

Solar neutrinos

Radioactivit

theory of β decay

Neutrinos

How the Sun

The problem

Neutrino flavors

The solution

Solar neutrinos: the problem and its solution

R. Schiavilla

Theory Center, Jefferson Lab, Newport News, VA 23606, USA Physics Department, Old Dominion University, Norfolk, VA 23529, USA

September 30, 2015

Solar neutrinos

Radioactivit

decay

Neutrinos

How the Sun shines

The problem

Neutrino flavors

- Becquerel: discovery of radioactivity in uranium salts
- Rutherford: α and β radioactivity
- Curies: discovery of polonium and radium

Solar neutrinos

Radioactivit

theory of μ decay

Neutrinos

How the Sur shines

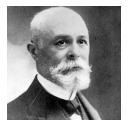
The problem

Neutrino flavors

- Becquerel: discovery of radioactivity in uranium salts
- Rutherford: α and β radioactivity
- Curies: discovery of polonium and radium

Solar neutrinos

Radioactivit


theory of μ decay

Neutrinos

How the Sur shines

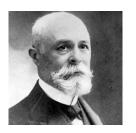
The problem

Neutrino flavors

- Becquerel: discovery of radioactivity in uranium salts
- Rutherford: α and β radioactivity
- Curies: discovery of polonium and radium

Solar neutrinos

Radioactivity


Theory of p decay

Neutrino

How the Sur shines

The problem

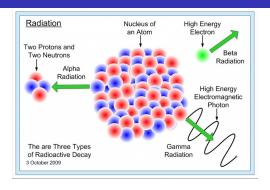
Neutrino flavors

- Becquerel: discovery of radioactivity in uranium salts
- Rutherford: α and β radioactivity
- Curies: discovery of polonium and radium

α , β , and γ radioactivity

Solar neutrinos

Radioactivit


decay of β

Neutrinos

How the Sur shines

The problem

Neutrino flavors

$$A \longrightarrow B + \text{radiation } \alpha/\beta/\gamma$$

$$M_A c^2 = M_B c^2 + E_{\text{radiation}} + (B \text{ kinetic energy})$$

- α : nucleus of helium atom (2 p and 2 n)
- β : energetic electron
- γ : energetic electromagnetic radiation

Solar neutrinos

Radioactivit

Theory of i decay

Neutrinos

How the Sun

The problem

Neutrino flavors

The solution

- Chadwick: electron in β decay emerges with a continuum spectrum of kinetic energies
- Conservation of energy appears to be violated

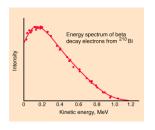
$$T_{\rm e} \simeq M_A c^2 - M_{\rm B} c^2 - M_{\rm e} c^2$$

Solar neutrinos

Radioactivit

theory of μ decay

Neutrinos


How the Sur shines

The problem

Neutrino flavors

The solution

- Chadwick: electron in β decay emerges with a continuum spectrum of kinetic energies
- Conservation of energy appears to be violated:

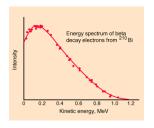
$$T_{\rm e} \simeq M_A c^2 - M_B c^2 - M_{\rm e} c^2$$

Solar neutrinos

Radioactivit

Theory of μ decay

Neutrinos


How the Sur shines

The problem

Neutrino flavors

The solution

- Chadwick: electron in β decay emerges with a continuum spectrum of kinetic energies
- Conservation of energy appears to be violated:

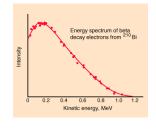
$$T_{\rm e} \simeq M_A c^2 - M_B c^2 - M_{\rm e} c^2$$

Solar neutrinos

Radioactivit

Theory of £ decay

Neutrino


How the Sur shines


The probler

Neutrino flavors

The solution

- Chadwick: electron in β decay emerges with a continuum spectrum of kinetic energies
- Conservation of energy appears to be violated:

$$T_{\rm e} \simeq M_A c^2 - M_B c^2 - M_{\rm e} c^2$$

Pauli's proposal

Solar neutrinos

Radioactivit

decay

Neutrinos

How the Sun shines

The problem

Neutrino flavors

The solution

Pauli: additional particle emitted in β decay

$$A \longrightarrow B + e^{-} + x$$

$$T_e + E_x \simeq M_A c^2 - M_B c^2 - M_e c^2$$

ullet x particle must be neutral and lighter than the electron

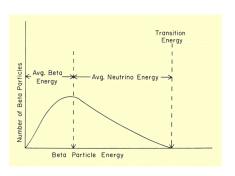
Pauli's proposal

Solar neutrinos

Radioactivi

Theory of β decay

Neutrinos


How the Sur shines

The probler

Neutrino flavors

The solution

• Pauli: additional particle emitted in β decay

$$A \longrightarrow B + e^{-} + x$$
$$T_e + E_x \simeq M_A c^2 - M_B c^2 - M_e c^2$$

• x particle must be neutral and lighter than the electron

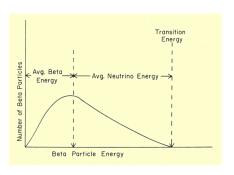
Pauli's proposal

Solar neutrinos

Radioactivi

theory of β decay

Neutrino:


How the Sur shines

The problem

Neutrino flavors

The solution

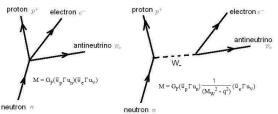
• Pauli: additional particle emitted in β decay

$$A \longrightarrow B + e^{-} + x$$
$$T_e + E_x \simeq M_A c^2 - M_B c^2 - M_e c^2$$

• x particle must be neutral and lighter than the electron

Fermi's theory

Solar neutrinos



Versuch einer Theorie der 8-Strahlen, I1). Von E. Fermi in Bom.

Mit 3 Abbildungen. (Eingegangen am 16. Januar 1934.)

Eine quantitative Theorie des β -Zerfalls wird vorgeschlagen, in welcher man die Existenz des Neutrinos annimmt, und die Emission der Elektronen und Neutrinos aus einem Kern beim β -Zerfall mit einer ähnlichen Methode behandelt. wie die Emission eines Lichtquants aus einem angeregten Atom in der Strahlungstheorie. Formeln für die Lebensdauer und für die Form des emittierten kontinuierlichen β-Strahlenspektrums werden abgeleitet und mit der Erfahrung verglichen.

• Fermi: in nucleus the process $n \longrightarrow p + e^- + \overline{\nu}_e$ occurs

- a. Fermi's 4-point Interaction, 1934 b. Weak Interaction mediated by boson, 1938
- Fermi calls the x particle "neutrino"

Weak interaction

Solar neutrinos

Radioactivity

Theory of β decay

Neutrinos

How the Sun shines

The problem

Neutrino flavors

The solution

- Transformation $n \to p$ caused by a new interaction, the "weak interaction"
- The "strong interaction" binds protons and neutrons in the nucleus
- Gravitational and electromagnetic interactions act on large distances (familiar to us from our everyday life)
- The strong and weak interactions act on distances of the order 10^{-13} cm \ll atom size of 10^{-8} cm

Bethe and Peierls calculate probability for

 $A + \nu_e \longrightarrow B + e^-$ (from Fermi's theory)

and conclude there is "...no practically possible way or observing the neutrino"

Weak interaction

Solar neutrinos

Radioactivity

Theory of decay

Neutrinos

How the Sun shines

The problen

Neutrind flavors

The solution

- Transformation $n \to p$ caused by a new interaction, the "weak interaction"
- The "strong interaction" binds protons and neutrons in the nucleus
- Gravitational and electromagnetic interactions act on large distances (familiar to us from our everyday life)
- The strong and weak interactions act on distances of the order 10^{-13} cm \ll atom size of 10^{-8} cm
- Bethe and Peierls calculate probability for

$$A + \nu_e \longrightarrow B + e^-$$
 (from Fermi's theory)

and conclude there is "...no practically possible way of observing the neutrino"

Solar neutrinos

Radioactivit

Theory of μ decay

Neutrinos

How the Sur

The problem

Neutrino flavors

- Identify copious source of neutrinos: a nuclear reactor produces $\sim 10^{13}$ neutrinos/sec/cm²
- Pontecorvo: use cleaning fluid (C₂Cl₄) and the reaction

$$^{37}\text{Cl} + \nu_{\text{e}} \longrightarrow ^{37}\text{Ar} + \text{e}^-$$

- and detect products from radioactive decay of 37Ar
- Pontecorvo does not put into practice his proposa (defects to the USSR in early fifties)

Solar neutrinos

Radioactivi

Theory of / decay

Neutrinos

How the Sur shines

The problem

Neutrino flavors

The solution

- Identify copious source of neutrinos: a nuclear reactor produces $\sim 10^{13}$ neutrinos/sec/cm 2
- Pontecorvo: use cleaning fluid (C2Cl4) and the reaction

$$^{37}\text{Cl} + \nu_{\text{e}} \longrightarrow ^{37}\text{Ar} + \text{e}^{-}$$

and detect products from radioactive decay of $^{37}\mathrm{Ar}$

 Pontecorvo does not put into practice his proposal (defects to the USSR in early fifties)

Solar neutrinos

Radioactivit

decay ρ

Neutrinos

How the Sur shines

The problem

Neutrino flavors

The solution

Бруно Понтекоры

- Identify copious source of neutrinos: a nuclear reactor produces $\sim 10^{13}$ neutrinos/sec/cm 2
- Pontecorvo: use cleaning fluid (C₂Cl₄) and the reaction

$$^{37}\mathrm{Cl} + \nu_{\mathrm{e}} \longrightarrow ^{37}\mathrm{Ar} + \mathrm{e}^{-}$$

and detect products from radioactive decay of ³⁷Ar

 Pontecorvo does not put into practice his proposal (defects to the USSR in early fifties)

Solar neutrinos

Radioactivit

decay

Neutrinos

How the Sur shines

The problem

Neutrino flavors

The solution

Бруно Понтекоры

- Identify copious source of neutrinos: a nuclear reactor produces $\sim 10^{13}$ neutrinos/sec/cm 2
- ullet Pontecorvo: use cleaning fluid ($\mathrm{C}_2\mathrm{Cl}_4$) and the reaction

$$^{37}\text{Cl} + \nu_{e} \longrightarrow ^{37}\text{Ar} + e^{-}$$

and detect products from radioactive decay of ³⁷Ar

 Pontecorvo does not put into practice his proposal (defects to the USSR in early fifties)

Detecting ν 's: Reines and Cowan's proposal

Solar neutrinos

Radioactivit

decay

Neutrino

How the Sur shines

The problen

Neutrino flavors

The solutior

 Reines and Cowan: use the reaction (also predicted by Fermi's theory)

$$^{A}Z + \overline{\nu}_{e} \longrightarrow ^{A}(Z-1) + e^{+}$$

and detect positron (e⁺)

 Experiment facilitated by recent discovery of organic fluids which scintillate

A suitable neutrino source!

Solar neutrinos

Radioactivit

Theory of *j* decay

Neutrino:

How the Sur

The problem

Neutrino

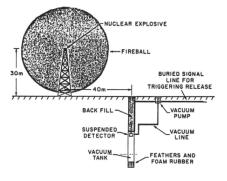
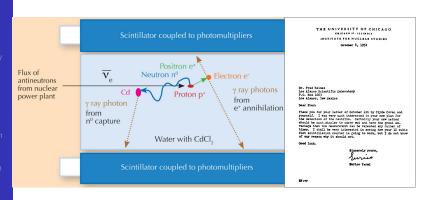


Fig. 1. The first conceptual proposed experiment to detect the free neutrino. This experiment was approved by the authorities at Los Alamos but was superceded by the approach which used a fission reactor as a neutrino source and the delayed coincidence reaction to reduce the background.

The Reines-Cowan experiment

Solar neutrinos

Radioactivit


Theory of β decay

Neutrinos

How the Su shines

The problem

Neutrino flavors

- Neutrinos from nuclear reactor
- Problem: background from cosmic rays
- ullet Solution: detect e^+ and n created by weak interactions
- Irrefutable proof that neutrinos exist in1956!

A better still nuclear reactor: the Sun!

Solar neutrinos

Radioactivi

Theory of β decay

Neutrinos

How the Sun

The problem

Neutrino flavors

The solution

- It is discovered that one Helium atom is slightly less massive than four Hydrogen atoms (ΔM)
- Eddington: nuclear reactions are responsible for energy production in the Sun ($E=\Delta M~c^2$)
- Bethe proposes the sequence of reactions

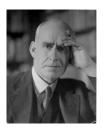
$$p+p \to d + e^+ + \nu_e \; ; \; p+d \to {}^3{\rm He} + \gamma \; ; \; {}^3{\rm He} + {}^3{\rm He} \to {}^4{\rm He} + p + p$$

for the conversion $4p \rightarrow ^4$ He and the release of energy

A better still nuclear reactor: the Sun!

Solar neutrinos

Radioactivit


decay

Neutrinos

How the Sur shines

The problem

Neutrino flavors

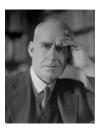
- It is discovered that one Helium atom is slightly less massive than four Hydrogen atoms (ΔM)
- Eddington: nuclear reactions are responsible for energy production in the Sun ($E = \Delta M c^2$)
- Bethe proposes the sequence of reactions

$$p+p \to d+e^++\nu_e$$
; $p+d \to {}^3{\rm He}+\gamma$; ${}^3{\rm He}+{}^3{\rm He} \to {}^4{\rm He}+p+p$
for the conversion $4p \to {}^4{\rm He}$ and the release of energy

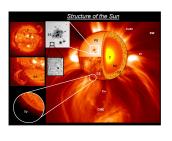
A better still nuclear reactor: the Sun!

Solar neutrinos

Radioactivit


Theory of β decay

Neutrinos


How the Sur shines

The problem

Neutrino flavors

- It is discovered that one Helium atom is slightly less massive than four Hydrogen atoms (ΔM)
- Eddington: nuclear reactions are responsible for energy production in the Sun ($E=\Delta M~c^2$)
- Bethe proposes the sequence of reactions

$$p+p \to d+{\rm e}^+ + \nu_{\rm e} \, ; \quad p+d \to {}^3{\rm He} + \gamma \, ; \quad {}^3{\rm He} + {}^3{\rm He} \to {}^4{\rm He} + p+p$$
 for the conversion $4\,p \to {}^4{\rm He}$ and the release of energy

The Sun as a source of neutrinos

Solar neutrinos

Radioactivil

decay

Neutrinos

How the Sun shines

The problem

Neutrino flavors

The solution

The previous sequence of reactions converts

$$4p + 2e^{-} \longrightarrow {}^{4}\text{He} + 2\nu_{e} + (\gamma \text{ radiation})$$

and releases the energy

$$E_{\gamma} = [4 \,\mathrm{M}(^{1}\mathrm{H}) + 2 \,\mathrm{M_{e}} - \mathrm{M}(^{4}\mathrm{He})] c^{2} - 2 \,\langle E_{\nu_{e}} \rangle$$

 $\simeq 26.7 \,\mathrm{MeV} \,(4.3 \times 10^{-12} \,\mathrm{J})$

 \bullet Sun luminosity is $L_{\odot} \simeq 3.8 \times 10^{26} \rm J \cdot s^{-1} = 3.8 \times 10^{17} GW$

$$N_{\nu_{\rm e}} \simeq 2 \times L_{\odot}/(4.3 \times 10^{-12} \,{\rm J}) \simeq 1.8 \times 10^{38} {\rm s}^{-1}$$

The neutrino flux on Earth due to pp weak fusion is

$$\phi(pp) \simeq N_{\nu_e}/(4\pi D^2) \simeq 6.4 \times 10^{10} \text{ neutrinos}/(\text{cm}^2 \cdot \text{s})$$

where $D=1.5\times 10^8$ km is the distance Earth-Sun

Detecting solar $\nu_{\rm e}$

Solar neutrinos

Radioactivit

Theory of *j* decay

Neutrinos

How the Sun

The problem

Neutrino flavors

The solution

 Davis sets up tank with 3.8 × 10⁵ liters of C₂Cl₄ at a depth of 1.5 km in Homestake mine to detect ³⁷Ar from

$$^{37}\text{Cl} + \nu_e \longrightarrow ^{37}\text{Ar} + e^-$$

but $u_{
m e}$'s due to pp fusion have too low $E_{
u_{
m e}}$ to activate it

• $\nu_{\rm e}$'s from 8 B decay in pp chain have $E_{\nu_{\rm e}} \lesssim 14~{
m MeV}$

Detecting solar $\nu_{\rm e}$

Solar neutrinos

Radioactivit

decay

Neutrinos

How the Sur shines

The problem

Neutrino flavors

The solution

• Davis sets up tank with 3.8×10^5 liters of C_2Cl_4 at a depth of 1.5 km in Homestake mine to detect $^{37}\!Ar$ from

$$^{37}\text{Cl} + \nu_e \longrightarrow ^{37}\text{Ar} + e^-$$

but $\nu_{\rm e}$'s due to pp fusion have too low $E_{\nu_{\rm e}}$ to activate it

• $\nu_{\rm e}$'s from $^8{\rm B}$ decay in pp chain have $E_{\nu_{\rm e}}\lesssim 14~{\rm MeV}$

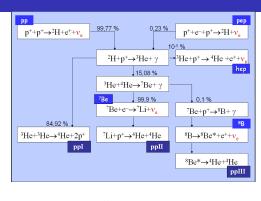
Detecting solar $\nu_{\rm e}$

Solar neutrinos

Radioactivit

decay

Neutrinos


How the Su shines

The probler

Neutrino flavors

The solution

• Davis sets up tank with 3.8×10^5 liters of C_2Cl_4 at a depth of 1.5 km in Homestake mine to detect $^{37}\!\mathrm{Ar}$ from

$$^{37}\text{Cl} + \nu_e \longrightarrow ^{37}\text{Ar} + e^-$$

but ν_{e} 's due to pp fusion have too low $E_{\nu_{\mathrm{e}}}$ to activate it

 \bullet $\nu_{\rm e}$'s from $^8{
m B}$ decay in pp chain have $E_{\nu_{\rm e}}\lesssim 14~{
m MeV}$

Neutrino fluxes in pp chain

Solar neutrinos

Radioactivit

Theory of decay

Neutrinos

How the Sun

The problem

Neutrino flavors

- Bahcall develops "standard solar model" (SSM) and estimates $\nu_{\rm e}$ fluxes from reactions in pp chain
- SSM predicts that less than a single ³⁷Ar is produced per day on average!

Neutrino fluxes in pp chain

Solar neutrinos

Radioactivit

Theory of μ decay

Neutrinos

How the Sur shines

The problem

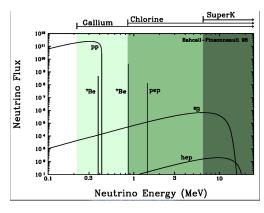
Neutrino flavors

- Bahcall develops "standard solar model" (SSM) and estimates $\nu_{\rm e}$ fluxes from reactions in pp chain
- SSM predicts that less than a single ³⁷Ar is produced per day on average!

Neutrino fluxes in pp chain

Solar neutrinos

Radioactivit


Theory of β decay

Neutrinos

How the Sur shines

The probler

Neutrino flavors

- Bahcall develops "standard solar model" (SSM) and estimates ν_e fluxes from reactions in pp chain
- SSM predicts that less than a single ³⁷Ar is produced per day on average!

The solar neutrino problem

Solar neutrinos

Radioactivit

theory of β decay

Neutrino:

How the Sur shines

The problem

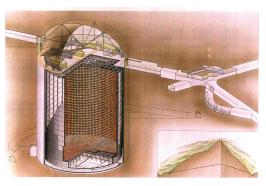
Neutrind flavors

- Davis announces first results in 1968: only 1/3 of expected ν_e from SSM are detected
- Doubts on (i) Davis' ability to count a few 37 Ar atoms out of 10^{30} atoms in tank and (ii) validity of Bahcall's SSM
- Davis' first results were later confirmed over two decades of running!
- A different experiment (Kamiokande, 1989) confirms ν_e deficit observed by Davis

K and SK experiments in Japan

Solar neutrinos

Radioactivit


decay

Neutrinos

How the Sur shines

The problem

Neutrino flavors

(c) Kamioka Observatory, ICRR(Institute for Cosmic Ray Research), The University of Tokyo
SUPERKAMIOKANDE RESTRUTE FOR COSMIC BAY RESEARCH LINE/RESTRY OF TOKYO

- In late 80's a new experiment, Kamiokande (K), comes online, later upgraded to Super-Kamiokande (SK)
- SK detector: $\sim 50~\rm ktons$ of pure water and $\sim 11,000~\rm photomultipliers$ (PMT's)

SK: a picture with installed PMT's

Solar neutrinos

Radioactivity

decay

Neutrinos

How the Sun shines

The problem

Neutrino flavors

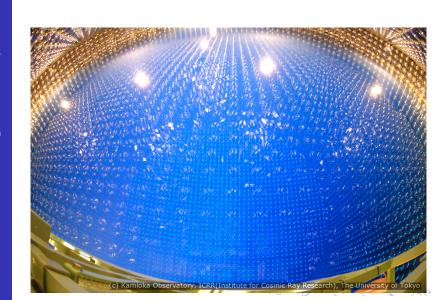
The solution

• Stainless steel cylindrical container ($\sim 39~\mathrm{m}$ diameter and $\sim 41~\mathrm{m}$ height)

SK: a picture with nearly filled tank

Solar neutrinos

Radioactivity


Theory of A

Neutrino:

How the Sur

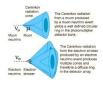
The problem

Neutrino flavors

K experiment confirms Davis' results

Solar neutrinos

Radioactivit


Theory of μ decay

Neutrino

How the Sur shines

The problem

Neutrino flavors

- \bullet A ν_{e} collides with e^{-} in water molecule and propels it forward
- Fast e⁻ produces cone of light (Cherenkov radiation) along its path
- ullet K can infer direction and energy of incoming $\nu_{\rm e}$ from direction and intensity of Cherenkov light
- In 1989 K announces that $\nu_{\rm e}$'s come from the Sun and confirms deficit observed by Davis

K experiment confirms Davis' results

Solar neutrinos

Radioactivity

theory of β decay

Neutrino

How the Sur shines

The problen

Neutrind flavors

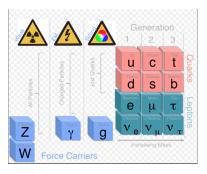
- \bullet A $\nu_{\rm e}$ collides with ${\rm e^-}$ in water molecule and propels it forward
- Fast e⁻ produces cone of light (Cherenkov radiation) along its path
- K can infer direction and energy of incoming ν_e from direction and intensity of Cherenkov light
- In 1989 K announces that $\nu_{\rm e}$'s come from the Sun and confirms deficit observed by Davis

The Standard Model and neutrino flavors

Solar neutrinos

Radioactivi

Theory of β decay


Neutrinos

How the Sur shines

The problem

Neutrino flavors

The solution

• There are three neutrino flavors: $\nu_{\rm e}$, ν_{μ} , and ν_{τ} (and their three antiparticles: $\overline{\nu}_{\rm e}$, $\overline{\nu}_{\mu}$, and $\overline{\nu}_{\tau}$)

$$\mu^- \longrightarrow e^- + \nu_\mu + \overline{\nu}_e \qquad \tau_\mu \simeq 2.2 \times 10^{-6} s$$

 \bullet ν_{μ} and ν_{τ} discovered, respectively, in 1962 and 2000

Solar neutrinos

Radioactivit

Theory of β decay

Neutrinos

How the Sun

The problem

Neutrino flavors

The solution

- Pontecorvo's insight: neutrinos have mass and oscillate between flavors, for example $\nu_e \rightarrow \nu_\mu$ or $\nu_e \rightarrow \nu_\tau$
- Only $\nu_{\rm e}$'s are produced by the Sun and can be detected in Davis' experiment, while ν_{μ} and ν_{τ} escape detection
- How do oscillations occur? In Quantum Mechanics
 (QM) particles can also be described by waves

 $\lambda = h/p$ h = Planck constant p = m v momentum

Solar neutrinos

Radioactivity

Theory of β decay

Neutrinos

How the Sur

The problem

Neutrino flavors

- Pontecorvo's insight: neutrinos have mass and oscillate between flavors, for example $\nu_{\rm e} \rightarrow \nu_{\mu}$ or $\nu_{\rm e} \rightarrow \nu_{\tau}$
- Only $\nu_{\rm e}$'s are produced by the Sun and can be detected in Davis' experiment, while ν_{μ} and ν_{τ} escape detection
- How do oscillations occur? In Quantum Mechanics (QM) particles can also be described by waves

$$\lambda = h/p$$
 $h = \text{Planck constant}$ $p = m v \text{ momentum}$

Бруно Понтекоры

Solar neutrinos

Radioactivity

Theory of β decay

Neutrinos

How the Sur shines

The problem

Neutrino flavors

The solution

- Pontecorvo's insight: neutrinos have mass and oscillate between flavors, for example $\nu_{\rm e} \to \nu_{\mu}$ or $\nu_{\rm e} \to \nu_{\tau}$
- Only $\nu_{\rm e}$'s are produced by the Sun and can be detected in Davis' experiment, while ν_{μ} and ν_{τ} escape detection
- How do oscillations occur? In Quantum Mechanics (QM) particles can also be described by waves

 $\lambda = h/p$ h = Planck constant p = m v momentum

Бруно Понтекоры

Solar neutrinos

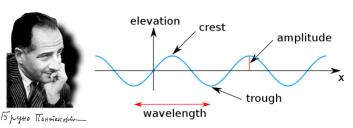
Radioactivity

Theory of β decay

Neutrinos

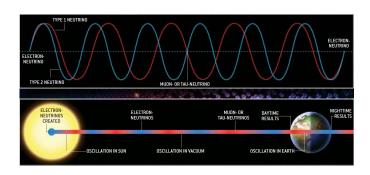
How the Sun shines

The problem


Neutrino flavors

The solution

• Pontecorvo's insight: neutrinos have mass and oscillate between flavors, for example $\nu_{\rm e} \to \nu_{\mu}$ or $\nu_{\rm e} \to \nu_{\tau}$


- Only $\nu_{\rm e}$'s are produced by the Sun and can be detected in Davis' experiment, while ν_{μ} and ν_{τ} escape detection
- How do oscillations occur? In Quantum Mechanics (QM) particles can also be described by waves

$$\lambda = h/p$$
 $h = \text{Planck constant}$ $p = m v \text{ momentum}$

Solar neutrinos

In the case of two flavors, for simplicity, QM predicts

$$P_{\nu_{e} \to \nu_{\mu}}(x) = \sin^{2}(2\theta) \sin^{2}\left(\frac{\pi x}{L}\right) \text{ with } L = \frac{2h}{c^{3}} \frac{E}{\frac{m_{2}^{2} - m_{1}^{2}}{m_{2}^{2} - m_{1}^{2}}}$$

 Presence of matter (electrons in solar interior) modifies $P_{\nu_{\mathrm{e}} o \nu_{\mu}}(x)$ and enhances oscillations (MSW effect)

Towards the solution: SK and atmospheric ν_{μ}

Solar neutrinos

Radioactivit

Theory of *j* decay

Neutrinos

How the Sun

The problem

Neutrino

The solution

• Evidence accumulates that neutrinos oscillate: SK measures $\nu_{\rm e}$'s and ν_{μ} 's due to cosmic rays

 $(\#\nu_{\mu})/(\#\nu_{\rm e})\simeq 1$ versus expected $\simeq 2$

• Variation of ν_{μ} flux with zenith angle

Towards the solution: SK and atmospheric ν_{μ}

Solar neutrinos

Radioactivit

Theory of μ decay

Neutrinos

How the Sur shines

The problem

Neutrino flavors

The solution

• Evidence accumulates that neutrinos oscillate: SK measures ν_e 's and ν_u 's due to cosmic rays

$$(\#\nu_{\mu})/(\#\nu_{\rm e}) \simeq 1$$
 versus expected $\simeq 2$

• Variation of ν_u flux with zenith angle

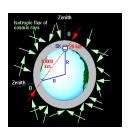
Towards the solution: SK and atmospheric ν_{μ}

Solar neutrinos

Radioactivit

Theory of β decay

Neutrinos


How the Sur shines

The problen

Neutrino flavors

The solution

• Evidence accumulates that neutrinos oscillate: SK measures ν_e 's and ν_u 's due to cosmic rays

$$(\#\nu_{\mu})/(\#\nu_{\rm e}) \simeq 1$$
 versus expected $\simeq 2$

• Variation of ν_{μ} flux with zenith angle

The Sudbury Neutrino Observatory (SNO)

Solar neutrinos

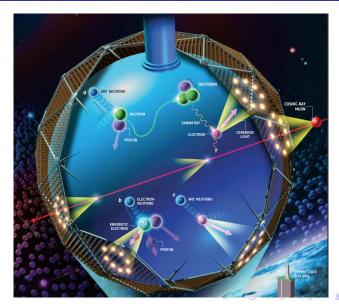
- 1,000 tons of heavy water (D₂O) and 9,600 PMT's mounted on a geodesic support structure
- SNO detects neutrinos via the processes:

$$d + \nu_e \longrightarrow p + p + e^ d + \nu_x \longrightarrow p + n + \nu_x$$

The SNO experiment

Solar neutrinos

Radioactivity


Theory of β decay

Neutrinos

How the Sur

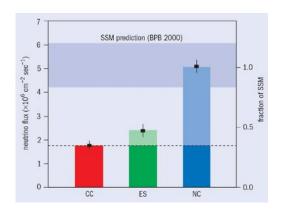
The problem

Neutrino flavors

The SNO results: the solar $\nu_{\rm e}$ problem solved!

Solar neutrinos

Radioactivit


Theory of β decay

Neutrinos

How the Sur

The problem

Neutrino flavors

- $\nu_{\rm e}$ flux: CC from reaction $d + \nu_{\rm e} \longrightarrow p + p + {\rm e}^-$
- mostly $\nu_{\rm e}$ flux: ES from ${\rm e^-} + \nu_{\rm e} \longrightarrow {\rm e^-} + \nu_{\rm e}$
- $\nu_e + \nu_\mu + \nu_\tau$ flux: NC from $d + \nu_x \longrightarrow p + n + \nu_x$

Summary

Solar neutrinos

Radioactivit

Theory of β decay

Neutrinos

How the Sun shines

The problem

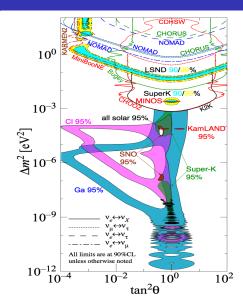
Neutrino flavors

- The solar neutrino problem: the story of a triumph!
- The physics of neutrinos is now a field of intense research activity:
 - ullet determination of Δm_{ij}^2 and $heta_{ij}$
 - role of neutrinos in supernova explosions
 - neutrinos and the matter-antimatter asymmetry problem
 -
- The support of the U.S. Department of Energy under contract DE-AC05-06OR231 is gratefully acknowledged

ν squared-mass splitting and mixing angle

Solar neutrinos

Radioactivi


Theory of β decay

Neutrinos

How the Sur shines

The problem

Neutrino flavors

