Part 2

NUCLEON STRUCTURE

The Structure of Matter

Matter Particles

- Make up visible matter
- Pointlike (<10⁻¹⁸ m), Fundamental ^{*)}
- Have mass (from < ½ eV to 178,000,000,000 eV = 178 GeV)
- Distinct from their antiparticles *)
- Fermions (Spin ½) ⇒ they "defend" their space (Pauli Principle) and can only be created in particle-antiparticle pairs
- Can be "virtual", but make up matter being (nearly) "real"
- "stable" (against strong decays; lifetimes from ∞ to 10⁻²⁴ s)

x2 for R, x2 for antiparticles

*) Until further notice

Forces and Force Carriers

- Mediate Interactions (Forces) - form "Waves"
- Pointlike, Fundamental
- Massless *)
- Some are their own antiparticles (photon, Z⁰, graviton)
- Spin 1, 2 -> Bosons (tend to cluster together, can be produced in arbitrary numbers)
- Can be real, but carry forces as virtual particles
- Some are absolutely stable (γ, gluons, gravitons)

*) See next slide

Note: gluons come in 8 possible combinations of color/anticolor (9th is "sterile" – doesn't exist)

GGGGGGGGGG

Simple (Constituent) Quark Model

Flavor	Isospin I	I_3	Strangeness S	Charge Q	Baryon Number B
U	1/2	+1/2	0	+2/3	1/3
D	1/2	-1/2	0	-1/3	1/3
S	0	0	-1	-1/3	1/3

$$\begin{split} |\Delta^{++}\uparrow\rangle &= |U\uparrow U\uparrow U\uparrow\rangle\\ |\Delta^{+}\uparrow\rangle &= 1/\sqrt{3}\left(|U\uparrow U\uparrow D\uparrow\rangle + |U\uparrow D\uparrow U\uparrow\rangle + |D\uparrow U\uparrow U\uparrow U\uparrow\rangle\right) \end{split}$$

The case of the proton is a bit more complicated, since the wave function cannot be symmetric in spin and flavor separately. The most intuitive way to derive the proton wave function is by observing that 2 of the 3 quarks are equal (U), and therefore their relative spin wave function should be symmetric also. This leads to the conclusion that the two U-quarks couple their spins to a total spin of one. Let's denote the case where this spin has a z-projection of +1 as $(UU \Uparrow) := |U \uparrow U \uparrow\rangle$, while the projection with $S_z = 0$ will be indicated by $(UU \Rightarrow) := 1/\sqrt{2} (|U \uparrow U \downarrow\rangle + |U \downarrow U \uparrow\rangle)$. We can now combine the spin 1/2 of the remaining D quark with the spin 1 of the UU pair in two ways to get total spin and projection 1/2; the proper way follows simply from insertion of the correct Clebsch-Gordon coefficients:

$$|P\uparrow\rangle = 1/\sqrt{3} \left(\sqrt{2} |(UU\uparrow)D\downarrow\rangle - |(UU\Rightarrow)D\uparrow\rangle\right).$$
(2)

Constituent Quark Model:

• SU(6)-symmetric wave function of the proton in the quark model:

$$p \uparrow \rangle = \frac{1}{\sqrt{18}} \left(3u \uparrow \left[ud \right]_{S=0} + u \uparrow \left[ud \right]_{S=1} - \sqrt{2}u \downarrow \left[ud \right]_{S=1} - \sqrt{2}d \uparrow \left[uu \right]_{S=1} - 2d \downarrow \left[uu \right]_{S=1} \right) \right)$$

- In this model: d/u = 1/2, $\Delta u/u = 2/3$, $\Delta d/d = -1/3$ for all x => $A_{1p} = 5/9$, $A_{1n} = 0$, $A_{1D} = 1/3$ *)
- Hyperfine structure effect: S=1 suppressed => d/u = 0, $\Delta u/u = 1$, $\Delta d/d = -1/3$ for x -> 1 => $A_{1p} = 1$, $A_{1n} = 1$, $A_{1D} = 1$
- pQCD: helicity conservation $(q\uparrow\uparrow p) \Rightarrow d/u = 2/(9+1) = 1/5$, $\Delta u/u = 1$, $\Delta d/d = 1$ for $x \rightarrow 1$
- Wave function of the neutron via isospin rotation: replace u -> d and d -> u => using experiments with protons and neutrons one can extract information on u, d, Δu and Δd in the valence quark region.

*)
$$A_{1p} = \frac{4/9 \cdot u \cdot \Delta u/u + 1/9 \cdot d \cdot \Delta d/d}{4/9 \cdot u + 1/9 \cdot d} = \frac{4 \cdot \Delta u/u + (d/u) \cdot \Delta d/d}{4 + (d/u)}$$

Hadronic Particle Zoo

- what can one build from quarks?

Family Name	Particle Name	Particle Symbol	Antiparticle Symbol	Composition	Mass	Electric Charge	Lifetime in Seconds
baryon	proton	p or p+	p	uud	1,836	+1	stable
	neutron	n or na	n To	udd	1,839	0	887
	lambda	A* A+	A. A-	uas	2,183	0	2.0 × 10-1
	lambda-c	Λ_{c}^{0}	A ⁰	udb	11,000	-1	1.1 × 10-12
	siama	Σ^+	Σ^{+}	UUS	2.328	+1	0.8×10^{-10}
	- (g	Σ^0	Σ^0	(ud±du)s	2,334	0	$7.4 imes 10^{-20}$
		Σ-	$\overline{\Sigma}^+$	dds	2,343	-1	1.5 × 10 ⁻¹¹
	xi	三 ⁰	臣	US5	2,573	0	2.9×10^{-11}
		Ξ.	Ξ.	dss	2,585	-1	1.6×10^{-11}
	xi-c	Ec	E'c	dsc	4,834	0	9.8 × 10-4
		= 'c	= c 0+	USC	4,820	+1	3.5 × 10-11
	omega	0 ⁸	00.	222	5 202	0	64 × 10-14
	on regard	** C			3,6.36		0.4 6 10
meson	pion	म+	π-		273	+1	2.6×10^{-9}
		т ⁰	π^0	<u>(uu-00)</u> V2	264	0	8.4×10^{-17}
	kaon*	K+	K-	ĨIJ	966	+1	1.2×10^{-8}
		K ²	K ^a	dš	974	0	8.9 × 10 ⁻¹¹ 5.7 × 10 ⁻⁹
	J/psi	Vr to L	1 or VP	5	6,060	0	1.0×10^{-28}
	omega	60	60	$\frac{(uu+dd)}{\sqrt{2}}$	1,532	0	6.6 × 10-11
	eta	η	η	$\frac{(u\bar{u}+d\bar{d})}{\sqrt{2}}$	1,071	0	3.5×10^{-11}
	eta-c	ης	η _c	55	5,832	0	3.1×10^{-22}
	В	Ba	81	db	10,331	0	1.6×10^{-13}
	(j)	B+	B	uþ	10,331	+1	1.6×10^{-11}
	8-5	B's	8'1	S D	10,507	0	1.6 × 10-14
	D	Do t	U0	cu cd	3,049	-1	4.2 × 10 ···
	D-s	D+	D.,	cš	3.852	+1	4.7×10^{-13}
	chi	X ⁰	X ⁰ c	CČ	6,687	0	3.0×10^{-11}
	psi	Ψ^0_{c}	Ψ^0c	cč	7,213	0	1.5×10^{-31}
	upsilon	Ŷ	Ŷ	pp	18,513	0	8.0×10^{-10}

*The neutral kaon is composed of two particles; the average lifetime of each particle is given.

See also http://particleadventure.org

Fundamental Problem of Nuclear and Hadronic Physics

- Nearly all well-known ("visible") mass in the universe is due to hadronic matter
- Fundamental theory of hadronic matter exists since the 1960's: Quantum Chromo Dynamics
 - "Colored" quarks (u,d,c,s,t,b) and gluons; Lagrangian
- BUT: knowing the ingredients doesn't mean we know how to build hadrons and nuclei from them!
 - akin to the question:
 "Given bricks and mortar, how do you build a house?"
- Four related puzzles:
 - What is the "quark-gluon wave function" of known hadrons?
 - How are hadrons (nucleons) bound into nuclei?
 Does their quark-gluon wave function change inside a nucleus?
 - How do fast quarks and gluons propagate inside hadronic matter?
 - How do fast quarks and gluons turn back into observable hadrons?

Fundamental

Ha

• Starting point: Quark fields
$$\psi = (\psi_{\alpha i})$$

$$\int \alpha = u, d, s, c, b, t \text{ (flavor index)}$$

$$i = 1, 2, 3$$
 (color index) $N_c = 3 \longleftrightarrow SU(3)$

[PDF] The QCD Lagrangian - T39 Physics Group - TU Munich

www.t39.ph.tum.de/T39_files/Lectures_files/StrongInteraction2011/QCDkap2.pdf ▼

CHAPTER 2. THE QCD LAGRANGIAN. 2.1. Preparation: Gauge invariance for QED. • Consider

where $\psi_{\alpha i}$ is a 4-component Dirac-spinor.

 Nearly all well-known (hadronic matter

- Fundamental theory of Quantum Chromo Dynamics
 - "Colored" quarks (u,d
- BUT: knowing the ingre know how to build had
 - akin to the question:
 "Given bricks and more
- Four related puzzles:
 - What is the "quark-glu
 - How are hadrons (nuc Does their quark-gluo
 - How do fast quarks ar
 - How do fast quarks ar

Consider Quark fields with color degree of freedom and their free Lagrangian:

electrons represented by Dirac field $\psi(x)$. Gauge transformation: .

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \end{pmatrix}, \quad \mathcal{L}_0 = \bar{\psi} \left[i\gamma_\mu \partial^\mu - m \right] \psi \tag{2.11}$$

 $N_f = 6 \iff SU(N_f)$

• Local $SU(3)_c$ gauge transformations

$$\psi(x) \longrightarrow \tilde{\psi}(x) = U \,\psi(x)$$
(2.12)
with $U = \exp\left[-i \,\theta_a(x) \,\frac{\lambda_a}{2}\right]$ where $\theta_a(x)$ is a real function with $a = 1, 2, \cdots, 8$.

$$A_{\mu}(x) = \sum_{a=1}^{8} t_a A^a_{\mu}(x) , \quad t_a = \frac{\lambda_a}{2}$$

$$G^{a}_{\mu\nu}(x) = \partial_{\mu}A^{a}_{\nu}(x) - \partial_{\nu}A^{a}_{\mu}(x) + g f_{abc} A^{b}_{\mu}(x) A^{c}_{\nu}(x)$$

• QCD Lagrangian:

$$\mathcal{L}_{\text{QCD}} = \bar{\psi} \left(i \gamma_{\mu} D^{\mu} - m \right) \psi - \frac{1}{2} \operatorname{tr} \left\{ G_{\mu\nu} \, G^{\mu\nu} \right\}$$

with $D^{\mu} = \partial^{\mu} - igA^{\mu}(x)$.¹

$$\mathcal{L}_{\text{glue}} = -\frac{1}{4} G^a_{\mu\nu}(x) G^{\mu\nu}_a(x) = -\frac{1}{2} \operatorname{tr} \left\{ G_{\mu\nu} G^{\mu\nu} \right\}$$

UTFSM 2014

OCDMADESIMPLEFrank Wilczek22AUGUST 2000PHYSICS TODAY

 $\mathcal{A} = \frac{1}{4g^2} G_{\mu\nu} G_{\mu\nu} + \frac{5}{i} \overline{g_i} (i \partial^{\mu} D_{\mu} + m_i) q_i$ where $G_{\mu\nu}^{\alpha} \equiv \partial_{\mu} P_{\nu}^{\alpha} - \partial_{\nu} P_{\mu}^{\alpha} + i f_{be}^{\alpha} P_{\mu}^{b} P_{\nu}^{c}$ and Du= du + it An That's it!

FIGURE 1. THE QCD LAGRANGIAN \mathcal{L} displayed here is, in principle, a complete description of the strong interaction. But, in practice, it leads to equations that are notoriously hard to solve. Here m_j and q_j are the mass and quantum field of the quark of *j*th flavor, and A is the gluon field, with spacetime indices μ and v and color indices a, b, c. The numerical coefficients f and t guarantee SU(3) color symmetry. Aside from the quark masses, the one coupling constant g is the only free parameter of the theory.

How many quarks? From PDG

Figure 51.2: World data on the total cross section of $e^+e^- \rightarrow hadrons$ and the ratio $R(s) = \sigma(e^+e^- \rightarrow hadrons, s)/\sigma(e^+e^- \rightarrow \mu^+\mu^-, s)$. $\sigma(e^+e^- \rightarrow hadrons, s)$ is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, $\sigma(e^+e^- \rightarrow \mu^+\mu^-, s) = 4\pi\alpha^2(s)/3s$. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one (green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see "Quantum Chromodynamics" section of this *Review*, Eq. (9.7) or, for more details, K. G. Chetyrkin *et al.*, Nucl. Phys. **B586**, 56 (2000) (Erratum *ibid*. **B634**, 413 (2002)). Breit-Wigner parameterizations of J/ψ , $\psi(2S)$, and $\Upsilon(nS)$, n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of the *R* ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2017. Corrections by P. Janot (CERN) and M. Schmitt (Northwestern U.))

Running of the Strong Coupling Constant

Hadron Structure

How Do We Study Hadron/Nuclear Structure?

- Energy levels: Nuclear and particle (baryon, meson) masses, excitation spectra, excited state decays -> Spectroscopy (What exists?)
- Elastic and inelastic scattering, particle production Reactions (*Relationships?*)
- Probing the internal structure directly Imaging (*Shape and Content?*)
- Particular way to encode this: Structure Functions
 - "Parton wave function"?
 5(6)-dim. Wigner distribution → ...

Parton Distribution Functions

- The 1D world of nucleon/nuclear collinear structure:
 - Take a nucleon/nucleus
 - Move it real fast along z
 - \Rightarrow light cone momentum

 $P_{+} = P_{0} + P_{z} (>>M)$

- Select a "parton" (quark, gluon) inside
- Measure **its** l.c. momentum $p_+ = p_0 + p_z$ (m≈0)

$$- \Rightarrow$$
 Momentum Fraction x = p_+/P_+^{*}

- In DIS ^{**)}:
$$p_+/P_+ \approx \xi = (q_z - v)/M$$

 $\approx x_{Bj} = Q^2/2Mv$
- Probability: $f_1^i(x), i = u, d, s, ..., G$

In the following, will often write " $q_i(x)$ " for $f_1^i(x)$

*) Advantage: Boost-independent along z

**) DIS = "Deep Inelastic (Lepton) Scattering"

Reminder:

The structure of the nucleon

Three "valence" quarks plus gluons plus quark/anti-quark pairs.

- How do the quarks and gluons interact to form a proton or neutron?
- Where does the spin of the nucleon come from?
- Why is the radius of the proton different when measured by electrons and muons?
- Why are protons and neutrons modified in a nucleus?

 $\sim 1 \text{ fm} = 10^{-15} \text{ m}$

Parton Distribution Functions and NLO pQCD

Inclusive lepton scattering

Parton model: DIS can access

 $q(x;Q^2), \langle h \cdot H \rangle q(x;Q^2)$

Traditional "1-D" Parton **Distributions (PDFs)** (integrated over many variables)

$$F_{1}(x) = \frac{1}{2} \sum_{i}^{i} e_{i}^{2} q_{i}(x) \text{ (and } F_{2}(x) \approx 2xF_{1}(x) \text{)}$$

$$Wandzura-Wilczek$$

$$Wilczek$$

$$g_{1}(x) = \frac{1}{2} \sum_{i}^{i} e_{i}^{2} \Delta q_{i}(x) \text{ (and } g_{2}(x) \approx -g_{1}(x) + \int_{x}^{1} \frac{g_{1}(y)}{y} dy \text{)}$$

At finite Q²: pQCD evolution ($q(x,Q^2), \Delta q(x,Q^2) \Rightarrow$ DGLAP equations), and gluon radiation

$$g_1(x,Q^2)_{pQCD} = \frac{1}{2} \sum_{q}^{N_f} e_q^2 \left[(\Delta q + \Delta q) \otimes (1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\delta C_g}{N_f} \right]$$

 \Rightarrow access to gluons. $\frac{\delta C_{g}}{\delta C_{g}} - Wilson$ coefficient functions

SIDIS: Tag the flavor of the struck guark with the leading FS hadron \Rightarrow separate $q_i(x, Q^2)$, $\Delta q_i(x, Q^2)$

Jefferson Lab kinematics: $Q^2 \approx M^2 \Rightarrow$ target mass effects, higher twist contributions and resonance excitations

- Non-zero $R = \frac{F_2}{2xF_1} \left(\frac{4M^2x^2}{Q^2} + 1 \right) 1, \ g_2^{HT}(x) = g_2(x) g_2^{WW}(x)$ Further Q^2 -dependence (power series in $\frac{1}{Q^n}$) 36

\Rightarrow Our 1D View of the Nucleon

Experimental Facilities

Results

Unpolarized Structure Functions

Valence PDFs

- Behavior of PDFs still unknown for $x \rightarrow 1$
 - SU(6): d/u = 1/2, $\Delta u/u = 2/3$, $\Delta d/d = -1/3$ for all x
 - Relativistic Quark model: Δu , Δd reduced
 - Hyperfine effect (1-gluon-exchange): Spectator spin 1 suppressed, $d/u \rightarrow 0$, $\Delta u/u \rightarrow 1$, $\Delta d/d \rightarrow -1/3$
 - Helicity conservation: d/u \rightarrow 1/5, $\Delta u/u \rightarrow$ 1, $\Delta d/d \rightarrow$ 1
 - Orbital angular momentum: can explain slower convergence to $\Delta d/d \rightarrow 1$
- Plenty of data on proton \rightarrow mostly constraints on u and Δu
- Knowledge on d limited by lack of free neutron target (nuclear binding effects in d, ³He)
- Large x requires very high luminosity and resolution; binding effects become dominant uncertainty for the neutron

UTFSM 2014

xf(x,Q)

Polarized **Parton Distribution Functions**

- Introduce two more quantities of interest:
 - Proton spin S
 - Parton spin s
 - Now we have 3 vectors: $\hat{z}, \hat{S}, \vec{s}$
 - But: Every observable must be a scalar
 - And: Spins are axial vectors!
 - Finally: Must treat longitudinal and transverse directions differently (boost)
 - 2 Pseudoscalars: $H = \overline{S} \cdot \hat{z}, h = \overline{s} \cdot \hat{z}$
 - 2 transverse (2D) axial vectors: $S_{\perp}, \vec{s}_{\perp}$
 - 2nd Structure function

$$g_1^i(x) = \langle hH \rangle q_i(x) \text{ or } \langle hH \rangle G(x) = \Delta q_i(x) \text{ or } \Delta G(x)^{\theta}$$

$$\Delta q_i = -q \Uparrow \uparrow (x) - q \Uparrow \downarrow (x)$$

Can also form one more scalar: $T = \vec{S}_{\perp} \cdot \vec{s}_{\perp}$ (not measurable in DIS) \rightarrow Transversity h₁(x)

