
Chapter 4
Solar (and other) Neutrinos

4.1 Solar neutrino detectors
Careful analyses of the experiments that will be described below indicate that the observed
solar neutrino fluxes differ substantially from standard solar model (SSM) expectations.

φ(pp) ∼ 0.9 φSSM(pp)

φ(7Be) ∼ 0

φ(8B) ∼ 0.43 φSSM(8B)

This pattern is difficult to reproduce in a solar model because of the temperature dependences
of the neutrino fluxes

φ(pp) ∝ T−1.2
c φ(7Be) ∝ T 8

c φ(8B) ∝ T 18
c

(These results come from our standard formula, but with the constraint imposed that the
solar luminosity be correctly reproduced. This means that the ppI cycle production must
go up as the temperature goes down in order to produce the desired luminosity.) A reduced
8B neutrino flux can be produced by lowering the central temperature of the sun somewhat.
However, such adjustments, either by varying the parameters of the SSM or by adopting
some nonstandard physics, tend to push the φ(7Be)/φ(8B) ratio to higher values rather than
the low one above,

φ(7Be)

φ(8B)
∼ T−10

c

Thus the observations seem difficult to reconcile with plausible solar model variations.

As of 1998 five solar neutrino experiments had provided data, the Homestake 37Cl experi-
ment, the gallium experiments SAGE and GALLEX, Kamiokande, and SuperKamiokande
The first three detectors are radiochemical, while Kamiokande and SuperKamiokande record
neutrino-electron elastic scattering event-by-event.

The Homestake Experiment
Detection of neutrinos by the reaction 37Cl(νe,e)

37Ar was suggested independently by Pon-
tecorvo (1946) and by Alvarez (1949). Davis’s efforts to mount a 0.61 kiloton experiment
using perchloroethylene (C2Cl4) were greatly helped by Bahcall’s demonstration that tran-
sitions to excited states in 37Ar, particularly the Fermi transition to the analog state at 4.99
MeV, increased the 8B cross section by a factor of 40. This suggested that Davis’s detector
would have the requisite sensitivity to detect 8B neutrinos, thereby accurately determining
the central temperature of the sun. The experiment was mounted in the Homestake Gold
Mine, Lead, South Dakota, in a cavity constructed approximately 4850 feet underground
[4280 meters water equivalent (m.w.e.)]. It operated almost continuously since 1967, finally
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Figure 1: Here a variety of nonstandard solar models have been evaluated, where quantities
like nuclear S-factors, the opacity, the solar age, and the metal content have varied outside
their accepted uncertainties. The resulting neutrino fluxes and the core temperature are
evaluated, and the former are plotted versus the latter. One sees that core temperature
gives a very good one-parameter description of the results: this quantity seems to govern
the neutrino fluxes, regardless of the source of the nonstandard model variation. One also
sees that a reduced 8B neutrino flux requires a cooler sun, while a reduced 7Be/8B neutrino
flux ratio would require a hotter one. This graph is from Castellani et al.
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Figure 2: Nonstandard solar models are again evaluated, and when their relative 7Be and 8B
fluxes are plotted, they form a path in the lower right quadrant. However the experimental
data is in the upper left quadrant (and in fact prefers a 7Be neutrino flux that is negative!)
This shows that it is hard to fit the data assuming standard neutrino physics (especially an
undistorted 8B neutrino profile). From Hata et al.
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terminating in 2002, when the Homestake Mine closed. The result of 25 years of measurement
is

〈σφ〉37Cl = 2.55± 0.17± 0.18 SNU (1σ)

which can be prepared to two recent standard solar model predictions of 8.0 ± 1.0 SNU and
6.4 ± 1.4 SNU, all with 1σ errors. The 8B and 7Be contributions account for about 75% and
16% of the total.

The experiment depends on the special properties of 37Ar: as a noble gas, it can be removed
readily from perchloroethylene, while its half life (τ1/2 = 35 days) allows both a reasonable
exposure time and counting of the gas as it decays back to 37Cl. Argon is removed from the
tank by a helium purge, and the gas then circulated through a condensor, a molecular sieve,
and a charcoal trap cooled to the temperature of liquid nitrogen. Typically ∼ 95% of the
argon in the tank is captured in the trap. (The efficiency is determined each run from the
recovery results for a known amount of carrier gas, 36Ar or 38Ar, introduced into the tank at
the start of the run.) When the extraction is completed, the trap is heated and swept by He.
The extracted gas is passed through a hot titanium filter to remove reactive gases, and then
other noble gases are separated by gas chromatography. The purified argon is loaded into a
small proportional counter along with tritium-free methane, which serves as a counting gas.
Since the electron capture decay of 37Ar leads to the ground state of 37Cl, the only signal for
the decay is the 2.82 keV Auger electron produced as the atomic electrons in 37Cl adjust to
fill the K-shell vacancy. The counting of the gas typically continues for about one year (∼
10 half lives).

The measured cosmic ray-induced background in the Homestake detector is 0.06 37Ar atoms/day
while neutron-induced backgrounds are estimated to be below 0.03 atoms/day. A signal of
0.48 ± 0.04 atoms/day is attributed to solar neutrinos. When detector efficiencies, 37Ar
decays occurring in the tank, etc., are taken into account, the number of 37Ar atoms counted
is about 25/year.

The Kamiokande and SuperKamiokande Experiments
The Kamiokande experiment used a 4.5 kiloton cylindrical imaging water Cerenkov detector
originally designed for proton decay searches, but later reinstrumented to detect low energy
neutrinos. It detected neutrinos by the Cerenkov light produced by recoiling electrons in the
reaction

νx + e → ν ′
x + e′

Both νe and heavy flavor neutrinos contribute, with σ(νe)/σ(νµ) ∼ 7. The light was detected
by photomultiplier tubes that viewed the inner volume of the detector. Kamiokande had
an inner fiducial volume of 0.68 kilotons. Its successor, SuperKamiokande, then ran fully
instrumented for a number of years, collecting 1496 days of data. (SuperKamiokande had
a phototube accident and is now running with about half of the original number of tubes.)
SuperKamiokande has a much larger fiducial volume of 22.5 kilotons.
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Figure 3: A schematic and a photo of the chlorine experiment. This detector operated from
1965 through 2002. From Brookhaven National Laboratory archives.
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Figure 4: Super-Kamiokande at the point where the detector was first filed. The scientists
are cleaning the phototube surfaces as the water rises. Photo by the Super-Kamiokande
collaboration.

Kamiokande was (SuperKamiokande is) sensitive to the high energy portion of the 8B neu-
trino spectrum. Between December, 1985, and July, 1993, Kamiokande accumulated 1667
live detector days of data. Under the assumption that the incident neutrinos are νes with
an undistorted 8B β decay spectrum, the Kamiokande data gave

φνe(
8B) = (2.91± 0.08± 0.12) · 106/cm2 s (1σ)

The total number of detected solar neutrino events was 476+36
−34.

The corresponding result from SuperKamiokande obtained in 1496 effective days of running
is

φ(8B) = 2.35± 0.02± 0.08× 106/cm2 sec

This is about 46% of the standard solar model flux prediction. Note that SuperKamiokande
has already substantially surpassed Kamiokande in accuracy.

These experiments are remarkable in several respects. They are the first detectors to measure
solar neutrinos in real time. Essential to the method is the sharp peaking of the electron
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angular distribution in the direction of the incident neutrino: this forward peaking allows
the experimenters to separate solar neutrino events from an isotropic background. The
unambiguous observation of a peak in the cross section correlated with the position of the
sun is the first direct demonstration that the sun produces neutrinos as a byproduct of fusion.

The SAGE and GALLEX Experiments
Two radiochemical gallium experiments exploiting the reaction 71Ga(νe,e)

71Ge, SAGE and
GALLEX, began solar neutrino measurements in January, 1990, and May, 1991, respectively.
SAGE operated in the Baksan Neutrino Observatory, under 4700 m.w.e. of shielding from
Mount Andyrchi in the Caucasus, while GALLEX was housed in the Gran Sasso Laboratory
at a depth of 3300 m.w.e. These experiments are sensitive primarily to the low-energy pp
neutrinos, the flux of which is sharply constrained by the solar luminosity in any steady-state
model of the sun. The gallium experiment was first suggested by Kuzmin in 1966. In 1974
Ray Davis and collaborators began work to develop a practical experimental scheme. Their
efforts, in which both GaCl3 solutions and Ga metal targets were explored, culminated with
the 1.3-ton Brookhaven/Heidelberg/Rehovot/Princeton pilot experiment in 1980-82 that
demonstrated the procedures later used by GALLEX. SAGE used a liquid metal target.

SAGE began operations with 30 tons of gallium, and later increased to 55 tons. The result
is

〈σφ〉71Ge = 75.4+7.0
−6.8 (stat)+3.5

−3.0 (sys) SNU (1σ)

The corresponding result from GALLEX (and its successor GNO) is

〈σφ〉71Ge = 74.1± 6.8 SNU (1σ)

These results are 59% and 58% of the SSM prediction. Both detectors were tested with
neutrino sources, marking the first time such calibrations of solar neutrino detectors had
been made.

The nuclear physics of the reaction 71Ga(νe,e)
71Ge accounts for its sensitivity to low-energy

neutrinos. As the threshold is 233 keV, the ground state (and first excited state) can be ex-
cited by pp neutrinos. The ground-state cross section can be determined from the measured
electron capture lifetime of 71Ge, and is quite strong. The low-energy pp neutrinos account
for about 55% of the capture rate. Because of this strong pp neutrino contribution, there
exists a minimal astronomical counting rate of 79 SNU for the Ga detector that assumes
only a steady-state sun and standard model weak interaction physics. This minimum value
corresponds to a sun that produces the observed luminosity entirely through the ppI cycle.
The rates found by SAGE and GALLEX are quite close to this bound.

4.2 Neutrino masses and vacuum neutrino oscillations
One odd feature of particle physics is that neutrinos, which are not required by any symmetry
to be massless, nevertheless must be much lighter than any of the other known fermions. For
instance, the current limit on the νe mass is ∼< 5 eV. The standard model requires neutrinos
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Figure 2: Level scheme for 71Ge showing the excited states that contribute to absorption of
pp, 7Be, 51Crm and 8B neutrinos.

106/cm2s after about a decade of measurement. Its much larger successor Su-
perKamiokande, with a 22.5 kiloton fiducial volume, yielded the result (2.37±
0.06± 0.08) · 106/cm2s after the first 374 days of measurements. This is about
36% of the SSM flux. This result continues to improve in accuracy.

2.3 Uncertainties in Standard Solar Model Parameters

The pattern of solar neutrino fluxes that has emerged from these experiments
is

φ(pp) ∼ 0.9φSSM(pp)

φ(7Be) ∼ 0

11

Figure 5: The level diagram for 71Ga/71Ge showing the excitations induced by pp and 7Be
neutrinos.
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Gary Feldman Neutrino Oscillations

Solar Energy Spectrum

From http://www.sns.ias.edu/~jnb/
Figure 6: The sensitivities of various experiments to different portions of the solar neutrino
spectrum are illustrated. From Bahcall.
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to be massless, but the reasons are not fundamental. Dirac mass terms mD, analogous to
the mass terms for other fermions, cannot be constructed because the model contains no
right-handed neutrino fields. Neutrinos can also have Majorana mass terms

νc
LmLνL and νc

RmRνR

where the subscripts L and R denote left- and right-handed projections of the neutrino field
ν, and the superscript c denotes charge conjugation. The first term above is constructed
from left-handed fields, but can only arise as a nonrenormalizable effective interaction when
one is constrained to generate mL with the doublet scalar field of the standard model. The
second term is absent from the standard model because there are no right-handed neutrino
fields.

None of these standard model arguments carries over to the more general, unified theories
that theorists believe will supplant the standard model. In the enlarged multiplets of ex-
tended models it is natural to characterize the fermions of a single family, e.g., νe, e, u, d,
by the same mass scale mD. Small neutrino masses are then frequently explained as a result
of the Majorana neutrino masses. In the seesaw mechanism,

Mν ∼
(

0 mD

mT
D mR

)

Diagonalization of the mass matrix produces one light neutrino, mlight ∼
m2

D

mR
, and one

unobservably heavy, mheavy ∼ mR. The factor (mD/mR) is the needed small parameter that
accounts for the distinct scale of neutrino masses. The masses for the νe, νµ, and ντ are then
related to the squares of the corresponding quark masses mu, mc, and mt. Taking mR ∼ 1016

GeV, a typical grand unification scale for models built on groups like SO(10), the seesaw
mechanism gives the crude relation

mνe : mνµ : mντ ↔ 2 · 10−12 : 2 · 10−7 : 3 · 10−3eV.

The fact that solar neutrino experiments can probe small neutrino masses, and thus provide
insight into possible new mass scales mR that are far beyond the reach of direct accelerator
measurements, has been an important theme of the field.

Now one of the most interesting possibilities for solving the solar neutrino problem has to
do with neutrino masses. For simplicity we will discuss just two neutrinos. If a neutrino has
a mass m, we mean that as it propagates through free space, its energy and momentum are
related in the usual way for this mass. Thus if we have two neutrinos, we can label those
neutrinos according to the eigenstates of the free Hamiltonian, that is, as mass eigenstates.

But neutrinos are produced by the weak interaction. In this case, we have another set of
eigenstates, the flavor eigenstates. We can define a νe as the neutrino that accompanies the
positron in β decay. Likewise we label by νµ the neutrino produced in muon decay.
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Now the question: are the eigenstates of the free Hamiltonian and of the weak interaction
Hamiltonian identical? Most likely the answer is no: we know this is the case with the
quarks, since the different families (the analog of the mass eigenstates) do interact through
the weak interaction. That is, the up quark decays not only to the down quark, but also
occasionally to the strange quark. (This is why we had a cos θc in our β decay amplitude:
the amplitude for u → s is proportional to sin θc.) Thus we suspect that the weak interaction
and mass eigenstates, while spanning the same two-neutrino space, are not coincident: the
mass eigenstates |ν1〉 and |ν2〉 (with masses m1 and m2) are related to the weak interaction
eigenstates by

|νe〉 = cos θv|ν1〉+ sin θv|ν2〉

|νµ〉 = − sin θv|ν1〉+ cos θv|ν2〉

where θv is the (vacuum) mixing angle.

An immediate consequence is that a state produced as a |νe〉 or a νmu〉 at some time t - for
example, a neutrino produced in β decay - does not remain a pure flavor eigenstate as it
propagates away from the source. This is because the different mass eigenstates comprising
the neutrino will accumulate different phases as they propagate downstream, a phenomenon
known as vacuum oscillations (vacuum because the experiment is done in free space). To see
the effect, suppose we produce a neutrino in some β decay where we measure the momentum
of the initial nucleus, final nucleus, and positron. Thus the outgoing neutrino is a momentum
eigenstate. At time t=0, then

|ν(t = 0)〉 = |νe〉 = cos θv|ν1〉+ sin θv|ν2〉

Each eigenstate subsequently propagates with a phase

ei(~k·~x−ωt) = ei(~k·~x−
√

m2
i +k2t)

But if the neutrino mass is small compared to the neutrino momentum/energy, one can write

√
m2

i + k2 ∼ k(1 +
m2

i

2k2
)

Thus we conclude

|ν(t)〉 = ei(~k·~x−kt−
(m2

1+m2
2)

4k
t)

×[cos θv|ν1〉eiδm2t/4k + sin θv|ν2〉e−iδm2t/4k] (eq.A)

We see there is a common average phase (which has no physical consequence) as well as a
beat phase that depends on

δm2 = m2
2 −m2

1

Now it is a simple matter to calculate the probability that our neutrino state remains a |νe〉
at time t

Pνe(t) = |〈νe|ν(t)〉|2
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= 1− sin2 2θv sin2

(
δm2t

4k

)
→ 1− 1

2
sin2 2θv

where the limit on the right is appropriate for large t. Now E ∼ k, where E is the neutrino
energy, by our assumption that the neutrino masses are small compared to k. Thus we can
reinsert the units above to write the probability in terms of the distance x of the neutrino
from its source,

Pν(x) = 1− sin2 2θv sin2

(
δm2c4x

4h̄cE

)
(When one properly describes the neutrino state as a wave packet, the large-distance behavior
follows from the eventual separation of the mass eigenstates.) If the the oscillation length

Lo =
4πh̄cE

δm2c4

is comparable to or shorter than one astronomical unit, a reduction in the solar νe flux would
be expected in terrestrial neutrino oscillations.

The suggestion that the solar neutrino problem could be explained by neutrino oscillations
was first made by Pontecorvo in 1958, who pointed out the analogy with K0 ↔ K̄0 oscilla-
tions. From the point of view of particle physics, the sun is a marvelous neutrino source.
The neutrinos travel a long distance and have low energies (∼ 1 MeV), implying a sensitivity
to

δm2
∼> 10−12eV 2. (1)

In the seesaw mechanism, δm2 ∼ m2
2, so neutrino masses as low as m2 ∼ 10−6eV could be

probed. In contrast, terrestrial oscillation experiments with accelerator or reactor neutrinos
are typically limited to δm2

∼> 0.1eV 2.

From the expressions above one expects vacuum oscillations to affect all neutrino species
equally, if the oscillation length is small compared to an astronomical unit. This appears
to contradict observation, as the pp flux may not be significantly reduced. Furthermore,
the theoretical prejudice that θv should be small makes this an unlikely explanation of the
significant discrepancies with SSM 7Be and 8B flux predictions.

The first objection, however, can be circumvented in the case of “just so” oscillations where
the oscillation length is comparable to one astronomical unit. In this case the oscillation
probability becomes sharply energy dependent, and one can choose δm2 to preferentially
suppress one component (e.g., the monochromatic 7Be neutrinos). This scenario has been
explored by several groups and remains an interesting possibility. However, the requirement
of large mixing angles remains.

Below we will see that stars allow us to “get around” this problem with small mixing angles.
In preparation for this, we first present the results above in a slightly more general way. The
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analog of the result marked Eq.A above for an initial muon neutrino (|ν(t = 0)〉 = |νµ〉) can
be derived and is

|ν(t)〉 = ei(~k·~x−kt−
(m2

1+m2
2)

4k
t)

×[− sin θv|ν1〉eiδm2t/4k + cos θv|ν2〉e−iδm2t/4k] (eq.B)

Now if we compare eqs. (A) and (B) we see that they are special cases of a more general
problem. Suppose we write our initial neutrino wave function in the most general form

|ν(t = 0)〉 = ae(t = 0)|νe〉+ aµ(t = 0)|νµ〉

Then eqs. (A) and (B) tell us that the subsequent propagation is described by changes in
ae(x) and aµ(x) according to (this takes a bit of algebra)

i
d

dx

(
ae
aµ

)
=

1

4E

(−δm2 cos 2θv δm2 sin 2θv
δm2 sin 2θv δm2 cos 2θv

)(
ae
aµ

)
Note that the common phase has been ignored: it can be absorbed into the overall phase
of the coeeficients ae and aµ, and thus has no consequence. The matrix above is called the
mass matrix in the flavor basis. If one were to diagonalize the mass matrix, the eigenvectors
would be the mass eigenstates and the difference between the eigenvalues would be m2−m1.

4.3 The Mikheyev-Smirnov-Wolfenstein mechanism
The view of neutrino oscillations changed radically when Mikheyev and Smirnov showed in
1985 that the density dependence of the neutrino effective mass, a phenomenon first discussed
by Wolfenstein in 1978, could greatly enhance oscillation probabilities: a νe is adiabatically
transformed into a νµ as it traverses a critical density within the sun. It became clear that
the sun was not only an excellent neutrino source, but also a natural regenerator for cleverly
enhancing the effects of flavor mixing.

While the original work of Mikheyev and Smirnov was numerical, their phenomenon was
soon understood analytically as a level-crossing problem. If one writes the neutrino wave
function in matter in the same way we did at the end of section 4.2

|ν(x)〉 = ae(x)|νe〉+ aµ(x)|νµ〉

where x is the coordinate along the neutrino’s path, the evolution of ae(x) and aµ(x) is
governed by

i
d

dx

(
ae
aµ

)
=

1

4E

(
2E
√

2GF ρ(x)− δm2 cos 2θv δm2 sin 2θv
δm2 sin 2θv − 2E

√
2GF ρ(x) + δm2 cos 2θv

)(
ae
aµ

)
where GF is the weak coupling constant and ρ(x) the solar electron density. If ρ(x) = 0, this
is exactly our previous result and can be trivially integrated to give the vacuum oscillation
solutions of Sec. 4.2. The new contribution to the diagonal elements, 2E

√
2GF ρ(x), rep-

resents the effective contribution to M2
ν that arises from neutrino-electron scattering. The
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indices of refraction of electron and muon neutrinos differ because the former scatter by
charged and neutral currents, while the latter have only neutral current interactions. The
difference in the forward scattering amplitudes determines the density-dependent splitting
of the diagonal elements of the new matter equation.

It is helpful to rewrite this equation in a basis consisting of the light and heavy local mass
eigenstates (i.e., the states that diagonalize the right-hand side of the equation),

|νL(x)〉 = cos θ(x)|νe〉 − sin θ(x)|νµ〉

|νH(x)〉 = sin θ(x)|νe〉+ cos θ(x)|νµ〉

The local mixing angle is defined by

sin 2θ(x) =
sin 2θv√

X2(x) + sin2 2θv

cos 2θ(x) =
−X(x)√

X2(x) + sin2 2θv

where X(x) = 2
√

2GF ρ(x)E/δm2− cos 2θv. Thus θ(x) ranges from θv to π/2 as the density
ρ(x) goes from 0 to ∞.

If we define
|ν(x)〉 = aH(x)|νH(x)〉+ aL(x)|νL(x)〉,

the neutrino propagation can be rewritten in terms of the local mass eigenstates

i
d

dx

(
aH

aL

)
=
(

λ(x) iα(x)
−iα(x) −λ(x)

)(
aH

aL

)
with the splitting of the local mass eigenstates determined by

2λ(x) =
δm2

2E

√
X2(x) + sin2 2θv

and with mixing of these eigenstates governed by the density gradient

α(x) =
(

E

δm2

) √
2 GF

d
dx

ρ(x) sin 2θv

X2(x) + sin2 2θv
.

The results above are quite interesting: the local mass eigenstates diagonalize the matrix
if the density is constant. In such a limit, the problem is no more complicated than our
original vacuum oscillation case, although our mixing angle is changed because of the matter
effects. But if the density is not constant, the mass eigenstates in fact evolve as the density
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Figure 6: Schematic illustration of the MSW crossing. The dashed lines correspond to the
electron-electron and muon-muon diagonal elements of the M2 matrix in the flavor basis.
Their intersection defines the level-crossing density ρc. The solid lines are the trajectories
of the light and heavy local mass eigenstates. If the electron neutrino is produced at high
density and propagates adiabatically, it will follow the heavy-mass trajectory, emerging from
the sun as a νµ.

light mass eigenstate, νL(0), i.e., m1 < m2 and cos θv ∼ 1. But as the density
increases, the matter effects make the νe heavier than the νµ, with νe → νH(x)
as ρ(x) becomes large. The special property of the sun is that it produces νes
at high density that then propagate to the vacuum where they are measured.
The adiabatic approximation tells us that if initially νe ∼ νH(x), the neutrino
will remain on the heavy mass trajectory provided the density changes slowly.
That is, if the solar density gradient is sufficiently gentle, the neutrino will
emerge from the sun as the heavy vacuum eigenstate, ∼ νµ. This guarantees
nearly complete conversion of νes into νµs, producing a flux that cannot be
detected by the Homestake or SAGE/GALLEX detectors.

But this does not explain the curious pattern of partial flux suppressions
coming from the various solar neutrino experiments. The key to this is the
behavior when γc ∼< 1. Our expression for γ(x) shows that the critical region
for nonadiabatic behavior occurs in a narrow region (for small θv) surrounding
the crossing point, and that this behavior is controlled by the derivative of the

25

Figure 7: Schematic illustration of the MSW avoided level crossing. The dashed lines cor-
respond to the electron-electron and muon-muon diagonal elements of the M2 matrix in the
flavor basis. Their intersection defines the level-crossing density ρc. The solid lines are the
trajectories of the light and heavy mass eigenstates. If the electron neutrino is produced at
sufficiently high densities and propagates adiabatically, it will follow the heavy-mass trajec-
tory, emerging from the sun as a νe.
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changes. This is the crux of the MSW effect. Note that the splitting achieves its minimum
value, δm2

2E
sin 2θv, at a critical density ρc = ρ(xc)

2
√

2EGF ρc = δm2 cos 2θv

that defines the point where the diagonal elements of the original flavor matrix cross.

Our local-mass-eigenstate form of the propagation equation can be trivially integrated if the
splitting of the diagonal elements is large compared to the off-diagonal elements,

γ(x) =

∣∣∣∣∣λ(x)

α(x)

∣∣∣∣∣ = sin2 2θv
cos 2θv

δm2

2E

1

| 1
ρc

dρ(x)
dx
|
[X(x)2 + sin2 2θv]

3/2

sin3 2θv

� 1,

a condition that becomes particularly stringent near the crossing point,

γc = γ(xc) =
sin2 2θv

cos 2θv

δm2

2E

1∣∣∣ 1
ρc

dρ(x)
dx
|x=xc

∣∣∣ � 1.

The resulting adiabatic electron neutrino survival probability, valid when γc � 1, is

P adiab
νe

=
1

2
+

1

2
cos 2θv cos 2θi

where θi = θ(xi) is the local mixing angle at the density where the neutrino was produced.

The physical picture behind this derivation is illustrated in Figure 7. One makes the usual
assumption that, in vacuum, the νe is almost identical to the light mass eigenstate, νL(0),
i.e., m1 < m2 and cos θv ∼ 1. But as the density increases, the matter effects make the νe

heavier than the νµ, with νe → νH(x) as ρ(x) becomes large. The special property of the
sun is that it produces νes at high density that then propagate to the vacuum where they
are measured. The adiabatic approximation tells us that if initially νe ∼ νH(x), the neutrino
will remain on the heavy mass trajectory provided the density changes slowly. That is, if
the solar density gradient is sufficiently gentle, the neutrino will emerge from the sun as the
heavy vacuum eigenstate, νH(0) ∼ νµ. This guarantees nearly complete conversion of νes
into νµs, producing a flux that cannot be detected by the Homestake or SAGE/GALLEX
detectors.

But this does not explain the curious pattern of partial flux suppressions coming from the
various solar neutrino experiments. The key to this is the behavior when γc ∼< 1. Our ex-
pression for γ(x) shows that the critical region for nonadiabatic behavior occurs in a narrow
region (for small θv) surrounding the crossing point, and that this behavior is controlled by
the derivative of the density. This suggests an analytic strategy for handling nonadiabatic
crossings: one can replace the true solar density by a simpler (integrable!) two-parameter
form that is constrained to reproduce the true density and its derivative at the crossing point
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xc. Two convenient choices are the linear (ρ(x) = a + bx) and exponential (ρ(x) = ae−bx)
profiles. As the density derivative at xc governs the nonadiabatic behavior, this procedure
should provide an accurate description of the hopping probability between the local mass
eigenstates when the neutrino traverses the crossing point. The initial and ending points
xi and xf for the artificial profile are then chosen so that ρ(xi) is the density where the
neutrino was produced in the solar core and ρ(xf ) = 0 (the solar surface), as illustrated in
in the Figure 8. Since the adiabatic result (P adiab

νe
) depends only on the local mixing angles

at these points, this choice builds in that limit. But our original flavor-basis equation can
then be integrated exactly for linear and exponential profiles, with the results given in terms
of parabolic cylinder and Whittaker functions, respectively. This treatment, called the finite
Landau-Zener approximation, has been used extensively in numerical calculations.

We derive a simpler (“infinite”) Landau-Zener approximation by observing that the nona-
diabatic region is generally confined to a narrow region around xc, away from the endpoints
xi and xf . We can then extend the artificial profile to x = ±∞, as illustrated by the dashed
lines in Figure 8. As the neutrino propagates adiabatically in the unphysical region x < xi,
the exact soluation in the physical region can be recovered by choosing the initial boundary
conditions

aL(−∞) = −aµ(−∞) = cos θie
−i
∫ xi
−∞ λ(x)dx

aH(−∞) = ae(−∞) = sin θie
i
∫ xi
−∞ λ(x)dx

That is |ν(−∞)〉 will then adiabatically evolve to |ν(xi)〉 = |νe〉 as x goes from −∞ to xi.
The unphysical region x > xf can be handled similarly.

With some algebra a simple generalization of the adiabatic result emerges that is valid for
all δm2/E and θv

Pνe =
1

2
+

1

2
cos 2θv cos 2θi(1− 2Phop)

where Phop is the probability of hopping from the heavy mass trajectory to the light trajectory
on traversing the crossing point. For the linear approximation to the density,

P lin
hop = e−πγc/2

As it must by our construction, Pνe reduces to Padiab
νe

for γc � 1. When the crossing becomes
nonadiabatic (e.g., γc � 1 ), the hopping probability goes to 1, allowing the neutrino to exit
the sun on the light mass trajectory as a νe, i.e., no conversion occurs.

Thus there are two conditions for strong conversion of solar neutrinos: there must be a level
crossing (that is, the solar core density must be sufficient to render νe ∼ νH(xi) when it is first
produced) and the crossing must be adiabatic. The first condition requires that δm2/E not
be too large, and the second γc ∼> 1. The combination of these two constraints, illustrated in

Figure 9, defines a triangle of interesting parameters in the δm2

E
− sin2 2θv plane, as Mikheyev

and Smirnov found by numerically integration. A remarkable feature of this triangle is that
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Figure 7: The top figure illustrates, for one choice of sin22θ and δm2, that the region
of nonadiabatic propagation (solid line) is usually confined to a narrow region around the
crossing point rc. In the lower figure, the solid lines represent the solar density and a
linear approximation to that density that has the correct initial and final values, as well
as the correct density and density derivative at rc. Thus the linear profile is a very good
approximation to the sun in the vicinity of the crossing point. The MSW equations can
be solved analytically for this wedge. By extending the wedge to ±∞ (dotted lines) and
assuming adiabatic propagation in these regions of unphysical density, one obtains the simple
Landau-Zener result discussed in the text.

1, allowing the neutrino to exit the sun on the light mass trajectory as a νe,
i.e., no conversion occurs.

Thus there are two conditions for strong conversion of solar neutrinos:
there must be a level crossing (that is, the solar core density must be sufficient
to render νe ∼ νH(xi) when it is first produced) and the crossing must be
adiabatic. The first condition requires that δm2/E not be too large, and the
second γc ∼> 1. The combination of these two constraints, illustrated in Fig.

8, defines a triangle of interesting parameters in the δm2

E − sin2 2θv plane,
as Mikheyev and Smirnov found by numerically integration. A remarkable
feature of this triangle is that strong νe → νµ conversion can occur for very
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Figure 8: The top figure illustrates, for one choice of sin2 2θ and δm2, that the region of nona-
diabatic propagation (solid line) is usually confined to a narrow region around the crossing
point rc. In the lower figure, the solid lines represent the solar density and a linear approx-
imation to that density that has the correct initial and final values, as well as the correct
density and density derivative at rc. Thus the linear profile is a very good approximation to
the sun in the vicinity of the crossing point, while also building in the correct adiabatic be-
havior (governed by the starting and ending densities). The MSW equations can be solved
analytically for this linear wedge. By extending the wedge to ±∞ (dotted lines) and as-
suming adiabatic propagation in these regions of unphysical density, one obtains the simple
Landau-Zener result.
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strong νe → νµ conversion can occur for very small mixing angles (sin2 2θ ∼ 10−3), unlike
the vacuum case.

One can envision superimposing on Figure 9 the spectrum of solar neutrinos, plotted as a
function of δm2

E
for some choice of δm2. Since Davis sees some solar neutrinos, the solutions

must correspond to the boundaries of the triangle in the figure. The horizontal boundary
indicates the maximum δm2

E
for which the sun’s central density is sufficient to cause a level

crossing. If a spectrum properly straddles this boundary, we obtain a result consistent with
the Homestake experiment in which low energy neutrinos (large 1/E) lie above the level-
crossing boundary (and thus remain νe’s), but the high-energy neutrinos (small 1/E) fall
within the unshaded region where strong conversion takes place. Thus such a solution would
mimic nonstandard solar models in that only the 8B neutrino flux would be strongly sup-
pressed. The diagonal boundary separates the adiabatic and nonadiabatic regions. If the
spectrum straddles this boundary, we obtain a second solution in which low energy neutri-
nos lie within the conversion region, but the high-energy neutrinos (small 1/E) lie below the
conversion region and are characterized by γ � 1 at the crossing density. (Of course, the
boundary is not a sharp one, but is characterized by the Landau-Zener exponential). Such
a nonadiabatic solution is quite distinctive since the flux of pp neutrinos, which is strongly
constrained in the standard solar model and in any steady-state nonstandard model by the
solar luminosity, would now be sharply reduced. Finally, one can imagine “hybrid” solutions
where the spectrum straddles both the level-crossing (horizontal) boundary and the adia-
baticity (diagonal) boundary for small θ, thereby reducing the 7Be neutrino flux more than
either the pp or 8B fluxes.

What are the results of a careful search for MSW solutions satisfying the Homestake,
Kamiokande/SuperKamiokande, and SAGE/GALLEX constraints? Many authors had an-
swered this question by 1998, obtaining results like those in a figure that will be shown in
Section 4.5. The preferred solution (i.e., the best fit) corresponded to a region surrounding
δm2 ∼ 6 · 10−6eV 2 and sin2 2θv ∼ 6 · 10−3: this is the hybrid case described above. It is com-
monly called the small-angle solution. A second, large-angle solution exists, corresponding
to δm2 ∼ 10−5eV 2 and sin2 2θv ∼ 0.6.

These solutions can be distinguished by their characteristic distortions of the solar neutrino
spectrum. The survival probabilities PMSW

νe
(E) for the small- and large-angle parameters

given above are shown as a function of E in Figure 10.

The MSW mechanism provides a natural explanation for the pattern of observed solar neu-
trino fluxes. While it requires profound new physics, both massive neutrinos and neutrino
mixing are expected in extended models.

A definitive answer to the question of the relevance of the MSW to solar neutrino oscilla-
tion came from the Sudbury Neutrino Observatory. But before we discuss this, we turn to
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small mixing angles (sin2 2θ ∼ 10−3), unlike the vacuum case.
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Figure 8: MSW conversion for a neutrino produced at the sun’s center. The upper shaded
region indices thoses δm2/E where the vacuum mass splitting is too great to be overcome
by the solar density. Thus no level crossing occurs. The lower shaded region defines the
region where the level crossing is nonadiabatic (γc less than unity). The unshaded region
corresponds to adiabatic level crossings where strong νe → νµ will occur.

One can envision superimposing on Fig. 8 the spectrum of solar neutri-

nos, plotted as a function of δm2

E for some choice of δm2. Since Davis sees
some solar neutrinos, the solutions must correspond to the boundaries of the

triangle in Fig. 8. The horizontal boundary indicates the maximum δm2

E for
which the sun’s central density is sufficient to cause a level crossing. If a spec-
trum properly straddles this boundary, we obtain a result consistent with the
Homestake experiment in which low energy neutrinos (large 1/E) lie above
the level-crossing boundary (and thus remain νe’s), but the high-energy neu-
trinos (small 1/E) fall within the unshaded region where strong conversion
takes place. Thus such a solution would mimic nonstandard solar models in
that only the 8B neutrino flux would be strongly suppressed. The diagonal
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Figure 9: MSW conversion for a neutrino produced at the sun’s center. The upper shaded
region indicates those δm2/E where the vacuum mass splitting is too great to be overcome
by the solar density. Thus no level crossing occurs. The lower shaded region indicates where
the level crossing is nonadiabatic (γc less than unity). The unshaded region corresponds to
adiabatic level crossings where strong νe → νµ will occur.
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Figure 9: MSW survival probabilities P(Eν) for typical small angle and large angle solutions.

A number of other particle physics solutions have been considered, such as
neutrino decay, matter-catalyzed neutrino decay, and solar energy transport
by weakly interacting massive particles. But perhaps the most interesting
possibility, apart from the MSW mechanism, was stimulated by suggestions
that the 37Cl signal might be varying with a period comparable to the 11-
year solar cycle. While the evidence for this has weakened, the original claims
generated renewed interest in neutrino magnetic moment interactions with the
solar magnetic field.

The original suggestions by Cisneros and by Okun, Voloshyn, and Vysotsky
envisioned the rotation

νeL
→ νeR

(47)

producing a right-handed neutrino with sterile interactions in the standard
model. With the discovery of the MSW mechanism, it was realized that matter
effects would break the vacuum degeneracy of the νeL

and νeR
, suppressing the

spin precession. Lim and Marciano 30 and Akmedov 31 pointed out that this
difficulty was naturally circumvented for

νeL
→ νµR

(48)

30

Figure 10: The MSW survival probabilities P (Eν) for typical small-angle and large-angle
solutions.
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another result from 1998 that showed neutrinos oscillate.

4.4 Atmospheric neutrinos: the discovery of neutrino mass
When high energy cosmic rays strike the earth’s atmosphere a multitude of secondary par-
ticles are produced, most of which travel at nearly the speed of light in the same direction
as the incident cosmic ray. Many of the secondaries are pions and kaons, which decay into
electrons, muons, and electron and muon neutrinos and antineutrinos. These neutrinos reach
and pass through the earth. The fluxes are large: about a hundred such cosmic ray-induced
neutrinos pass through each of us every second. Yet because these particles react weakly,
only one interaction is expected per human body every thousand years! Thus a considerably
larger target is required for a reasonable event rate. In SuperKamiokande, the massive 50,000
ton water detector that replaced the original 3000 ton Kamiokande detector, one event oc-
curs every 90 minutes. The energies of these neutrinos (typically 1 GeV) are sufficiently high
to produce either electrons or muons, depending on the neutrino flavor. As these charged
particles pass through the water, they produce Cerenkov radiation. However, the Cerenkov
ring produced by an energetic electron is more diffuse than the relatively clean ring of a
muon. This allows the experimenters to distinguish electrons from muons with about 98%
accuracy. Since the charged lepton tends to travel in the same direction as the incident
neutrino, the experimenters can thus deduce both the flavor and the direction of neutrinos
that react in the water.

A decade ago it was already apparent that atmospheric neutrino rates seen in existing de-
tectors were anomalous. Using known cross sections and decay rates theorists had predicted
about twice as many muon neutrinos as electron neutrinos from cosmic ray events. For
example, a π+ decays into an e+, a νe, a νµ, and a ν̄µ. That is, two muon neutrinos are
produced, but only one νe. However, most of the early atmospheric neutrino experiments
found the electron-to-muon ratio from neutrino reactions to be approximately unity. The
very precise measurements made with SuperKamiokande appear to show that the ratio has
this unexpected value because of a deficit in muon-like events—the electron event rate is
about as expected. The muon deficit has a strong zenith angle dependence, with the largest
suppression associated with atmospheric neutrinos coming from below, e.g., originating on
the opposite side of the earth. Such a dependence of the muon-to-electron ratio on distance
is a signature of neutrino oscillations, as we have noted. The most plausible interpretation of
the SuperKamiokande data is that atmospheric νµ’s are oscillating into ντ ’s, which are not
observed because the ντ ’s are too low in energy to produce τ ’s in SuperKamiokande. The
strong suppression in the νµ flux is characteristic of maximal mixing (θ ∼ π/4), while the
zenith angle dependence indicates that the oscillation length is comparable to the earth’s
diameter. The corresponding δm2 is ∼ 2 · 10−3 eV2. Thus this mass difference suggests that
a at least one neutrino must have a mass ∼> 0.05 eV. The quality of the SuperKamiokande
data – the statistical error on the muon-to-electron event rate is well below 10% and there is
remarkable consistency between the sub-GeV and multi-GeV data sets and between the fully-
and partially-contained data sets – provides a powerful argument that oscillations have been
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observed. Because the zenith-angle dependence shows that the νµ flux depends on distance,
the atmospheric data provide direct proof of oscillations. Thus this may be our strongest
evidence for massive neutrinos and for the incompleteness of the standard model.

There is another remarkable aspect of the atmospheric neutrino results. One can view this
result in terms of the seasaw mechanism. In the case of the ντ we concluded from the at-
mospheric neutrino data that its mass might be ∼ 0.05 eV. A reasonable choice for mD is
the mass of the corresponding third generation quark, the top quark, mD ∼ 200 GeV. It
follows that mR ∼ 1014 GeV! Thus tiny neutrino masses might be our window on physics at
enormous energy scales. This large mass mR is interesting because there is an independent
argument, based on observations that the weak, electromagnetic, and strong interactions
would all have approximately the same strength at ∼ 1016 GeV, that suggests a very similar
value for the “grand unification scale.” This has led many in the community to hope that
the pattern of neutrino masses now being discovered may help us probe the structure of the
theory that lies beyond the standard model.

4.5 SNO and the resolution of the solar neutrino problem
The atmospheric neutrino results meaure one mass difference, let’s call it m2

23. The analysis
that accounts for the experimental results is based on vacuum oscillations. The mixing angle
was maximal – a result few theorists anticipated.

After the Cl, SAGE/GALLEX, and Kamioka/SuperKamioka experiments, an MSW anal-
ysis of the results yielded the solar-neutrino solutions shown in Figure 12. There was a
small-mixing-angle (SMA) solution, and large-mixing-angle (LMA) solution, and a low-
mass-difference and low-probability (LOW) solution. There was also some possibility that a
very-low-mass-difference ”just-so” vacuum oscillation solution fit the data – one where the
oscillation length is tuned to the earth-sun distance. This is not shown in the figure.

Because both charged and neutral currents contribute to the reaction important to Su-
perKamiokande,

νx + e− → νx + e−

the experimentalists cannot easily distinguish νes from the νµs and ντ s: the detector records
both fluxes, though with a reduced sensitivity (0.15) for the heavy-flavor types. The reaction
produces energetic recoil electrons which generate Cerenkov radiation that is recorded in an
array of phototubes surrounding the detector. As the cross section is sharply forward peaked,
the correlation with the position of the sun can be used to “cut” background contributions
associated with cosmic rays and radioactivity in the rock walls surrounding the detector.
Because the threshold for electron detection is ∼ 6 MeV, only the high energy portion of
the 8B solar neutrino flux is measured. These are the same neutrinos that dominate the
radiochemical measurements of Ray Davis: Superkamiokande confirmed that this flux was
substantially below that predicted by the standard solar model (SSM)

φSSM(νx) = 5.44× 106 cm−2sec−1
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Figure 1: The SuperKamiokande atmospheric neutrino results showing excel-
lent agreement between the predicted (blue lines) and observed electron-like
events, but a sharp depletion in the muon-like events for neutrinos coming
from below, through the earth. The results are fit very well by the assump-
tion of νµ → ντ oscillations with maximal mixing (red lines).
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Figure 11: The Super-Kamiokande atmospheric neutrino results showing excellent agreement
between the predicted (blue lines) and observed electron-like events, but a sharp depletion
in the muon-like events for neutrinos coming from below, through the earth. The results are
fit very well by the assumption of νµ → ντ oscillations with maximal mixing (red lines).
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Figure 12: Prior to SNO, this figure illustrates the regions in the δm2 − sin22θ plane that
were candidates to solve the Cl/Ga/Kamiokande/Super-Kamiokande solar neutrino puzzle.
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The key idea behind the Sudbury Neutrino Observatory (SNO) was construction of a detector
that would have multiple detection channels, recording the νes by one reaction and the total
flux of all neutrinos (νes + νµs + ντ s) by another. This was accomplished by replacing the
ordinary water in a water Cerenkov detector with heavy water – D2O instead of H2O. The
charged-current (CC) channel that records the νes is analogous to the reaction used in the
Davis detector

νe + d → p + p + e−

As the electron produced in this reaction carries off most of the neutrino energy, its detection
in the SNO detector (by the Cerenkov light it generates) allows the experimentalists to
determine the spectrum of solar νes, not just the flux. A second reaction, the neutral current
(NC) breakup of deuterium, gives the total flux, independent of flavor (the νe, νµ, and ντ

cross sections are identical),
νx + d → n + p + νx

The only signal for this reaction in a water Cerenkov detector is the neutron, which can be
observed as it captures via the (n, γ) reaction. SNO is currently operating with salt added
to the water, as Cl in the salt is an excellent (n, γ) target, producing about 8 MeV in γs.

While the strategy may sound straightforward, producing such a detector was an enormous
undertaking. The needed heavy water – worth about $300M – was available through the
Canadian government because of its CANDU reactor program. The single-neutron detection
required for the neutral current reaction is possible only if backgrounds are extremely low.
For this reason the detector had to be placed very deep underground, beneath approximately
two kilometers of rock, so that cosmic-ray muon backgrounds would be reduced to less than
1% of that found in the SuperKamiokande detector. The experimentalists found the needed
site in an active nickel mine, the Sudbury mine in Ontario, Canada, where they worked with
the miners to carve out a 10-story-high cavity on the mine’s 6800-ft level. Trace quantities of
radioactivity were another background concern: if a thimblefull of dust were introduced into
the massive cavity during construction, the resulting neutrons from U and Th could cause
the experiment to fail. Thus, despite the mining activities that continued around them, the
experimentalists constructed their detector to the strictest cleanroom standards. The de-
tector also provided a third detection channel, neutrino elastic scattering (ES) off electrons,
which we have noted is sensitive to νes and, with reduced sensitivity, νµs and ντ s.

The ES reaction, of course, provides SNO a direct cross check against SuperKamiokande.
SNO’s threshold for measuring these electrons is about 5 MeV. Assuming no oscillations,
SNO’s detection rate is equivalent to a νe flux of

φES
SNO = 2.39± 0.34(stat)± 0.15(syst)× 106 cm−2sec−1,

a result in excellent accord with that from SuperKamiokande,

φES
SK = 2.32± 0.03(stat)± 0.06(syst)× 106 cm−2sec−1.
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The greater accuracy of the SuperKamiokande result reflects the larger mass (50 kilotons)
and longer running time of the Japanese experiment. (SNO contains, in addition to the one
kiloton of heavy water in its central acrylic vessel, an additional seven kilotons of ordinary
water that surrounds the central vessel, helping to shield it.)

The crucial new information provided by SNO comes from the two reactions on deuterium.
The CC current channel is only sensitive to νes. Under the assumption of an undistorted 8B
neutrino flux, SNO experimentalists deduced

φCC
SNO(νe) = 1.75± 0.07(stat)± 0.12(sys)± 0.05(theory)× 106 cm−2sec−1.

The CC flux is less than that deduced from the ES rate, indicating that νµs and ντ s must
be contributing to the later. From the difference between the SuperKamiokande ES and the
SNO CC results

δφ = 0.57± 0.17× 106 cm−2sec−1

and recalling that the νµ/ντ ES cross section is only 0.15 that for the νe, one deduces the
heavy-flavor contribution to the solar neutrino flux

φ(νµ/ντ ) = 3.69± 1.13× 106 cm−2sec−1.

That is, approximately two-thirds of the solar neutrino flux is in these flavors.

While the first SNO analysis was done in the manner described above, a second publication
gave the long awaited NC results. This allowed a direct and very accurate determination
of the flavor content of solar neutrinos, without the need for combining results from two
experiments. The published NC results were obtained without the addition of salt to the
detector: the neutron was identified by the 6.25 MeV γ ray it produces by capturing on
deuterium. The resulting total flux, independent of flavor, is

φNC
SNO(νx) = 5.09± 0.44(stat)± 0.45(syst)× 106 cm−2sec−1.

Combining with the CC signal yields

φSNO(νe) = 1.76± 0.05(stat)± 0.09(syst)× 106 cm−2sec−1

φSNO(νµ/ντ ) = 3.41± 0.45(stat)± 0.46(syst)× 106 cm−2sec−1

The presence of heavy-flavor solar neutrinos and thus neutrino oscillations is confirmed at
the 5.3σ level! Furthermore the total flux is in excellent agreement with the predictions of
the SSM— an important vindication of stellar evolution theory.

The SNO analysis is summarized in Figures 13, which shows the three bands corresponding
to the CC, NC, and ES measurements coinciding in a single region. These results can now be
combined with other solar neutrino measurements to determine the parameters – the mixing
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Figure 14: For two-flavor mixing, the values of the mass difference and mixing angle consis-
tent with the data on solar neutrinos, following the initial SNO results. At 99% confidence
level the addition of SNO data isolates a unique, large-mixing-angle solution.

angle and mass-squared difference – governing the oscillations. Before SNO produced re-
sults, there were several contending solutions, though the data favored one characterized by
a small mixing angle (thus called the SMA solution). Figure 14 shows that the SNO result
has determined an oscillation solution that, at 99% confidence level, is unique – and as in
the atmospheric neutrino case, it has a large mixing angle, θ12 ∼ 30 degrees. This LMA os-
cillation is clearly distinct from that seen with atmospheric neutrinos, with δm2

12 = m2
2−m2

1

centered on a region ∼ 8× 10−5 eV2.

The discovery that the atmospheric and solar neutrino problems are both due to neutrino
oscillations has provided the first evidence for physics beyond the standard model. That
neutrinos provided this evidence is perhaps not unexpected: if the standard model is viewed
as an effective theory, one largely valid in our low-energy world but missing physics relevant
to very high energies, beyond the reach of current accelerators, then a neutrino mass term
is the lowest-order correction that can be added to that theory. But a surprise is the large
mixing angles characterizing the neutrino oscillations – which contradicts the simple preju-
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dice that neutrino mixing angles might be similar to the small angles familiar from quark
mixing. Perhaps this simply reinforces something that should have been apparent at the
outset: with their small masses and distinctive mixings, neutrinos likely have an underlying
mechanism for mass generation that differs from that of the other standard model fermions.

4.6 Terrestrial verification: KamLAND
One remarkable aspect of the solar and atmospheric neutrino discoveries is that the derived
oscillation parameters are within the reach of terrestrial experiments. This did not have to
be the case – solar neutrinos are sensitive to neutrino mass differences as small as 10−12 eV2,
for which terrestrial experiments would be unthinkable.

The first terrestrial experiment to probe solar neutrino oscillation parameters, KamLAND,
very recently reported first results. The acronym KamLAND stands for Kamioka Liquid
scintillator Anti-Neutrino Detector. The inner detector consists of one kiloton of liquid
scintillator contained in a spherical balloon, 13m in diameter. The balloon is suspended
in the old Kamioka cavity (where SuperKamiokande’s predecessor was housed) by Kevlar
ropes, with the region between the balloon and an 18m-diameter stainless steel containment
vessel filled with additional scintillator (serving to shield the target from external radiation).
Several Japanese power reactors are about 180 km from the Kamioka site, and the electron
antineutrinos emitted by nuclear reactions in the cores of these reactors can be detected in
KamLAND via the inverse beta decay reaction

ν̄e + p → e+ + n,

where the e+ is seen in coincidence with the delayed 2.2 MeV γ ray produced by the capture
of the accompanying neutron on a proton. This coincidence allows the experimentalists to
distinguish ν̄e reactions from background.

From the reactor operations records, which the power companies have made available, Kam-
LAND experimentalists can calculate the resulting flux at Kamiokande to a precision of
∼ 2%, in the absence of oscillations. Thus, if a significant fraction of the reactor ν̄es oscillate
into ν̄µs or ν̄τ s before reaching the detector, a low rate of e+/capture-γ-ray coincidences will
be evident: this is an example of the “disappearance” oscillation technique we described in
I. For the 162 ton/yr exposure so far reported by the KamLAND collaboration, the number
of events expected in the absence of oscillations is 86.8 ± 5.6. But the number measured
is 54 – just 61% of the no-oscillation expectation. From the two-neutrino-flavors oscillation
survival probability

P (ν̄e → ν̄e) ' 1− sin2 2θ12 sin2 δm2
12L

4Eν

one obtains the oscillation parameters of the next figure. KamLAND confirms the LMA
solution and significantly narrows SNO’s allowed region (the red area in the figure). Kam-
LAND has excellent sensitivity to δm2

12 but less sensitivity to sin2 2θ12 (due to uncertainties
in the shape of the reactor ν̄e spectrum). The result is the separation of the SNO LMA
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Figure 4: The 95% c.l. LMA allowed region of SNO and other solar neutrino
experiments is shown in red. The regions marked “Rate and Shape allowed”
show the 95% c.l. KamLAND allowed solutions. The thick dot indicates
the best fit to the KamLAND data, corresponding to sin2 2θ12 ∼ 1.0 and
δm2

12 ∼ 6.9× 10−5 eV2.

by solar neutrino mass difference δm2
12 ∼ 10−5 eV2.) However, as the sign of

δm2
23 is not known, it is also possible that m3 is the lightest neutrino, with

the nearly degenerate m1 and m2 heavier. Finally, the best direct laboratory
constraint on absolute neutrino masses comes from studies of tritium beta
decay, as described in I. Studies of the tritium spectrum near its endpoint
energy places a bound of 2.2 eV [13] on the ν̄e mass (or more properly, on the
principal mass eigenstate contributing to the ν̄e). Consequently, one can add
an overall scale of up to 2.2 eV to the mass splittings described above. That
is, no terrestrial measurement rules out three nearly degenerate neutrinos,
each with a mass ∼ 2.2 eV, but split by requisite δm2

atmos and δm2
solar.

As discussed in I, the absolute neutrino mass is crucial in cosmology,
as a sea of neutrinos produced in the Big Bang pervades all of space. If

12

Figure 15: The 95% c.l. LMA allowed region of SNO and other solar neutrino experiments is
shown in red. The regions marked “Rate and Shape allowed” show the 95% c.l. KamLAND
allowed solutions. The thick dot indicates the best fit to the KamLAND data, corresponding
to sin2 2θ ∼ 1.0 and δm2

12 ∼ 6.9× 10−5 eV2.
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allowed region into two parts, with the best-fit δm2
12 ∼ 7× 10−5 eV2, but with a larger mass

difference ∼ 1.5× 10−4 eV2 also fitting well. KamLAND is an excellent example of comple-
mentary terrestrial and astrophysical measurements: solar neutrino experiments provide our
best constraints on θ12, but KamLAND places the tightest bounds on δm2

12.

4.7 Summary: what remains to be learned
The net result of all this effort is a determination of δm2

12, θ12 ∼ 30◦, δm2
23, θ23 ∼ 45◦

 νe

νµ

ντ

 =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e
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iδ c23c13
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−s23 c23


 c13 s13e
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−s12 c12

1


 ν1

ν2
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Here the general transformation between mass and flavor eigenstates is decomposed into its
three independent two-by-two rotations. Note that all we know about sin θ13 comes from
reactor ν̄e disappearance limits, yielding ≤ 0.17.

But a lot remains unclear:
• We have mass differences, but no absolute measurement of the masses. Thus we can add
amounts to all three masses in such a way as to preserve the mass differences. From labora-
tory measurements, as we discussed earlier this quarter, the tightest constraint comes from
tritium beta decay. This demands that the mass scale is no more than 2.2 eV. A tighter
constraint comes from WMAP: the sum of the three masses is no more than 1 eV.
• We don’t know the sign of m2

23. This means that the pair of neutrinos that participates in
solar neutrino oscillations can either be the two lightest neutrinos or the two heaviest.
• We don’t know θ13. This is a crucial mixing angle for astrophysics (important in a su-
pernova) and also for terrestrial experiments to measure CP violation in long baseline ex-
periments (which look for a difference in νµ → νe vs ν̄µ → ν̄e, other than those induced by
matter effects).
• We don’t know the value of CP-violating phases. One of these, δ, is involved with θ13 in
the long-baseline tests for CP violation. Two others are only seen in rather exotic ways, such
as in double beta decay.

Thus there is a lot remaining to me done!
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