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target, GE(Q2) = GM (Q2) ⌘ z. In the case of a finite size target, the electric
form factor GE(Q2) converges to z for Q2 ! 0, since the wavelength of the ex-
changed photon becomes too large to resolve the inner structure of the target.
However, GM (Q2) does not necessarily have the same limit; if the target has
an anomalous magnetic moment (µ 6= µN ), GM (Q2) converges towards µ/µN
instead. The complete elastic cross section for targets with internal structure
becomes

��
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◆
,

(9)
where ⌧ = ⌫2/Q2.

As an example, both the magnetic and electric form factor of the proton
have been found to follow approximately a so-called dipole form: GE(Q2) =
GM (Q2)/(µ/µN ) = (1 + Q2/0.71 GeV2)�2 which can be interpreted as the
Fourier transform of an exponentially falling charge distribution.

In the following, we want to discuss how the cross section Eq. 9 changes
in the case of inelastic scattering. For this purpose, it is useful to introduce
some more kinematic variables. Of great importance is the invariant mass of
the unobserved final state (the sum of all energies of the target fragments in
their center-of-mass system), W . Since in the target rest system, the final
state has four momentum P 0µ = (M + ⌫,q), we can calculate W 2 = P 0µP 0

µ =
M2+2M⌫+⌫2�q2 = M2+2M⌫�Q2. In the case of elastic scattering, we must
have W 2 = M2 and therefore 2M⌫ = Q2, or x ⌘ 1 where x ⌘ xBj = Q2/2M⌫.
If we transfer more energy to the target, we can excite higher mass resonant
states, with W = Mres. At even higher energy transfer (deep inelastic region),
we can create a continuous spectrum of multi-particle final states. In these
cases, the cross section becomes a function of ✓ and E0. Figure 1 shows an
example for the cross section for electron scattering o↵ protons. The marks
indicate the positions of some well-known nucleon resonances, some of which
can be clearly seen as peaks in the cross section (these correspond to the �+,
S11 and D13, and F15 resonances discussed in Section 1.)

Clearly, we have to replace the form factors in Eq. 9 with functions of both
Q2 and ⌫ to describe the inelastic cross section. Specifically, the expression
G2
E(Q2)+⌧G2

M (Q2)
1+⌧ is replaced by the structure function W2(Q2, ⌫) and ⌧G2

M (Q2)
is replaced by a second structure function, W1(Q2, ⌫). From this substitution,
it is clear that W1(Q2, ⌫) parameterizes the transverse part of the electro-
magnetic transition matrix element |Mfi|2, now taken between the target ini-
tial ground state i and an unbound (continuum) final state f . The structure
function W2, on the other hand, contains both transverse and longitudinal
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Figure 1: Cross section d�/d⌦dE0 in nb/sr/GeV for electron-proton scattering at 9.71 GeV
electron energy and 7 degree scattering angle. The large peak below W

2 = 1 GeV2 is the
elastic peak, which is smeared out due to resolution and radiative e↵ects included in this
calculation.

(“charge”) transition matrix elements. Alternatively, one often introduces a
longitudinal structure function WL(Q2, ⌫) in analogy with GE(Q2), so that
W2(Q2, ⌫) = WL(Q2,⌫)+W1(Q

2,⌫)
1+⌧ . The ratio R = WL(Q2, ⌫)/W1(Q2, ⌫) indi-

cates the relative importance of longitudinal and transverse transition strength.
Using these newly defined structure functions, one can write the inelastic

inclusive cross section as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(W2(Q2, ⌫) + 2 tan2(✓/2)W1(Q2, ⌫)), (10)

where we have replaced the kinematic bin �⌦�E0 with the kinematic bin
�Q2�⌫ = (EE0/⇡)�⌦�E0. Using our alternative set of structure functions,
Eq. 10 can also be written (after some lengthy but elementary algebra) as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

W1(Q2, ⌫)
✏(1 + ⌧)

(1 + ✏R(Q2, ⌫)), (11)

with ✏ = (1 + 2(1 + ⌧)tan2(✓/2))�1.
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call the probability to find a quark with momentum fraction x q(x), we can
incorporate this probability function in Eq. 8 to get the partial cross section
for deep inelastic scattering:

�� =
4⇡z2

q↵
2(h̄c)2E0cos2(✓/2)

Q4E
(q(x)�x+ 2⌫2/Q2tan2(✓/2)q(x)�x)�Q2.

(12)
We can use the relation �x = �Q2/(2M⌫2)�⌫ = �x�⌫/⌫ to rewrite this as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(
x

⌫
z2
qq(x) +

1
M

tan2(✓/2)z2
qq(x)). (13)

Finally, we have to include contributions from all di↵erent quark flavors
f , each with its own probability distribution f(x) and charge zf . If we define
new structure functions F1(x) = 1

2

P
f z

2
ff(x) and F2(x) = x

P
f z

2
ff(x), we

can write down the final form for the deep inelastic cross section as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(
1
⌫
F2(x) + 2 tan2(✓/2)

1
M

F1(x)). (14)

Comparison with Eq. 10 immediately shows that F1(x) = MW1(Q2, ⌫) and
F2(x) = ⌫W2(Q2, ⌫). This means that in this kinematic region, the structure
functions become functions of one variable alone (x), while the dependence on
Q2 vanishes — they “scale”. Furthermore, we expect the relationship F2(x) =
2xF1(x) to hold, which follows directly from our expressions for F1 and F2

above in terms of the quark distribution functions f(x).

4 Unpolarized Structure Functions F1 and F2

From our result in the previous section, it is clear that one can learn a lot
about the internal (quark-) structure of the nucleon by studying the structure
functions F1 and F2. The value of F1(x) at a given x can be directly interpreted
as (one–half of) the likelihood of finding a quark with longitudinal momentum
fraction x, summed over all quark flavors weighted with the corresponding
quark charges squared. While this interpretation is, strictly speaking, frame
dependent (the way we introduced it, it refers to the Breit frame), one can
see that in the limit Q2 ! 1 but x fixed the Breit frame coincides with the
infinite momentum frame (IMF) in which the third component of the nucleon
momentum, P 3

Breit = �M⌫/Q = �Q/2x, approaches infinity, P 3 ! �1. In
this (scaling) limit, x measures the momentum fraction of the quarks in the
IMF, which is independent of the other kinematic variables of the reaction.
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target, GE(Q2) = GM (Q2) ⌘ z. In the case of a finite size target, the electric
form factor GE(Q2) converges to z for Q2 ! 0, since the wavelength of the ex-
changed photon becomes too large to resolve the inner structure of the target.
However, GM (Q2) does not necessarily have the same limit; if the target has
an anomalous magnetic moment (µ 6= µN ), GM (Q2) converges towards µ/µN
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becomes
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where ⌧ = ⌫2/Q2.

As an example, both the magnetic and electric form factor of the proton
have been found to follow approximately a so-called dipole form: GE(Q2) =
GM (Q2)/(µ/µN ) = (1 + Q2/0.71 GeV2)�2 which can be interpreted as the
Fourier transform of an exponentially falling charge distribution.
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in the case of inelastic scattering. For this purpose, it is useful to introduce
some more kinematic variables. Of great importance is the invariant mass of
the unobserved final state (the sum of all energies of the target fragments in
their center-of-mass system), W . Since in the target rest system, the final
state has four momentum P 0µ = (M + ⌫,q), we can calculate W 2 = P 0µP 0
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M2+2M⌫+⌫2�q2 = M2+2M⌫�Q2. In the case of elastic scattering, we must
have W 2 = M2 and therefore 2M⌫ = Q2, or x ⌘ 1 where x ⌘ xBj = Q2/2M⌫.
If we transfer more energy to the target, we can excite higher mass resonant
states, with W = Mres. At even higher energy transfer (deep inelastic region),
we can create a continuous spectrum of multi-particle final states. In these
cases, the cross section becomes a function of ✓ and E0. Figure 1 shows an
example for the cross section for electron scattering o↵ protons. The marks
indicate the positions of some well-known nucleon resonances, some of which
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is replaced by a second structure function, W1(Q2, ⌫). From this substitution,
it is clear that W1(Q2, ⌫) parameterizes the transverse part of the electro-
magnetic transition matrix element |Mfi|2, now taken between the target ini-
tial ground state i and an unbound (continuum) final state f . The structure
function W2, on the other hand, contains both transverse and longitudinal
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One of the important results from early deep inelastic scattering (DIS)
experiments was the (approximate) confirmation of the Callan-Gross relation-
ship 17 F2(x) = 2xF1(x). g Our derivation of this relationship at the end
of the previous Section depends crucially on the assumption that the elastic
cross section on a single quark can be described by Eq. 8, i.e. the cross sec-
tion for a pointlike spin-1/2 (Dirac) particle. If quarks had no spin, we would
have F1(x) = 0 instead. The confirmation of scaling and the Callan-Gross
relationship therefore show that nucleons are indeed made of (nearly) mass-
less elementary spin-1/2 particles which become asymptotically free at large
momentum transfers.

More information can be obtained by writing down the quark decomposi-
tion of the structure functions explicitly:

F1(x) =
1
2

✓
4
9

[u(x) + ū(x)] +
1
9

⇥
d(x) + d̄(x) + s(x) + s̄(x)

⇤
+ ...

◆
, (15)

if we neglect the heavier c, b and t quarks. Measuring F1(x) over a wide range
of x should give us information on the quark distribution functions q(x). In
practice, one often measures F2(x) instead, since this quantity has no (typically
small) factor tan2(✓/2) in front of it. Either way, measuring one of these
structure functions alone will not be enough to unravel the contributions of all
di↵erent quark flavors (6 unknown functions of x in Eq. 15).

One possibility is to assume that the “sea” quarks s, ū, d̄, s̄ do not con-
tribute significantly, and that u(x) ⇡ 2d(x) in the proton. These assumptions
are in line with our naive CQM, and cannot be expected to be a realistic de-
scription of the current quark distributions. However, they hold approximately
“on average”, so that we can at least estimate the integral

Z 1

0
F2(x)dx =

Z 1

0
x

✓
4
9
u(x) +

1
9
d(x)

◆
dx =

Z 1

0
xd(x)dx. (16)

Using again our assumption, u(x) ⇡ 2d(x), one sees that this integral
should equal 1/3 of the overall quark momentum distribution, weighed by the
momentum fraction x. In other words, from this integral we can determine the
longitudinal momentum fraction carried by all quarks in the proton together,
as 3

R 1
0 F2(x)dx = xtotal. From our CQM, we would of course expect the

gOne can measure both F1 and F2 independently by using a method called “Rosenbluth
separation”. Basically, one varies the scattering angle ✓ while simultaneously changing the
beam energy to keep x and Q

2 constant. Since F1 has an extra factor tan2(✓/2) in front of
it, it’s contribution will be di↵erent for these di↵erent kinematics and by a linear fit both F1

and F2 can be extracted.
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Table 1: Quantum numbers of the three lightest quarks.

Flavor Isospin I I3 Strangeness S Charge Q Baryon Number B
U 1/2 +1/2 0 +2/3 1/3
D 1/2 �1/2 0 �1/3 1/3
S 0 0 �1 �1/3 1/3

of S = 3/2 requires a wave function which is separately symmetric in spin and
flavor. In a (hopefully) intuitive short hand notation, we can therefore write
the wave function of the �++ as |�++ "i = |U " U " U "i and that of the ��
as |�� "i = |D " D " D "i. a States with more than one type of quark are
only slightly more complicated, e.g., the �+ can be written as

|�+ "i = 1/
p

3 (|U " U " D "i+ |U " D " U "i+ |D " U " U "i) . (1)

However, from now on we will use the more simple form, for instance |�+ " i =
|U " U " D "i, where a symmetrization over all flavors is understood implicitly.

The case of the proton is a bit more complicated, since the wave function
cannot be symmetric in spin and flavor separately. The most intuitive way
to derive the proton wave function is by observing that 2 of the 3 quarks are
equal (U), and therefore their relative spin wave function should be symmetric
also. This leads to the conclusion that the two U–quarks couple their spins to
a total spin of one. Let’s denote the case where this spin has a z-projection of
+1 as (UU *) := |U " U "i, while the projection with Sz = 0 will be indicated
by (UU )) := 1/

p
2 (|U " U #i+ |U # U "i). We can now combine the spin

1/2 of the remaining D quark with the spin 1 of the UU pair in two ways to
get total spin and projection 1/2; the proper way follows simply from insertion
of the correct Clebsch-Gordon coe�cients:

|P "i = 1/
p

3
⇣p

2|(UU *)D #i � |(UU ))D "i
⌘
. (2)

The neutron wave function can be gotten from Eq. 2 by replacing all U ’s with
D’s and vice versa (and inserting an overall minus sign).

Once in hand, one can use these wave functions to try and explain some
of the other well-known properties of the nucleons, for instance their anoma-
lous magnetic moments. Relativistic quantum mechanics predicts that the
magnetic moment for a pointlike particle with charge Z, spin S and mass MN

should be µ = ZµN2S, where µN = e/2MN is the (nuclear) magneton. For the
proton and the neutron one finds experimentally µ = (Z+N )µN2S (Z = 1 for
aThese wave functions are for the case S

z

= S; wave functions with di↵erent spin projections
can be derived from this form by using the spin lowering operator ��.
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  A1p	
  =	
  5/9,	
  A1n	
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•  Hyperfine	
  structure	
  effect:	
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•  pQCD:	
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•  Wave	
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replace	
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Unpolarized:    F1(x,Q2) and F2(x, Q2)	
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the structure functions g1 and g2 are linear combinations of A1 and A2 
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Two effects modify simple 
parton picture: 

 
1)  (Gluon) radiative 

corrections change 
elementary cross section 
 
 
 

2)  pQCD evolution makes 
PDFs Q2-dependent 


