Argonne

Proton structure—historical view

(E,k)

Paul E. Reimer

Physics Division, Argonne National Laboratory

HUGS, 4-22 June 2012

- Flavor Structure of the Proton
 - A. Proton structure—historical view
 - 1. Historical overview: Nuclei to nucleons to quarks
 - 2. "Traditional" picture of nuclear physics (hadrons)
 - 3. QCD picture of nuclear physics (quarks & gluons)
 - 4. How is the flavor structure determined?
 - B. Sea quarks in the proton & the Drell-Yan reaction
 - C. Proton structure in nuclei

Pre-history of Nuclear Physics

Ancient Tradition: Basic Elements (see, e.g.

ParticleAdventure.org):

- ca. 450 BC, Greece (Empedocles) Earth, Air, Fire and Water
- ca. 200-300 AD, India (Samkhya-karikas by Ishvarakrsna) Space, Air, Fire, Water, and Earth.
- Chinese (in Pinyin, Wu Xing) Earth, Wood, Metal, Fire, and Water

Indivisible Unit: The Atom

- BC 600's in India the concept of smallest piece of mater developed
- BC 450 Democritus used the term $\alpha \tau o \mu o \sigma$ or atom for this

Empty Space: <u>Rutherford scattering</u>

- 1909: Small hard core surrounded by empty space
- Expected small scattering through diffuse material but saw occasional large angle scattering
- Actual measurements may by **Hans Geiger** and **Ernest Marsden** under Rutherford's supervision
 Paul E. Reimer, HUGS 2012

Graphics: ParticleAdventure.org

Rutherford's Atom

I.XXIX. The Scattering of a and β Particles by Matter and the Structure of the Atom. By Professor E. RUTHERFORD, F.R.S., University of Manchester*.

§ 1. IT is well known that the α and β particles suffer deflexions from their rectilinear paths by encounters with atoms of matter. This scattering is far more marked for the β than for the α particle on account of the much smaller momentum and energy of the former particle.

Interpreted data as a positively charged core with negatively charged electron cloud, partially based on the low mass of the electron

Other Particles

Neutron

- 1920 existence speculated on by Rutherford
- 1932 discovered by Chadwick

Now we could explain the periodic table except that something had to hold the positively charged core together

First attempt:

• Yukawa's original idea—nucleons interact by exchanging massive particles

(mesons)

- Range $\approx c\Delta t \approx h/2mc \approx 1fm \text{ or } m \approx 100 \text{ MeV}$ for the lightest meson (the pion)
- The pion was discovered in 1947 by Cecil Powell, confirming Yukawa's prediction

The discovery of the pion was followed by an explosion of particle discoveries (1947-1960s)

This Led Gell-Mann and Zweig introduce quarks to organize the spectrum (particle zoo).

 Δ^{++} (u,u,u) \Rightarrow additional quantum number (color)

Provides classification scheme for observed particles, properties and decays. (See for example, Halzen and Martin.)

Copyright Information: This page and all following are copyrighted by the Regents of the University of California

But, how do we know* that there is substructure to the proton?

*As an experimentalist, I claim we don't "know" something until we measure ** it

**Measurements are subject to mistakes and data is subject to interpretation.

Inclusive Scattering: Kinematics

Measure:

E, E',
$$\theta$$

$$v = E-E'$$
 (energy transfer)
 $q = k - k'$ (momentum transfer)
 $Q^2 = q^2 - v^2 = 4EE' \sin^2(\theta/2)$
 $x = Q^2 / 2Mv$

 $\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{point}} |F(q)|^2$

 $= \frac{(Z\alpha)^2 E^2}{2k^4 \sin^4 \frac{\theta}{2}} \left(1 - \frac{k}{E} \sin^2 \frac{\theta}{2}\right)$

Non-pointlike behavior kept in structure function

See
Perkins and/or
Halzen & Martin

The Standard Model

BOSONS force carriers spin = 0, 1, 2,							
Unified Electroweak spin = 1				Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge	
γ photon	0	0		g gluon	0	0	
W ⁻	80.4	-1					
W ⁺	80.4	+1					
Z ⁰	91.187	0					

Problem:

• Quarks and gluons make up the bulk of the matter, but do not appear as relevant can never be "seen"!

F	ERMI	ONS	matter constituents spin = 1/2, 3/2, 5/2,			
Leptons spin = 1/2			Quarks spin = 1/2			
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge	
ν _e electron neutrino	<1×10 ⁻⁸	0	U up	0.003	2/3	
e electron	0.000511	-1	d down	0.006	-1/3	
$ u_{\!\mu}^{\!$	<0.0002	0	C charm	1.3	2/3	
$oldsymbol{\mu}$ muon	0.106	-1	S strange	0.1	-1/3	
$ u_{\tau}^{ ext{ tau}}$ neutrino	<0.02	0	t top	175	2/3	
au tau	1.7771	-1	b bottom	4.3	-1/3	

Aside: Do Quarks really exist? Two "Realms" of Nuclear Physics

Quantum Chromo Dynamics (QCD): The fundamental theory describing the strong force in terms of quarks and gluons carrying color charges.

Strongly attractive at all distances.

1 GeV/cm → <u>18 tons</u>

>10¹² times the Coulomb attraction in hydrogen

Slide from John Arrinton

Aside: Do Quarks really exist? Two "Realms" of Nuclear Physics

Quantum Chromo Dynamics (QCD): The fundamental theory describing the strong force in terms of quarks and gluons carrying color charges.

Strongly attractive at all distances.

1 GeV/cm → <u>18 tons</u>

>10¹² times the Coulomb attraction in hydrogen

Slide from John Arrinton

Summary (last 100 years)

Nearly a century of nuclear physics has shown that a <u>NUCLEUS</u> can be well described in terms of protons, neutrons, the strong force, <u>and nothing else</u>

Review

- Protons, neutrons, pions, etc are composed of quarks bound together by gluons.
 - Hadrons are categorized by their quark content. For example the proton is uud, neutron is udd, π^+ is u anti-d
- Quark distributions are discussed in terms of x_{Bj}—
 representing the fraction of the hadron's momentum carried
 by that particular quark.
- It is possible to study (if we are arrogant, we say "measure")
 the quark probability distributions.

μ, e