Introduction to Solid Polarized Targets for Nuclear and Particle Physics

Chris Keith JLab Target Group

The basics

Spin is an intrinsic property of all elementary particles (pay no attention to the higgs)

Jefferson Lab

Target Group

Standard Model of Elementary Particles

As well as many composite particles (baryons, mesons, nuclei, atoms...)

The basics

A polarized target is a collection of nuclei (solid or gas) used for a scattering experiment in which *most the nuclear spins point in the same direction*

Uses for polarized targets

- Spin structure of hadrons
- Sum rules
- Form Factors
- Baryon spectroscopy
- Transverse momentum distributions
- Generalized parton distributions
- Polarized PDFs

Jefferson Lab

Target Group

HALL A

(E12-11-108) SIDIS with a transversely polarized proton target (E12-11-108A) Target single spin asymmetries using SoLID spectrometer

HALL B

- (E12-06-109) Longitudinal spin structure of the nucleon
- (E12-06-119) DVCS with CLAS at 12 GeV
- (E12-07-107) Spin-orbit correlations with a longitudinally polarized target
- (E12-09-009) Spin-orbit correlations in kaon electroproduction in DIS
- (E12-14-001) EMC effect in spin structure functions (⁶LiH & ⁷LiD)
- (E12-15-004) DVCS on the neutron with a longitudinally polarized target
- (C12-11-111) SIDIS on a transversely polarized target
- (C12-12-009) Dihadron production in SIDIS on a transversely pol. target
- (C12-12-010) DVCS on a transversely polarized target in CLAS12

HALL C

(E12-14-006) Helicity correlations in wide-angle Compton scattering
(C12-13-011) The deuteron tensor structure function b1
(C12-15-005) Meas. of quasi-elastic and elastic deuteron tensor asymm.
(LOI-12-14-001) Search for exotic gluonic states in the nucleus

<u>HALL D</u>

LOI-12-15-001) Physics opportunities with a secondary K°_L beam

Polarization

II

The terms *polarization* and *orientation* are used to describe the distribution of a system of spins amongst their (2I+1) magnetic substates.

Orientation parameters P_{ij} are defined in terms of expectation values of irreducible spin tensors I_{ij} which act as the basis set for the ensemble's density matrix. The magnitude of the spin determines how many P_{ij} are required to describe the ensemble.

Vector polarization
$$P_z \equiv \frac{\langle I_z \rangle}{I}$$

Tensor polarization $P_{zz} \equiv \frac{\langle 3I_{zz}^2 - I(I+1) \rangle}{I^2}$

Polarization

Today we're only going to talk about spin-1/2 systems...

Brute force polarization

The simplest method to polarize the spins is to use the Zeeman Effect and leverage the interaction between the magnetic field and the nuclei's magnetic moment, $\vec{\mu} \cdot \vec{B}$

The Zeeman interaction tends to orient (polarize) the magnet moments.

Jefferson Lab

Target Group

Oscillating EM fields produced by atomic vibrations (phonons) tends to randomize (de-polarize) the magnetic moments. Characterized by lattice thermal energy *kT*.

Eventually an equilibrium state is reached – thermal equilibrium (TE) polarization.

Brute force polarization

At equilibrium the populations of the Zeeman levels will obey a Boltzmann distribution.

$$N(\uparrow)/N(\downarrow) = \exp\left[\frac{(-2\mu B)}{kT}\right]$$
$$P_{te} = \frac{[N(\uparrow) - N(\downarrow)]}{[N(\uparrow) + N(\downarrow)]} = \tanh\left(\frac{\mu B}{kT}\right)$$

Target Group

T = temperature

Thermal equilibrium polarization, spin $\frac{1}{2}$

The polarization will approach thermal equilibrium with a 1/e time constant called t_1 , the spin-lattice relaxation time.

 $P(t) = P_{te} \left[1 - e^{-t/t_1} \right]$ $t_1 \text{ depends on the temperature and the magnetic field.}$ Nuclear t1 can be VERY LONG. It's usually determined by paramagnetic impurities.

Brute force polarization

$$P = \tanh\left(\frac{\vec{\mu} \cdot \vec{B}}{kT}\right) \longrightarrow \text{ maximize } B$$

minimize T

Advantages:

- Works for almost any material
- Easy to explain

Disadvantages:

Jefferson Lab

Target Group

- Requires very large magnet
- Low temperatures mean low luminosity
- Polarization can take a very long time

Notice that it's much easier to polarize electrons!! $\mu_{e} \sim 1000 \ \mu_{p}$

Dynamic nuclear polarization

T.O. Niinikoski and J.-M. Rieubland,

Phys. Lett. 72A (1979) 142.

For best results, DNP is performed at B/T conditions where the electron t_1 is short (ms) and the nuclear t_1 is long (minutes or hours)

Jefferson Lab

Target Group

Dynamic nuclear polarization

 H_3C

H₃C

- Implant target material with paramagnetic impurities ~ 10¹⁹ e⁻ spins/cc
- Polarize the electrons in the radicals via brute force

Jefferson

• Use microwaves to "transfer" this polarization to nuclei

The dipole-dipole interaction between the electrons and nearby nuclear spins permits transitions in which both spins flip.

$$\mathcal{H}_{SI} = \hbar^{2} \left(\frac{\mu_{0}}{4\pi}\right) \gamma_{S} \gamma_{I} \left[\frac{\vec{S} \cdot \vec{I}}{r^{3}} - \frac{3(\vec{S} \cdot \vec{r})(\vec{I} \cdot \vec{r})}{r^{5}}\right]$$

$$= \hbar^{2} \left(\frac{\mu_{0}}{4\pi}\right) \gamma_{S} \gamma_{I} \frac{1}{r^{3}} (A + B + C + D + E + F)$$

$$A = (1 - 3\cos^{2}\theta)S_{z}I_{z}$$

$$D = -\frac{3}{2}\sin\theta\cos\theta e^{i\phi}(S_{-}I_{z} + S_{z}I_{-})$$

$$E = -\frac{3}{4}\sin^{2}\theta e^{-2i\phi}S_{+}I_{+}$$

$$B = -\frac{1}{4}(1 - 3\cos^{2}\theta)(S_{+}I_{-} + S_{-}I_{+})$$

$$C = -\frac{3}{2}\sin\theta\cos\theta e^{-i\phi}(S_{+}I_{z} + S_{z}I_{+})$$

$$F = -\frac{3}{4}\sin^{2}\theta e^{2i\phi}S_{-}I_{-}$$

 CH_3

Electron Spin Resonance of a polarized solid target

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature

high field

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperaturehigh field

Electron Spin Resonance of a polarized solid target

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature

high field

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature high field
 - e⁻ spin flip Microwave absorption Magnetic field Energy levels of a electron+ protons. e⁻ & p e⁻ & p Electron is polarized. "flip-flip" "flip-flop" Protons are not. Microwave frequency $\omega_{\rm e} - \omega_{\rm p} \quad \omega_{\rm e} \quad \omega_{\rm e} + \omega_{\rm p}$

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperaturehigh field

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature high field
 - e⁻ spin flip Microwave absorption Magnetic field Positive polarization The electron flips back to its ground e⁻ & p e⁻ & p state, the proton stays flipped (long t_1). "flip-flip" "flip-flop" Microwave frequency $\omega_{e} - \omega_{p} \quad \omega_{e} \quad \omega_{e} + \omega_{p}$

Electron Spin Resonance of a polarized solid target

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature

high field

Electron Spin Resonance of a polarized solid target

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature

high field

e⁻ spin flip Microwave absorption Magnetic field Positive polarization Repeating this over and over... e⁻ & p e⁻ & p "flip-flip" "flip-flop" Microwave frequency $\omega_{e} - \omega_{p} \quad \omega_{e} \quad \omega_{e} + \omega_{p}$

Electron Spin Resonance of a polarized solid target

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature

high field

Electron Spin Resonance of a polarized solid target

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature

high field

e⁻ spin flip Microwave absorption Magnetic field Positive polarization ... leads to positive proton polarization. e⁻ & p e⁻ & p "flip-flip" "flip-flop" Microwave frequency $\omega_{e} - \omega_{p} \quad \omega_{e} \quad \omega_{e} + \omega_{p}$

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature high field
 - e⁻ spin flip Microwave absorption Magnetic field Negative polarization Microwaves at $\omega_{\rm e}$ + $\omega_{\rm p}$ produces an e⁻ & p electron-proton "flip-flop"... e⁻ & p "flip-flip" "flip-flop" Microwave frequency $\omega_{e} - \omega_{p} \quad \omega_{e} \quad \omega_{e} + \omega_{p}$

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature high field
 - e⁻ spin flip Microwave absorption Magnetic field Negative polarization ... and generates negative proton e⁻ & p e⁻ & p polarization. "flip-flop" "flip-flip" Microwave frequency $\omega_{e} - \omega_{p} \quad \omega_{e} \quad \omega_{e} + \omega_{p}$

Electron Spin Resonance of a polarized solid target

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature

high field

•

e⁻ spin flip Microwave absorption **Nuclear Polarization** Microwave frequency Negative Positive polarization polarization $2\omega_{p}$ e⁻ & p e⁻ & p "flip-flop" "flip-flip" Microwave frequency $\omega_{e} - \omega_{p} \quad \omega_{e} \quad \omega_{e} + \omega_{p}$

In 1957 Anatole Abragam (Saclay) and Carson Jefferies (Berkeley) independently demonstrate the transfer of electron polarization to nuclei by driving *forbidden* transitions directly in dielectric solids containing paramagnetic impurities.

Abragam called this "l'effet solide", The Solid Effect.

Within 5 years, both were enlisted to build polarized targets for scattering experiments!

Anatole Abragam, 1914-2011

Carson Jeffries, 1922-1995

DNP: beyond the solid effect

Electron Spin Resonance of a polarized solid target Irradiated Ammonia (NH₃)

- a solid dielectric with ~10¹⁹ cm⁻³ unpaired electrons
- low temperature
- high field

Jefferson Lab

Target Group

Jefferson Lab

Instrumentation

Target samples

Polarized target material can be characterized by four quantities

- Maximum polarization "Can you make it higher?"
- Speed of polarization "How much longer?"

Jefferson Lab

Target Group

Polarization resistance to ionizing radiation "Why is the polarization going down!?"

Ratio of polarized-to-total number of nuclei "What's all this other junk?"

dilution factor, f

Figure-of-Merit = $t \cdot f^2 \cdot P^2$

Target samples

	Material	Butanol, C₄H9OH	Ammonia, NH ₃	Lithium hydride, ⁷ LiH
	Dil. Factor (%)	13.5	17.7	25.0
	Polarization (%)	> 90%	> 90%	90%
	Material	D-Butanol, C₄D9OD	D-Ammonia, ND ₃	Lithium deuteride, ⁶ LiD
	Dil. Factor (%)	23.8	30.0	50.0
	Polarization (%)	> 80%	50%	55%
	Doping method Rad. resistance	Chemical moderate	Radiation high	Radiation extremely high
	Comments	Easy to produce and handle	Works well at 5T and 1K	Slow polarization, long relaxation

Refrigerator

<u>1 K ⁴He evaporation refrigerator</u> base temperature: ≤1.0 K Cooling power: 0.8 W @ 1.0 K

Jefferson Lab

Target Group

courtesy of James Brock, Jefferson Lab

Refrigerator

<u>³He-⁴He dilution refrigerator</u> base temperature: < 25mK cooling power: 0.1 W @ 0.3 K

Superconducting magnets

5.0 T Split pair for Hall C Polarized Target (Oxford Instrments, Inc.)

5.0 T Solenoid for CLAS12 (Everson Tesla, Inc.)

5.0 T solenoid for Hall B Frozen Spin Target (Cryomagnetics, Inc.)

Jefferson Lab

Target Group

For optimum DNP, the field should be uniform over the volume of the target sample at a level of about 100 ppm

6 February 2019

Microwave sources

Microwave frequency: 28 GHz/Tesla

Power requirements: ~4 mW/g @ 2.5 T (70 GHz) ~20 mW/g @ 5.0 T (140 GHz)

IMPATT Diode, 0.3 W @ 70 GHz VA Diode, Inc

Jefferson Lab

Target Group

Extended Interaction Oscillator, 20 W @ 140 GHz CPI Canada

NMR frequencies(MHz):	Proton	<u>Deuteron</u>
5 tesla	212.9	32.7
2.5 tesla	106.4	16.3

CW-NMR using Q-meter is the standard detection scheme. G. Court *et al,* NIM A324 (1993) 433

Typical polarization accuracy is $\Delta P/P \approx 3 - 4 \%$

A new project at Jlab: Can we polarize two samples at once, in opposite directions?

Microwaves are tuned halfway between the normal (+) and (-) polarization frequencies:

- high field sample will polarize (+)
- low field sample will polarize (-)

A new project at Jlab: Can we polarize two samples at once, in opposite directions?

Jefferson Lab

Target Group

- Samples are 5-minute epoxy doped with TEMPO radical
- Two samples
- One NMR coil

A new project at Jlab: Can we polarize two samples at once, in opposite directions?

Answer: YES! Field (T) 4.865 4.87 4.875 4.88 4.885 4.89 4.895 4.9 1.314 0.15 RMS of residuals (mV): 0.0128862 1.312 0.1 1.31 1.308 Fit Subtracted (mV) Signal Voltage (V) 0.05 1.306 1.304 1.302 1.3 1.298 -0.05 1.296 Signal Fit Subtracted 1.294 -0.1 206.8 207 207.2 207.4 207.6 207.8 208 206.6 Freq (MHz)

Jefferson Lab Target Group

Further reading

<u>Books</u>

- A. Abragam, "Principles of Nuclear Magnetism", Oxford University Press, 1982
- C. Jeffries, "Dynamic Nuclear Orientation", New York, Interscience Publishers, 1963

T. Wenckebach, "Essentials of Dynamic Nuclear Polarization", Spindrift Publications, 2016

Review Articles

- St. Goertz, W. Meyer, and G. Reicherz, "Polarized H, D, and 3He Targets for Particle Physics Experiments", Prog. in Part. and Nucl. Phys., 49 (2002) 403.
- D.G. Crabb and W.. Meyer, "Solid Polarized Targets for Nuclear and Particle Physics Experiments", Annu. Rev. Nucl. Part. Sci. 47 (1997) 67.
- A. Abragam and M. Goldman, "Dynamic Nuclear Polarization", Rep. Prog. Phys. 41 (1978) 396.
- T. Maly, et al, "Dynamic Nuclear Polarization at High Magnetic Fields", J. Chem. Phys. 128 (2008) 052211.

Biannual Workshops & Symposia

Workshop on Polarized Sources, Targets, and Polarimetry (PSTP): (Knoxville, 2019) International Spin Physics Symposium: (Japan, 2020)

Summary

Polarized targets are fun instruments to build & work with (usually)

- condensed matter physics
- low temperature physics
- cryogenics
- magnet technology
- vacuum technology

They're useful for nuclear and particle physics too

- Structure functions
- Sum rule rules
- Baryon spectroscopy

Technology developed for Polarized Targets is expanding into other areas of research

- Chemistry
- Biology

Jefferson Lab

Target Group

• Neutron crystallography

DNP is a mature technology, but a lot of advances in recent decades, and plenty of room for more!