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@ Becquerel: discovery of radioactivity in uranium salts
@ Rutherford: « and g radioactivity
@ Curies: discovery of polonium and radium
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The are Three Types Gamma
of Radioactive Decay Radiation
3 October 2009

A — B + radiation o/3/v
My c? = Mp ¢ + Eradiation + (B kinetic energy)
@ «: nucleus of helium atom (2 p and 2 n)

@ [3: energetic electron
@ ~: energetic electromagnetic radiation
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@ Chadwick: electron in 3 decay emerges with a
continuum spectrum of kinetic energies
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@ Chadwick: electron in 3 decay emerges with a
continuum spectrum of kinetic energies

@ Conservation of energy appears to be violated:
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Energy spectrum of beta
decay electrons from 2'0Bi
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@ Chadwick: electron in 3 decay emerges with a
continuum spectrum of kinetic energies

@ Conservation of energy appears to be violated:
T~ Msc? — Mg c® — M, 2

@ Bohr: principle may not be valid in atomic phenomena
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@ Pauli: additional particle emitted in 3 decay

A— B+e +zx
T, + E, ~Msc? — Mg — M, 2
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@ Pauli: additional particle emitted in 3 decay

A— B+e +zx
T, + E, ~Msc? — Mg — M, 2

@ z particle must be neutral and lighter than the electron



nei?:;ros , ; Versuch einer Theorie der g-Strahlen. I?).
Von E.Fermi in Rom.
Mit 3 Abbildungen. (Eingegangen am 16. Januar 1934.)
Eine quantitative Theorie des p-Zerfalls wird vorgeschlagen, in welcher man
die Existenz des Neutrinos annimmt, und die Emission der Elektronen und
Neutrinos aus einem Kern beim f-Zerfall mit einer dhnlichen Methode behandelt,
wie die Emission eines Lichtquants aus einem angeregten Atom in der Strah-
lungstheorie. Formeln fiir die Lebensdauer und fiir die Form des emittierten
kontinuierlichen f-Strahlenspektrums werden abgeleitet und mit der Erfahrung
verglichen.

@ Fermi: in nucleus the process n — p + e~ + 7, OCCUIS

proton electron ¢ proton electron ¢

3 } antineutrino
antineutrino 7, 7

M= G.(@, v )@, 1
T M=GelfpPo) oy 7 @)
oy = d

neutron 7 neutron 7

a. Fermi's 4-point Interaction, 1934 b.Weak Interaction mediated by boson, 1938

@ Fermi calls the «x particle “neutrino”



J L Weak interaction

Solar @ Transformation n — p caused by a new interaction, the

nedtrinos “weak interaction”

@ The “strong interaction” binds protons and neutrons in
the nucleus

@ Gravitational and electromagnetic interactions act on
large distances (familiar to us from our everyday life)

@ The strong and weak interactions act on distances of
the order 10~13 cm <« atom size of 1078 cm
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Solar @ Transformation n — p caused by a new interaction, the

neutrinos “weak interaction”

@ The “strong interaction” binds protons and neutrons in
the nucleus

@ Gravitational and electromagnetic interactions act on
large distances (familiar to us from our everyday life)

@ The strong and weak interactions act on distances of
the order 10713 cm < atom size of 1078 cm

@ Bethe and Peierls calculate probability for

A+ v, — B+e  (from Fermi’s theory)

and conclude there is “ ... no practically possible way of
observing the neutrino”
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@ |dentify copious source of neutrinos: a nuclear reactor
produces ~ 10'3 neutrinos/sec/cm?
@ Pontecorvo: use cleaning fluid (C2Cly) and the reaction

0l +ve — Ar+ e~

and detect products from radioactive decay of 37Ar
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B—/vlfﬂa Topsies opd

@ |dentify copious source of neutrinos: a nuclear reactor
produces ~ 10'3 neutrinos/sec/cm?
@ Pontecorvo: use cleaning fluid (C2Cly) and the reaction

0l +ve — Ar+ e~

and detect products from radioactive decay of 37Ar
@ Pontecorvo does not put into practice his proposal
(defects to the USSR in early fifties)
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@ Reines and Cowan: use the reaction (also predicted by
Fermi’s theory)

AZ 40— NZ—1)+et

and detect positron (e™)

@ Experiment facilitated by recent discovery of organic
fluids which scintillate



A suitable neutrino source!
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Fig. 1. The first conceptual proposed experiment to detect the
free neutrino. This experiment was approved by the
authorities at Los Alamos but was superceded by the
approach which used a fission reactor as a neutrino
source and the delayed coincidence reaction to reduce
the background.
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Scintillator coupled to photomultipliers
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@ Neutrinos from nuclear reactor

@ Problem: background from cosmic rays

@ Solution: detect e and n created by weak interactions
@ Irrefutable proof that neutrinos exist in1956!
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@ |t is discovered that one Helium atom is slightly less
massive than four Hydrogen atoms (A M)

@ Eddington: nuclear reactions are responsible for energy
production in the Sun (E = AM ¢?)
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@ |t is discovered that one Helium atom is slightly less
massive than four Hydrogen atoms (A M)

@ Eddington: nuclear reactions are responsible for energy
production in the Sun (E = AM ¢?)

@ Bethe proposes the sequence of reactions

p+p — d+et4ve; ptd— 3Hetry; *He+3He — ‘Hetp+p

for the conversion 4 p —*He and the release of energy
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neutrinos @ The previous sequence of reactions converts

4p+2e” — "He + 2v, + (v radiation)
and releases the energy

Ey, = [4M('H)+2M, —M('He)] ¢* — 2(E,,)
~ 26.7 MeV (4.3 x 10712 J)

@ Sun luminosity is L, ~ 3.8 x 10%0] -s7! = 3.8 x 10'"GW

Ny,

e

~2 x Lo /(4.3 x 107"]) ~ 1.8 x 10%s~!
@ The neutrino flux on Earth due to pp weak fusion is
é(pp) ~ N, /(47wD?) ~ 6.4 x 10'° neutrinos/(cm? - s)

where D = 1.5 x 108 km is the distance Earth-Sun
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@ Davis sets up tank with 3.8 x 10° liters of CoCl, at a
depth of 1.5 km in Homestake mine to detect 3"Ar from

Q14+ ve —> 3Ar+ e

but v.’s due to pp fusion have too low E,, to activate it
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Detecting solar v,

PP
9
p*\p*ﬁlll\e*\\ 9977/ 0.28% p"h: Fpt—2 II\\
105 %

84,92 %

H+p*—> SHe+y H ‘Het+pt — ‘He +U+\

15,08 %
j
l 99.9% 0.1%
"Bete— Ll Ve ‘ ‘ Bcﬂﬁ%sBJr/ ‘

He+*He—*He+2p* ‘ "Litp* —>4He*4He ‘ “B—)EBe e’+\

3Be *>+Het'He

@ Davis sets up tank with 3.8 x 10° liters of CoCl, at a
depth of 1.5 km in Homestake mine to detect 3"Ar from

QL+ v —

AT + e

but v.’s due to pp fusion have too low El,e to activate it

@ v.’s from ®B decay in pp chain have E

< 14 MeV

Ve ~
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@ Bahcall develops “standard solar model” (SSM) and
estimates v, fluxes from reactions in pp chain



J L Neutrino fluxes in pp chain

Solar Superk
neutrinos X Chlorine poupert
I Gallium P ———

Neutrino Flux
5

Neutrino Energy (MeV)

@ Bahcall develops “standard solar model” (SSM) and
estimates v, fluxes from reactions in pp chain

@ SSM predicts that less than a single 37Ar is produced
per day on average!
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@ Davis announces
expected v, from SSM are detected

@ Doubts on (i) Davis’ ability to count a few 37Ar atoms out
of 103% atoms in tank and (ii) validity of Bahcall's SSM

@ Davis’ first results were later confirmed over two
decades of running!

@ A different experiment (Kamiokande, 1989) confirms v,

deficit observed by Davis




JL Kand SK experiments in Japan

Solar
neutrinos

SUPERKAMIOKANDE  nstmure roscosu aas esearcntensty o T :

@ In late 80’s a new experiment, Kamiokande (K), comes
online, later upgraded to Super-Kamiokande (SK)

@ SK detector: ~ 50 ktons of pure water and ~ 11,000
photomultipliers (PMT'’s)
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@ Stainless steel cylindrical container (~ 39 m diameter
and ~ 41 m height)




J L SK: a picture with nearly filled tank
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@ A v, collides with e~ in water molecule and propels it
forward

@ Fast e produces cone of light (Cherenkov radiation)
along its path

@ K can infer direction and energy of incoming v, from
direction and intensity of Cherenkov light

@ In 1989 K announces that v.’s come from the Sun and
confirms deficit observed by Davis
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Elusive Particles Continue to Puzzle Theorists of the Sun
By GEORGE JOHNSON
ished: June 9, 1998

ONE of the biggest embarrassments of 20th-century science -- the sun's refusal to emit nearly as

@ A v, collides with e~ in water molecule and propels it
forward

@ Fast e produces cone of light (Cherenkov radiation)
along its path

@ K can infer direction and energy of incoming v, from
direction and intensity of Cherenkov light

@ In 1989 K announces that v.’s come from the Sun and
confirms deficit observed by Davis
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@ There are three neutrino flavors: v., v,, and v, (and
their three antiparticles: v, 7, and 7;)

poo—e +u, +T T, ~22x107%

@ v, and v, discovered, respectively, in 1962 and 2000
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B‘/’V‘}«Ha Tonsies opd
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Solar

neutrinos @ Pontecorvo’s insight: neutrinos have mass and oscillate
between flavors, for example v, — v, or ve — v;

@ Only v,’s are produced by the Sun and can be detected
in Davis’ experiment, while v, and v escape detection

B—/v%a Tonsies opd
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oo @ Pontecorvo’s insight: neutrinos have mass and oscillate
between flavors, for example v, — v, or ve — v;

@ Only v,’s are produced by the Sun and can be detected
in Davis’ experiment, while v, and v escape detection

@ How do oscillations occur? In Quantum Mechanics
(QM) particles can also be described by waves

A=h/p h = Planck constant p = mv momentum

elevation crest
/K amplitude
| N X
S~ trough

3! -
B jesptto Tansiex wavelength
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Neutrino flavor oscillations Il

TYPE 1 NEUTRINO

ELECTRON-
NEUTRINO

ELECTRON-

NEUTRINO

TYPE 2 NEUTRINO MUON- OR TAU-NEUTRINO

ELECTRON- NIGHTTIME

ELECTRON- MUON- OR DAYTIME
NEUTRINOS X RESULTS,
CREATED NEUTRINOS TAU-NEUTRINOS RESUUSW "
. ‘_ "
OSCILLATION IN SUN OSCILLATION IN VACUUM OSCILLATION IN EARTH: J

@ In the case of two flavors, for simplicity, QM predicts
2h E

3 m3—m?

Py—y,(x) = sin?(20) sin? (%l) with L =

@ Presence of matter (electrons in solar interior) modifies
P,.— ., (x) and enhances oscillations (MSW effect)
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@ Evidence accumulates that neutrinos oscillate: SK
measures v.'s and v,’s due to cosmic rays

(#v,)/(#ve) =~ 1 versus expected =~ 2
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Solar

. Cosmic R
neutrinos [\coomc oy ]

Air nucleus
Zenith
Pions Iy o of
=

Super-K
Detector

12,800km 6,400 km 500 km 30km 15km

@ Evidence accumulates that neutrinos oscillate: SK
measures v.'s and v,’s due to cosmic rays

(#v,)/(#ve) =~ 1 versus expected =~ 2

@ Variation of v, flux with zenith angle
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@ 1,000 tons of heavy water (D,O) and 9,600 PMT’s
mounted on a geodesic support structure

@ SNO detects neutrinos via the processes:

d4+ve—p+p+e” d+Vy —p+n+1y,
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JL The SNO results: the solar v, problem solved!
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i SS5M prediction (BPB 2000)
'§ 5= + L 10
= 5
< 4 s
x s
X 3+ g
2 . 05
Eloc]
g - - R -

] . . .

0 0.0

cc ES NC

@ v, flux: CC from reactiond + v — p+p+e~
@ mostly v, flux: ES frome™ + v, — e + 1%
@ v. + v, +vflux: NCfromd +v, — p+n+uv,
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@ The solar neutrino problem: the story of a triumph!

@ The physics of neutrinos is now a field of intense
research activity:

determination of Am7; and 6;;

role of neutrinos in supernova explosions

neutrinos and the matter-antimatter asymmetry problem

@ The support of the U.S. Department of Energy under
contract DE-AC05-060R231 is gratefully acknowledged
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[ All limits are at 90%CL
unless otherwise noted

—12 .
T 102
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