q2
0 as input. Tabulations and graphs of the

measured structure functions can be found in Ref. 6 and Ref. 1. Fits to these
measurements have been done (and constantly refined) by several groups; see
for instance the so-called MRS 27 and CTEQ 28 parameterizations. The overall
picture of the distribution of quarks and gluons in the nucleon is remarkably
detailed and consistent. However, a theoretical prediction of these distribution
functions based on first (QCD) principles seems to be still out of reach. The
reason for this difficulty lies in the non-perturbative nature of QCD at the
mass scale of the nucleon.

Further deviations from the scaling behavior of the structure functions and
the Callan-Gross relation occur at even lower Q2. These are often subsumed
(not quite correctly) under the heading of “higher twist effects”. j Basically,
these effects are due to the fact that quarks are after all bound inside the nu-
cleon, have a finite mass and can have a momentum component perpendicular
to the virtual photon. In addition, the Breit frame no longer coincides with
the infinite momentum frame at lower Q2. All of these deviations from the
scaling behavior are typically proportional to powers of 1/Q, with a leading
term proportional to 1/Q2 in unpolarized scattering.

The part of this 1/Q2 term coming from binding effects is often referred to
as “dynamical higher twist” (or “twist–4”; the terms that survive as Q2 → ∞
are “twist–2” or leading twist) and can in principle be calculated using a tech-
nique called “operator product expansion” (OPE). This technique involves de-
termining matrix elements of higher twist operators that include correlations
between quarks and gluons inside the nucleon.

Of particular interest is the behavior of the ratio R = WL/W1 between the
longitudinal and transverse structure functions we defined in the previous sec-
tion. The Callan-Gross relationship implies that R ≈ 0 at high Q2. However,
at lower Q2 it can become quite sizable due to higher–twist effects. R can
be determined experimentally using the technique of Rosenbluth separation
discussed at the beginning of this Section. Recent precision data have been
obtained at SLAC 29 and by NMC 21. Figure 3 shows a parameterization of R
from a re-analysis of SLAC data 19.

In the region of low Q2 < 3 GeV2 and moderate x (corresponding to
W < 2 GeV), the binding of the quarks becomes especially important in the
final state. In fact, the structure functions are mostly determined by these

jA discussion of the twist expansion of QCD is outside the scope of this paper. Twist is
defined as the dimension minus the spin of an operator contributing to the matrix element
Mfi.
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Figure 3: Parameterization of the world’s data on the structure function Rp(x,Q2) of the
proton. One can clearly see that R becomes small at high Q2, in agreement with the Callan-
Gross relationship, but large at smaller Q2 due to higher twist effects. The curve for each
Q2 is shown up to the boundary of the scaling region W 2 > 4.0 GeV2.

final state interactions, which prevent the struck quark from being knocked
out of the nucleon. Instead, the transferred energy is shared with the other
constituents, leading to a resonant excitation of the nucleon of the whole –
these are again the nucleon resonances we discussed before. The energy scale
at which the resonant final states become important coincides (but surely not
by coincidence) with a resolution 1/Q appropriate for the size of the constituent
quarks in our naive CQM. At face value, this means we cannot directly measure
the quark distribution functions of constituent quarks without taking final
state interactions into account. On the other hand, it turns out that if one
averages over several resonant final states, the measured structure functions
still agree with the ones measured in DIS, extrapolated appropriately into the
resonance region. Of course, for this extrapolation one has to account for
the 1/Q2 dependent effects listed above. This can be done by modifying the
scaling variable x appropriately (e.g., using the so-called “Nachtmann variable”
ξ 30). This agreement between averaged resonance structure functions and
extrapolated DIS structure functions is known as “duality”.
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5 Introduction to Polarized Structure Functions

Up to this point, we have discussed the information on the quark structure
of nucleons that can be gleaned from measurements of the two unpolarized
structure functions F1 and F2. It can be shown that for unpolarized (spin-
1/2) targets and beam, there are only these two independent quantities one
can extract (this is based on general properties of the Hamiltonian, like Lorentz
and Gauge invariance). If one allows for parity violating terms (as surely one
must in the case of neutrino interactions), a third structure function F3 arises
(this corresponds to the extra ν-dependent term in Eqs. 21 and 22).

In the case where both the leptonic probe and the target are polarized,
two more structure functions, g1 and g2, can be measured in inclusive lepton
scattering. In the following, we will turn our attention to these structure
functions. We will restrict ourselves to the case of charged lepton scattering
(electromagnetic interaction) only.

It is often instructive to think of electromagnetic scattering as a two-step
process: The electron (or muon) gives off a virtual photon γ∗ which is then
absorbed by the target. One can indeed factorize the cross section Eqs. 10 – 11
into two parts: an absorption cross section for the virtual photon σ(γ∗) and
the likelihood for the emission of a virtual photon with kinematics given by ν
and Q2, the so-called virtual photon flux Γ. However, to do that, one has to
consider the different possible polarization states of the virtual photon.

Virtual photons can have all 3 possible spin orientations for spin-1 parti-
cles, namely m = −1, 0, 1, while real photons are massless and can only have
m = ± 1. Virtual photons with m = 0 are called “longitudinal”, since their
electric field points along the direction of propagation. This is also the situ-
ation one has in classic electrostatic (Coulomb) fields, and therefore it makes
sense that longitudinal photons couple to the electric charge of the target. On
the other hand, photons with m = ± 1 are called transverse, in analogy to
real photons (“ordinary light”) which have their electric and magnetic fields
pointing perpendicular to the direction of propagation.

In the case of inclusive unpolarized lepton scattering, the cross section is
the sum of a transverse photon part and a longitudinal photon part:

dσ

dΩdE′
= ΓTσT (γ∗) + ΓLσL(γ∗) (23)

The relative strength (“flux”) of these two photon polarization states is given
by the kinematics of the scattered lepton alone and corresponds to the param-
eter ε we introduced in Section 3 (see Eq. 11): ΓL = εΓT . The transverse
and longitudinal photo-absorption cross sections σT (γ∗) and σL(γ∗) are re-
lated to the transverse and longitudinal structure functions W1 and WL, also

25



           

defined in Section 3. The exact relationship is somewhat a matter of conven-
tion; we use the so-called “Hand convention” with σT (γ∗) = K−14π2αW1 and
σL(γ∗) = K−14π2αWL, where K = (W 2 − M2)/2M = ν − Q2/2M is the
equivalent energy for a real photon to reach the same final state invariant mass
W . Note that the quantity R introduced in Section 3 gives the ratio of longi-
tudinal to transverse photoabsorption cross section: R = WL/W1 = σL/σT .
Therefore, we can write Eq. 23 also as

dσ

dΩdE′
= ΓTσT (γ∗)(1 + εR). (24)

The virtual photon polarization states m = 1 and m = −1 contribute
equally to the transverse part of the cross section Eq. 23, and their relative
strength cannot be controlled in unpolarized scattering. But if the incident
lepton is polarized along its direction of motion (i.e., it has helicity he =

ŝe · k̂e = +1 or he = −1), some of this helicity is transferred to the virtual
photon: hγ∗ =

√
(1− ε2)he. Thus, one can think of polarized lepton scattering

simply as a way to select the polarization state (in particular the helicity) of
the exchanged virtual photon.

If the target is itself polarized along the direction of the virtual photon
(sz = ±1/2), there will be a difference between the absorption strength for
virtual photons of opposite helicity, which is determined by angular momen-
tum conservation. Depending on the relative orientation of target and photon
helicity, the final state (after the photon has been absorbed) can either have
total spin along the photon direction of Sz = ±1/2 (if target and photon spin
point in opposite directions) or Sz = ±3/2 (if both point in the same direc-

tion). The corresponding virtual photon absorption cross sections are σ
1/2
T (γ∗)

and σ
3/2
T (γ∗), with σ

1/2
T (γ∗) + σ

3/2
T (γ∗) = 2 σT (γ∗).

One can define a (virtual k) photon asymmetry A1 in terms of these cross
sections:

A1(γ∗) =
σ

1/2
T (γ∗)− σ3/2

T (γ∗)

σ
1/2
T (γ∗) + σ

3/2
T (γ∗)

. (25)

If the final state is a spin-1/2 object (as is the case in elastic electron-nucleon
or electron-quark scattering), obviously |Sz| = 3/2 is excluded and therefore

σ
3/2
T (γ∗) = 0. Clearly, in this case A1 ≡ 1 by definition. On the other hand,

consider the excitation of a ∆ in (virtual) photon absorption. Since the ∆
has spin 3/2, both |Sz| = 3/2 and |Sz| = 1/2 final states are possible.

kAll the quantities defined in this paragraph can be equally applied to real photons, as well,
since those are transverse by definition.
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The Clebsch-Gordon coefficient for a |s = 1/2, sz = 1/2 > state and a
|s(γ∗) = 1, sz(γ

∗) = 1 > state coupling to a total of |S = 3/2, Sz = 3/2 >
is, of course, equal to 1. The corresponding Clebsch-Gordon coefficient for
coupling a |s = 1/2, sz = − 1/2 > state and |s(γ∗) = 1, sz(γ

∗) = 1 >
to |S = 3/2 , Sz = 1/2 > is only

√
1/3, however. It follows that the cross

section σ
1/2
T (γ∗) is only 1/3 the size of σ

3/2
T (γ∗), which yields A1 = −1/2 in this

case. (We implicitly assumed that the nucleon-∆ transition is purely spin-flip
and does not involve orbital angular momentum). In general, A1 can assume
any value between −1 and 1 (this is called the positivity limit).

The asymmetry A1 can be directly measured for real photon absorption
(I’m not saying that this is an easy experiment, though). In lepton scattering,
however, we have to account for the virtual photon helicity and the fact that
the overall unpolarized cross section has a longitudinal part, as well. This
yields for the cross section asymmetry for lepton scattering with helicity +1
versus helicity −1 on a target with spin 1/2 aligned opposite to the virtual
photon direction

A(el) =
dσ+ − dσ−
dσ+ + dσ−

=
√

(1− ε2)
A1(γ∗)
1 + εR

. (26)

Things become a bit more complicated if the target spin is not aligned
with the virtual photon direction, but at an angle θ∗ relative to that direc-
tion. For one, the asymmetry A(el) (Eq. 26) must be multiplied by another
factor cos(θ∗). In addition, the transverse and the longitudinal part of the
cross section can interfere in this case, and we must introduce another virtual
photon cross section, the interference cross section σLT . We can define a sec-
ond virtual photon asymmetry A2(γ∗) = σLT /σT . Since σLT is bound by
|σLT | ≤

√
σL σT , we have the constraint |A2| ≤

√
R. In elastic scattering,

σLT ∝
√
τ GM GE and σT ∝ τ G2

M (where τ = ν2/Q2 as defined in Section

3), so that A2 = GE/(
√
τ GM ) which is always equal to

√
R. Measuring

A2 in elastic scattering is thus a very powerful method to determine the ratio
GE/GM , which is especially useful if GE is small as in the case of the neutron.
As in the case of A1, the asymmetry A2 enters the measured electron asymme-
try A(el) with a factor describing the spin state of the virtual photon (in this
case, this factor is

√
2ε(1− ε)), a second factor sin(θ∗) describing the orien-

tation of the target spin l and an overall normalization 1 + εR. The complete
expression for the electron asymmetry becomes then

A(el) =
√

(1− ε2) cos(θ∗)
A1(γ∗)
1 + εR

+
√

2ε(1− ε) sin(θ∗)
A2(γ∗)
1 + εR

. (27)

lWe assume that the target spin lies in the electron scattering plane, and positive θ∗ means
that it points towards the scattered electron
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In most (deep inelastic) experiments, one chooses the target spin direction
either along the incoming electron beam direction, or perpendicular to that
(again pointing towards the scattered electron). This means that θ∗ = θq (the
virtual photon direction) in the first case and θ∗ = θq +90◦ in the second. The
corresponding electron asymmetries can be written as

A|| =
dσ↓↑ − dσ↑↑
dσ↓↑ + dσ↑↑

= D(A1 + ηA2) (28)

and

A⊥ =
dσ↓→ − dσ↑→
dσ↓→ + dσ↑→

= d(A2 − ζA1). (29)

The arrows indicate the relative orientation of electron and target spin. The
factor D =

√
(1− ε2) cos(θq)/(1+εR) in front of the virtual photon asymmetry

A1 simplifies to

D =
1− εE′/E

1 + εR
(30)

and similarly

η =
ε
√
Q2/E

1− εE′/E , d =

√
2ε

1 + ε
D and ζ =

1 + ε

2ε
η. (31)

Equations 28 – 31 show how one can extract A1 and A2 from measurements
of A|| and A⊥.

After this somewhat lengthy preamble, we are now ready to introduce
the spin structure functions g1 and g2. They can be defined in terms of the
asymmetries A1 and A2 as

g1(x,Q2) =
τ

1 + τ

(
A1(x,Q2) +

1√
τ
A2(x,Q2)

)
F1(x,Q2) (32)

and
g2(x,Q2) =

τ

1 + τ

(√
τA2(x,Q2)−A1(x,Q2)

)
F1(x,Q2). (33)

In the scaling limit (τ →∞), g1 converges to g1(x) = A1(x)F1(x) (becoming a
function of x alone) since |A2| is bound by

√
R which disappears in this limit.

This allows us to interpret g1 in terms of quark distribution functions again,
in analogy with the form of F1(x) given in Eq. 15. The effect of the factor
A1(x) is to give us a plus sign for each quark that is polarized in the same
direction as the host nucleon, and a minus sign for each quark with opposite
polarization (see Fig. 4). This follows from our assumption that we scatter
elastically from asymptotically free quarks, and so only quarks which have

28



           

Figure 4: Polarized virtual photon absorption on quarks inside nucleons. One can see that

only quarks with their spin parallel to the overall nucleon spin can contribute to σ
1/2
T (γ∗)

(a), while quarks with their spin opposite to the nucleon spin contribute to σ
3/2
T (γ∗) (b).

The virtual photon has positive helicity (sz(γ∗) = +1) in these sketches.

their spin anti-aligned with the virtual photon helicity can absorb that virtual
photon. Let us call ∆f(x) the probability of finding a quark of flavor f with
momentum fraction x that has its spin parallel to the nucleon spin, minus the
corresponding probability for antiparallel spin. Then we can write

g1(x) =
1

2

(
4

9
[∆u(x) + ∆ū(x)] +

1

9

[
∆d(x) + ∆d̄(x) + ∆s(x) + ∆s̄(x)

])

(34)
in complete analogy with Eq. 15. We can thus interpret g1(x) as the weighed
sum of the quark momentum distributions times their helicity. (Formally, g1

measures the “axial charge” of the quarks, not their helicity, which is different
because of relativistic effects. However, we will ignore this distinction for the
time being.)

The second spin structure function, g2, also becomes a function of x alone
in the scaling limit. However, it is harder to come up with an intuitive interpre-
tation of this structure function. It is maybe better to look at the combination
gT (x) = g1(x) + g2(x). From Eqs. 32, 33 one can see that this structure
function is directly proportional to A2, which means that gT measures the in-
terference between longitudinal and transverse photon-quark interaction in the
case where the nucleon spin is perpendicular to the virtual photon direction:
gT =

√
τA2F1 = ±GE/GM F1, where the sign depends on the relative orien-

tation of the quark spin and the virtual photon direction. Naively one would
assume that the result is simply gT = g1, since quarks with spins parallel and
antiparallel to the transverse polarization of the nucleon enter with opposite
signs and GE/GM = 1 for the point-like quarks. However, relativistic effects
play a big role here (a quark which has its spin pointing at 90 degrees relative
to the virtual photon in its rest system will have a different transverse polar-
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ization in the Breit Frame, in general). This means that gT is smaller than
g1 at large x in the scaling limit. The leading-twist prediction for gT is the
Wandzura-Wilczek 31 form

gWW
T (x,Q2) =

∫ 1

x

g1(y,Q2)

y
dy, (35)

implying gWW
2 = −g1 + gWW

T . Higher twist effects can contribute strongly to
g2(x,Q2), as well.

How does one determine the spin structure functions g1, g2 experimentally?
There are in principle two different methods: One possibility is to measure the
electron asymmetries A|| and A⊥ and to invert Eqs. 28, 29 to extract A1 and
A2. These can be inserted in Eqs. 32, 33 to get the desired structure functions.
This requires of course that F1 is known with the necessary precision (from
unpolarized DIS experiments and their parameterizations). Alternatively, one
can write down the cross section difference directly in terms of g1 and g2, for
instance

dσ↓↑

dΩdE′
− dσ↑↑

dΩdE′
=

16α2(h̄c)2E′2 sin2(θ/2)

Q4

(
E + E′ cosθ

Mν
g1 −

1

τM
g2

)
. (36)

However, since absolute cross sections (and cross section differences) are much
harder to measure precisely than asymmetries, the first method is usually
chosen.

In any case, in addition to similar spectrometers as in the unpolarized
case, one needs a polarized electron beam and a polarized nucleon target. This
poses a formidable technical challenge, which is the main reason why polar-
ized structure function measurements have a considerably shorter history than
unpolarized ones (and the precision achieved so far is still inferior). The first
experiments to measure spin structure functions began in the second half of
the seventies 32,33, nearly a decade after the first unpolarized DIS experiments.
These experiments were conducted at SLAC with polarized electrons created
by photoionization of polarized 6Li atoms. The targets were made from bu-
tanol where the protons in the bound hydrogen atoms can be polarized.

The first experiment to explore the region of small x was conducted at
CERN 34, once again scattering the secondary muon beam from nucleon tar-
gets. This experiment (by the EMC collaboration) and its successors (by the
SMC collaboration35,36) made use of the fact that the muons produced in pion
decay are “automatically” polarized, since the decays are due to the Weak
Interaction and therefore violate parity. The targets were again butanol (both
with polarized protons and with polarized deuterons) as well as ammonia (see
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below), but of course truly massive amounts were needed to compensate for
the low beam rate.

The highest statistical precision so far has been reached in a series of
experiments carried out at SLAC in the years 1992 through 1997 (E142 37,
E143 38,39,40,41, E154 42 and E155). These experiments used a high intensity
polarized electron beam (with increasing energy over the years) and polarized
proton, deuteron and 3He targets. The polarized electrons came from a laser-
driven photo-emission source with a gallium arsenide cathode (after E142, the
cathode was strained gallium arsenide which can produce electrons with po-
larization well over 80%). Three different targets were employed: a polarized
3He target (E142, E154), an ammonia target (NH3) with polarized protons
(E143, E55) and deuterated ammonia (ND3) with polarized deuterons (E143;
E155 used Lithium Deuteride 6LiD instead). The 3He target was gaseous (10
atm pressure, contained in a glass cell up to 30 cm long) and was polarized by
spin-exchange with optically (laser-) pumped Rubidium 37. Since 3He consists
of one unpaired neutron and a (mostly) spin-0 proton pair, it can be consid-
ered an effective polarized neutron target, albeit with substantial background
(“dilution”) from the unpolarized protons as well as the glass walls and other
target constituents.

The ammonia targets used both at SLAC and CERN use the principle of
dynamic nuclear polarization to polarize the hydrogen and deuterium nuclei in
NH3 and ND3. The ammonia is frozen in small beads and cooled to temper-
atures around 1 K in the presence of a 5 T magnetic field. Microwave power
is radiated to the target to induce hyperfine transitions to the desired nuclear
polarization state. Measurements on both ammonia and deuterated ammonia
(or 6LiD) yield the spin structure functions of protons and deuterons, which
can be used to extract neutron results in a similar way as for F1 and F2 (see
previous Section). Again, the dilution of the asymmetry by the unpolarized
target constituents (nitrogen, liquid helium, and wall material) has to be taken
into account carefully.

The scattered electrons are detected and analyzed in spectrometers which
are similar to the ones used in unpolarized scattering. The SLAC experiments
recorded data from two separate spectrometers (three for E155) simultaneously,
each with large angular and momentum acceptance, to maximize the count
rate. Figure 5 shows the spectrometer setup for E142 and E143. E154 and
E155 employed similar spectrometers.

A novel approach to spin structure function measurements has been de-
veloped by the HERMES 43 collaboration at DESY. They use the circulating
positron beam in the HERA collider and an internal (stationary) polarized gas
target. The positrons are polarized transversely to the ring plane (this hap-
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Figure 5: Spectrometers used for E142 and E143. Scattered electrons follow a curved tra-
jectory through the momentum-analyzing magnets and are identified by C̆erenkov counters.
These are essentially large tanks of dilute gas which emits a flash of light - analog to a super-
sonic boom - when traversed by a particle moving faster than the speed of light, c/n, in the
gas. The hodoscopes are made of a large number of scintillator “fingers” (long, narrow rect-
angular bars of organic material with attached phototubes to detect the scintillation light).
They are arranged in vertical and horizontal arrays so they can determine the trajectory
of the electrons through the spectrometer, which allows the experimenters to reconstruct
their initial direction and momentum. The shower counters are made out of bars of lead
glass which absorb the electrons and convert their energy to light. This light signal, which
is proportional to the total electron energy, is also read out by phototubes.

pens “automatically” through synchrotron radiation over time - the so-called
Sokolov-Ternov effect). This polarization is turned into the beam direction
with a complicated arrangement of magnets in the target region (a “Siberian
Snake”). The targets are windowless and contain pure nuclear species (polar-
ized hydrogen, deuterium or 3He). This avoids the dilution of the asymmetry
by unpolarized target constituents. On the other hand, the achievable target
densities are extremely low, which is partially offset by the high circulating
current in a storage ring.
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Figure 6: World’s data on the asymmetry Ap1(x) of the proton in the deep inelastic region.
The dashed line indicates the naive CQM prediction Ap1 = 5/9.

6 Polarized Structure Functions at high and low Q2

Let us once again look at the information about the internal quark structure
of the nucleon that can be gained from the measured spin structure functions,
especially the structure function g1(x) and the asymmetry A1(x). From our
simple CQM (Eq. 2 in Section 2) we can make definite predictions for the
asymmetry A1: for the proton, we expect

A1 =
4
9∆U + 1

9∆D
4
9U + 1

9D
=

16
27 − 1

27
8
9 + 1

9

=
5

9
(37)

This expectation is in reasonable agreement with the existing data at high x,
as can be seen in Fig. 6, but of course our static model cannot account for the
variation with x observed in the data. A similar calculation for the neutron
(again using isospin to relate quark distributions in the neutron to equivalent
ones in the proton) yields a predicted asymmetry of A1 = 0, which is also quite
close to the data (Fig. 7).

As in the case of unpolarized DIS, more fundamental information can be
obtained from integrals over structure functions. In particular the integral
over the spin structure function g1(x) has a very straightforward quark-parton
interpretation (compare with Eq. 34):

Γp1 =

∫ 1

0

gp1(x) dx =
1

2

(
4

9
∆u+

1

9
[∆d+ ∆s]

)
(38)
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Figure 7: World’s data on the asymmetry An1 (x) of the neutron in the deep inelastic region.
Not shown are data extracted from measurements on deuterium (SMC, E143). The naive
CQM prediction is An1 = 0.

yields the spin probabilities defined in Section 2, weighed with the squared
quark charges. The naive CQM prediction for the proton would be Γp1 =
1/2× 5/9 = 0.278 for this integral, and Γn1 = 0 for the neutron.

For a somewhat less model-dependent prediction, one can use the values
for ∆u − ∆d = 1.26 and ∆u + ∆d − 2∆s = 0.58 extracted from beta-decays
(see Section 2). However, one needs at least one additional assumption (since
there are 3 unknowns). If we assume ∆s = 0, which seems reasonable at first
glance, we can predict a value of Γp1 = 1/2(4/9×0.92 + 1/9× (−0.34)) = 0.186
for the proton and Γn1 = −0.024 for the neutron. This prediction was first
derived by Ellis and Jaffe 44 and is referred to as the Ellis-Jaffe sum rule.

Surprisingly, the data lie quite a bit lower than both predictions, around
0.143 for the proton and -0.062 for the neutron. m This was first seen in
the EMC experiment 34 and was dubbed the “spin crisis”. One can use the
experimental result as a third constraint on the three unknown quark polar-
izations and solve the resulting three linear equations. The results are that
∆u ≈ 0.81, ∆d ≈ −0.46 and ∆s ≈ −0.12. The contribution from strange
quarks to the proton spin turns out to be nonzero (even negative), which

mThe exact values depend quite strongly on both the QCD evolution of these integrals (see
below) and the assumptions one makes about the unmeasured part of the integral (especially
in the small-x region). The latter is a rather complicated issue, since traditional models for
low-x extrapolation (“Regge fits”) may not be accurate 42. However, this problem is beyond
the scope of this paper.
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could explain why the Ellis-Jaffe sum rule is violated. Each of these values
individually are not too far from the quark model expectations (once we take
a ∼ 75% relativistic reduction into account). However, the trouble is that all
deviations are in the same direction (negative), which yields an overall contri-
bution ∆Σ = ∆u + ∆d + ∆s ≈ .23 of the quark spins to the overall proton
spin (our naive QCM expectation is 1!).

Countless theoretical explanations for this discrepancy have been offered
since the EMC results first appeared (see, e.g., Ref. 2 for an overview). Some
arguments are based on non-trivial properties of QCD, for instance, the so-
called “axial (U(1)) anomaly” or even the influence of instantons 45. Within
the quark model, a straightforward approach is to assume that some part of the
proton spin is carried by orbital angular momentum of the quarks (maybe due
to the same “meson cloud” already invoked in the explanation of the Gottfried
sum rule violation in Section 4), and an additional contribution comes from
the gluonic field (just like gluons make up 50% of the nucleon momentum, they
could also account for 1/2 of the nucleon spin) 46. More precise measurements
of different observables will be needed to narrow down the range of possibilities
(see Section 7).

A more fundamental prediction can be made for the difference between the
proton and the neutron integral. In this case, the contribution from strange
quarks cancels, and one gets

Γp1 − Γn1 =
1

2

(
3

9
∆u− 3

9
∆d

)
=

1

6
(∆u−∆d) =

1

6
gA (39)

where we used our result from Section 2 relating the quark polarizations to
the axial coupling gA. This result is the famous Bjorken sum rule 47, and
its derivation requires no ad hoc assumptions about quark distributions. The
Bjorken sum rule is nowadays considered a crucial test of QCD. The numerical
result is 0.21 and has been confirmed by all experiments up to now (after PQCD
corrections), to within one standard deviation and with a relative precision of
about 7%. It may sound surprising that a quantity measured at very high
energies, in DIS, can be expressed in terms of a “low-energy” parameter like
gA measured in neutron beta decay. However, as pointed out before, the weak
interaction is essentially pointlike, and the relevant scale is not the neutron
decay energy, but the mass of the exchanged W boson, which is also large.

For completeness, we should mention that there is also a sum rule for the
integral over the structure function g2, the Burkhardt-Cottingham sum rule48.
This sum rule predicts that the integral yields zero for both the proton and
the neutron (this result can be inferred from Eq. 35, but is more general than
that equation). The (limited) existing data (mostly from E143 41) agree with
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this prediction. At least on average it is therefore true that gT (x) ≈ g1(x),
which was our first (“naive”) assumption.

All of these sum rules, as well as the structure functions and asymmetries
themselves, exhibit some degree of scaling violation (Q2-dependence), just like
the unpolarized structure functions, and for the same reasons. For instance,
a “constituent” quark with spin “up” can be resolved at higher Q2 into a
quark with opposite spin and a gluon whose spin 1 accounts for the difference.
The logarithmic Q2 dependence of g1 and g2 is governed by similar evolution
equations as in the unpolarized case. Several theoretical groups 49,50 have
conducted “next-to-leading order” (NLO) analyses of the measured structure
functions based on these DGLAP evolution equations.

Since both polarized (g1, g2) and unpolarized (F1, F2) structure functions
depend logarithmically on Q2, one could guess that the ratio g1/F1 or the
asymmetry A1 (which is close to that ratio) might scale much better (depend
much less on Q2) than each of the structure functions. Experimentally, the
precision reached is not quite good enough yet to decide this question unam-
biguously. Again, the most extensive data set is from E14340. These data show
rather strong Q2 dependence for g1/F1 below Q2 = 1 GeV2, but no statistically
significant dependence above that value (see also Fig. 6 which shows measure-
ments of Ap1 at vastly different incident energies and therefore different Q2).
Because of our limited knowledge of scaling violations in polarized structure
functions, we can not yet pin down the polarized gluon distribution ∆g(x,Q2)
with sufficient precision, since it has to be inferred from the Q2-dependence of
the quark distributions.

The sum rules do not depend directly on the resolution (momentum trans-
fer) at which the measurement is done, but they exhibit Q2-dependence due
to QCD radiative effects. The Bjorken sum rule, for instance, changes from its
asymptotic value of 0.21 to a value of 0.18 (14% less) at Q2 ≈ 5 GeV2. One
has to apply these corrections (up to third order pQCD) to achieve agreement
with the data. This agreement is considered a strong (successful) test of QCD.

At even lower momentum transfers, higher twist corrections (and other
1/Q2 terms like target mass corrections) appear in the polarized structure
functions as well. It is quite possible that the significant Q2-dependence of
the ratio g1/F1 observed at Q2 ≤ 1 GeV2 (see above) is due to such higher
twist effects - it can be fit rather well with an additional 1/Q2 term in the
parametrization of the world data 40. Higher twist terms are especially impor-
tant in the g2 structure function, leading to a deviation from the Wandzura-
Wilczek form Eq. 35. At present, the data on g2 are not precise enough to
reveal any such deviation; however, it is expected that future measurements
(especially the extension of E155, which is scheduled for 1999) will reach the
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necessary precision.
The contribution of the additional 1/Q2 terms discussed above can also

become important for the sum rules at low Q2. As an example, the Ellis-Jaffe
integral for the proton Γp1 receives an extra term of the form 51

Γp1(Q2) = Γp1(∞) +
m2
n

9Q2
(a(2) + 4d(2) + 4f (2)). (40)

Some of the coefficients a(2), d(2) and f (2) can be related to higher moments
of the spin structure functions via the Operator Product Expansion (OPE)
method. For instance, the twist-2 coefficient a(2) is equal to twice the third
moment of g1:

a(2) = 2

∫ 1

0

x2g1(x) dx, (41)

while the twist-3 term d(2) can be calculated from g2:

d(2) = 3

∫ 1

0

x2(g2(x)− gWW
2 (x)) dx. (42)

Equation 42 shows that the deviation of g2 from the Wandzura-Wilczek form
is indeed a measure of higher-twist effects, as advertised.

The twist-4 term f (2) cannot be measured directly, but has been esti-
mated (together with d(2)) using several different approaches, including the
bag model 52 and QCD sum rules 53. These predictions, together with the
data 41, indicate that higher twist effects may change the proton integral by as
much as 3%− 5% at Q2 = 3 GeV2.

There is another important aspect to consider when one studies the Q2-
dependence of the integrals Γp1 and Γn1 . As Q2 decreases, a larger and larger
part of the integration extends into the resonance region W 2 ≤ 4 GeV2. As
an example, at Q2 = 3 GeV2 already half of the integration range, x ≥ 0.5,
lies in that region (although the dominant contribution to the integral still
comes from smaller x). As the resonances become more important, final state
interactions will profoundly change the shape of the structure functions and
asymmetries (of course, these final state interactions are indeed one of the
major sources of higher-twist effects). For example, while Ap1 is a relatively
large, positive number at large x in the deep inelastic region (see Fig. 6), it
will become negative in that same x region once Q2 is small enough to bring it
into the range of the ∆ resonance (see our discussion in the previous Section).
Correspondingly, the integral Γp1 will rapidly decrease in size and eventually
become negative overall as Q2 approaches zero.
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Figure 8: Existing data on the asymmetry A1 (with some contamination from A2) in the
resonance region, at an average Q2 of 0.5 GeV2. The circles are the E143 data, while the
triangles come from the E130 measurement. The solid line is the result of a parametrization
based on pion production data, adjusted to represent the present data. The dashed line is
the contribution to A1 from the nucleon resonances only.

There is another important sum rule that constrains this behavior of
Γp1(Q2) and Γn1 (Q2) as Q2 → 0, the famous Gerasimov-Drell-Hearn (GDH)
sum rule 54. Originally, this sum rule made a prediction about the real photon
absorption cross sections (at Q2 = 0) defined in the previous Section:

∫ ∞

νthr

σ
1/2
T (ν)− σ3/2

T (ν)
dν

ν
= −2π2α

M2
κ2
N , (43)

where νthr is the threshold energy for pion photoproduction and κN is once
again the anomalous magnetic moment of the nucleon under study. If one
assumes that these cross sections connect smoothly to the virtual photon ones
(at Q2 > 0), one can use Eqs. 25-32 to predict the behavior of Γ1 close to the
photon point:

ΓN1 (Q2 → 0)→ Q2

16π2α

∫ ∞

νthr

σ
1/2
T (ν)− σ3/2

T (ν)
dν

ν
= − Q2

8M2
κ2
N . (44)

In other words, the GDH sum rule predicts that Γp1(Q2) must go to zero for
Q2 → 0 and must have a negative slope before turning over to the positive DIS
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Figure 9: The Q2-dependence of the integral Γp1. The data shown are from SLAC (E143,

at Q2 ≤ 3 GeV2) and CERN (EMC, SMC). The solid line shows the Q2-evolution of the
integral in the DIS domain, while the dotted line indicates the slope predicted by the GDH
sum rule. The remaining lines are from models explained in the text.

value. This rather complicated behavior is indeed dominated by the contribu-
tion from the ∆ resonance.

Inclusive data in the resonance region (at low to moderate Q2) have been
collected by the E130 collaboration 55 (during the first round of experiments
on the proton at SLAC) and later again by the E143 collaboration 56 (on both
protons and deuterons, with higher statistics). These data exhibit (for the
most part) the expected behavior (see Fig. 8): The asymmetry in the region of
the ∆ resonance is indeed negative and compatible with A1 = −0.5. However,
the higher resonances exhibit rather large positive asymmetries, even at low
Q2, which means that the integral Γp1 stays positive down to rather small Q2.

The Q2-dependence of the integral is shown in Fig. 9. Together with the
logarithmic Q2-evolution (solid line) and the slope predicted by the GDH sum
rule (dotted line), two models are shown that attempt to interpolate between
the deep inelastic region and the photon point. The model by Soffer and
Teryaev 57 (dash-double-dot curve) begins with a smooth interpolation of the
integral over the structure function gT (x,Q2) (defined earlier in this Section)
which converges to Γ1 at high Q2 and remains positive down to the photon
point. They subtract the contribution from the integral over g2 (which can be
evaluated using the Burkhardt-Cottingham sum rule) to obtain the integral
Γ1(Q2) alone. The strong variation seen in Γ1(Q2) is due to the variation in
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the integral over g2 in their model. Burkert and Ioffe 58 use a parametrization
of measured pion electro- and photoproduction amplitudes (encoded in the
program “AO”) to calculate the contribution from the nucleon resonances to
Γ1(Q2) (dot-dashed curve). They add to this a term that depends smoothly on
Q2 and interpolates between the part that is “missing” at Q2 = 0 to saturate
the GDH sum rule and the full value of Γ1 in the high-Q2 limit. The resulting
curve (dashed) describes all existing data best. The deviation of these data
from the deep inelastic evolution can be used to extract information about
higher twist contributions to the integral 59. The resulting correction for Γp1 is
of order 1% at Q2 = 3 GeV2, somewhat smaller than the theoretical predictions
discussed earlier.

7 Future Measurements

A truly vast amount of data on the inelastic structure of the nucleon has
been accumulated over the past 30 years, from both fixed target and colliding
beam experiments, with polarized and unpolarized incident electrons, muons
and (anti-)neutrinos, on a variety of targets from (polarized and unpolarized)
hydrogen through iron. Yet there are still some very fundamental questions
which await a definite answer, and correspondingly an impressive number of
future experiments (both planned and underway) to address these questions.

In the case of the spin-averaged quark structure of the nucleon, as ex-
pressed in the structure functions F1(x) and F2(x), much of the recent progress
has come from experiments at the proton-positron collider HERA. Using a
800 GeV countercirculating proton beam instead of a fixed gas or liquid tar-
get has allowed the experimenters to reach hundred times smaller x or several
hundred times larger Q2 than even the highest energy fixed target experiments
(NMC at CERN and E665 at Fermilab). Not only has this new kinematic do-
main opened up a much more precise determination of gluon and sea quark
distributions (via scaling violations and low-x data), but novel phenomena
(like “pomeron exchange” in diffractive scattering) may have been observed.
A much steeper rise of F2 than expected was observed for ever smaller x and
increasing Q2. One of the most intriguing discoveries so far is an observed
“excess” of events at extremely high Q2 beyond 15, 000 GeV2. 60 One possible
interpretation is that these events herald the first glimpse of an even deeper
layer of matter, with the prospect of future measurements of the “quark struc-
ture functions” in analogy to the nucleon ones.

These and other directions of inquiry will keep HERA productive and
(hopefully) exciting for many years to come. Complementary information can
be expected from existing (Fermilab) and future (LHC) hadron colliders, for
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instance by studying the so-called Drell-Yan process, in which a lepton pair
is created in nucleon- (anti-)nucleon collisions, opening a different window on
the quark structure of nucleons. Ultimately, one could conceive colliding the
multi-TeV proton beam of LHC with the 80 GeV electron beam of LEP (both
will be housed in the same tunnel at CERN), thereby increasing the kinematic
range over that of HERA by another large factor.

In the area of polarized structure functions, a lot less is known at present,
and correspondingly an even wider array of additional experiments are being
prepared, planned or at least discussed. Some of the unsolved questions and
puzzles that hopefully will be addressed within the next decade follow below:

1. We still haven’t completely unraveled the contributions of the different
quark flavors to the spin structure function g1(x). More high-precision
data for proton and deuteron spin structure functions are forthcoming
from SLAC experiment E155, which is presently in the analysis stage.
However, with only 2 linearly independent measurements (protons and
neutrons), one cannot hope to pin down the separate contributions of
the 2 valence quark flavors and the sea quarks of all flavors (up, down,
strange and maybe even charmed). The solution employed in the case
of unpolarized structure functions, measurements with (anti-) neutrino
beams, seems out of the question at least at the present, since polarized
targets of the necessary thickness haven’t been conceived yet.

A possible solution may lie in the measurement of semi-inclusive reac-
tions, where a meson created in the deep inelastic scattering process is
detected in coincidence with the scattered lepton. If one concentrates on
mesons which carry a large fraction z of the transferred energy ν, one
can expect that the struck quark should be embedded in those mesons.
Therefore, observing a “leading” kaon would yield information on the
strange quark contribution to the nucleon spin, while the comparison of
positively and negatively charged pions constrains u and d quark distri-
butions. First experimental results along these lines have been obtained
at HERMES and by SMC. 62 HERMES is upgrading their detector to
better separate kaons and pions and will collect more data in the near
future. A new proposal at CERN named COMPASS (Common Muon
and Proton Apparatus for Structure and Spectroscopy) will extend these
studies to higher energies.

2. Our knowledge of the polarized gluon distribution is rather limited at
present. The existing data can not even completely rule out the possi-
bility that gluons contribute little or nothing to the spin of the nucleon.
In view of the realization that quark spins also contribute only a small
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amount, this issue is of great importance. Improved statistics data at
both moderate and larger Q2 obtained by E155 (using a third spectrom-
eter at the relatively large scattering angle of 10◦) will help extract the
gluon distribution via the observation of scaling violations. However, the
precision achieved (and the kinematic range covered) is still far inferior
to the unpolarized data.

One obvious solution is to use the same device that already expanded
our knowledge of spin averaged gluon distributions, HERA, by colliding
polarized protons at 800 GeV with polarized electrons or positrons. This
has indeed been proposed 61, but the necessary investment is formidable.
Other possibilities include a direct observation of the photon-gluon fu-
sion process (with the detection of charmed mesons as the tell-tale sign),
which could be undertaken at SLAC (Proposal E156), COMPASS and
HERA. Finally, the Drell-Yan process with polarized proton-proton col-
lisions would open another possible window, which is being considered
for the new heavy ion collider RHIC in Brookhaven.

Most of these experiments (at least the ones at HERA and RHIC) would
also improve our knowledge of the small-x behavior of g1, which is
presently the largest uncertainty in the evaluation of the integrals Γ1.
Only if we really can extrapolate to x = 0 with some confidence will we
finally know with certainty whether the Bjorken sum rule is fulfilled and
how much of the nucleon spin is accounted for by the sum of the quark
spins.

3. Once we know how much angular momentum is carried by gluon and
quark spins, we should be able to account for the remainder in the form
of orbital angular momentum. At present, practically nothing is known
about this issue experimentally, since it depends on the transverse mo-
tion of quarks which is not measured in DIS. One approach would be to
arrive at a consistent description of the nucleon in terms of constituent
quarks and mesons, where the latter carry most of the orbital angular mo-
mentum. Experimentally, this would require a much more refined study
of the resonance region which constitutes a major part of the scientific
program at CEBAF/Jefferson Lab (mostly in Hall B).

A novel method to study orbital angular motion has been proposed that
uses the process of real photon emission after absorption of a (large Q2)
virtual photon, dubbed “Deeply Virtual Compton Scattering” (DVCS).63

Plans for experiments at an upgraded CEBAF (with 8 GeV or higher
beam energy) are presently being formulated.
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Figure 10: The Q2-dependence of the integral Γn1 . The data shown are from SLAC (E142,

E143 and E154, at Q2 ≤ 5 GeV2) and CERN (SMC). The curves come from the same
theoretical models as the correspondent ones in Fig. 9. The series of error bars shown at
zero values are predicted statistical errors for experiment 93-009 in Hall B.

4. The transverse spin structure function gT also deserves more attention
than it has received so far. It contains complementary information on the
nucleon spin, and in particular on higher twist effects. An extension of
E155 (called E155x) with mostly transverse target polarization is planned
for 1999. Other proposals are being considered at CEBAF/Jefferson Lab.

5. Both higher twist effects and the transition from the DIS picture of quasi-
free current quarks to the constituent quarks in the non-perturbative
regime of QCD can be studied by measuring spin structure functions
and the integrals Γ1 at low Q2 down to the photon point. In particular
the GDH sum rule has not been rigorously tested yet, but a large number
of experiments at low (MAMI, LEGS) to medium (ELSA, GRAAL, CE-
BAF) energy accelerators have been proposed and are in various stages
of preparation. The connection between this sum rule and the deep in-
elastic region will be studied by several experiments at Jefferson Lab, in
all three experimental Halls. Similar targets (p, d and 3He) as in the
SLAC experiments will be used. The most comprehensive program has
been approved for Hall B, encompassing a complete mapping of the spin
structure functions of the proton (NH3 target) and the deuteron (ND3

target) from small (Q2 ' 0.1 GeV2) to moderate (Q2 ' 2.0 GeV2) mo-
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mentum transfer, and from the elastic peak over the resonance region up
to the highest energies available at CEBAF (well into the deep inelastic
region). Figure 10 shows the expected density of data points and their
estimated statistical errors for the integral Γn1 (Q2) from the ND3 part of
this program. The first part of this so-called EG1 running period (which
contains both experiments with NH3 and ND3 targets, as well as a par-
tial measurement of the GDH sum rule) is scheduled for the second half
of 1998.

In summary, there is a truly impressive amount of work still ahead of us,
and plenty of opportunities for surprises. Maybe 10 years from now we will
finally have a complete picture of the quark and gluon composition of the
nucleon. Both experimental progress as well as theoretical advances on the
problem of non-perturbative QCD will have contributed to that picture.
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