Greek Alphabet

Capital	A	B	Γ	Δ	E	Z	H	Θ	I	K	Λ	M
Lowercase α	β	γ	δ	ε	ζ	η	θ, ϑ	l	κ	λ	μ	

Name alpha beta gamma delta epsilon zeta eta theta iota kappa lambda mu

Capital	N	Ξ	O	Π	P	Σ	T	Y	Φ	X	Ψ	Ω
Lowercase ν	ξ	o	π	ρ	σ	τ	v	ϕ, φ	χ	ψ	ω	

Name nu xi omicron pi rho sigma tau upsilon phi chi psi omega

Important constants:

Speed of light: $c=2.9979 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ (roughly a foot per nanosecond)
Planck constant: $h=6.626 \cdot 10^{-34} \mathrm{~J} \mathrm{~s} ; \hbar=h / 2 \pi=1.0546 \cdot 10^{-34} \mathrm{~J} \mathrm{~s}$
Fundamental charge unit: $e=1.6022 \cdot 10^{-19} \mathrm{C}$
Coulomb's Law constant: $1 / 4 \pi \varepsilon_{0}=8.988 \cdot 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2 \mathrm{~s}}$
Gravitational constant: $G=6.67410^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Avogadro constant: $N_{\mathrm{A}}=6.022 \cdot 10^{23}$ particles per mol; $1 \mathrm{~mol}=A$ gram ($A=$ molecular mass)
Boltzmann constant: $k=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}=8.617 \cdot 10^{-5} \mathrm{eV} / \mathrm{K} ; R=N_{\mathrm{A}} \cdot k=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$
Stefan-Boltzmann constant: $\sigma=5.67 \cdot 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$
Thompson cross section: $\sigma_{e}=6.65 \cdot 10^{-29} \mathrm{~m}^{2}$
Electron mass: $m_{\mathrm{e}}=9.109 \cdot 10^{-31} \mathrm{~kg}$
Hydrogen atom (${ }^{1} \mathrm{H}$) mass: $m_{\mathrm{H}}=1.6735 \cdot 10^{-27} \mathrm{~kg}(A=1.0078)$
Helium atom $\left({ }^{4} \mathrm{He}\right)$ mass: $m_{4_{\mathrm{He}}}=6.6465 \cdot 10^{-27} \mathrm{~kg}(A=4.0026)$
Hubble constant: $H_{\mathrm{o}}=68 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$
$M_{\text {Earth }}=5.97 \cdot 10^{24} \mathrm{~kg} ; R_{\text {Earth }}=6.371 \cdot 10^{6} \mathrm{~m}$
$M_{\text {sun }}=1.989 \cdot 10^{30} \mathrm{~kg} ; R_{\text {sun }}=6.955 \cdot 10^{8} \mathrm{~m}, \Delta_{\text {earth-sun }}=1$ A.U. $=1.496 \cdot 10^{11} \mathrm{~m}$
$L_{\text {sun }}=3.84 \cdot 10^{26} \mathrm{~W}$ (corresponds to black-body effective temperature $T=5777 \mathrm{~K} ; M=4.83$)

Useful conversions:

1 A.U. $=1.496 \cdot 10^{11} \mathrm{~m} ; 1$ parsec $=1 \mathrm{pc}=206,265$ A.U. $=3.086 \cdot 10^{16} \mathrm{~m}=3.262$ light years
Absolute magnitude: $M=m$ at 10 pc distance; $\mathrm{M}_{2}=M_{1}+2.5 \log _{10}\left(L_{1} / L_{2}\right)$ $L=$ luminosity $=$ light energy emitted $/$ second $; M=71.29-2.5 \lg (L /$ Watt $)$
Apparent magnitude: $m=M+5 \log _{10}(d / 10 \mathrm{pc}) ; m_{2}=m_{1}+2.5 \log _{10}\left(F_{1} / F_{2}\right)$
$F=$ brightness $=$ light absorbed $/$ second $/ \mathrm{m}^{2} ; F=\frac{L}{4 \pi d^{2}} ; m=66.29-2.5 \lg \left(\frac{L}{1 \mathrm{~W}}\right)+5 \lg \left(\frac{d}{1 \mathrm{pc}}\right)$

PHYSICS 313 - Winter/Spring Semester - ODU

$1 \mathrm{fm}(=1$ "Fermi" $)=10^{-15} \mathrm{~m}, 1 \mathrm{~nm}=10^{-9} \mathrm{~m}=10 \AA ; 1 \mathrm{PHz}=10^{15} \mathrm{~Hz}$
$1 \mathrm{eV}=e \cdot 1 \mathrm{~V}=1.602 \cdot 10^{-19} \mathrm{~J}$ (Energy of elementary charge after 1 V potential difference)
$1 \mathrm{keV}=1000 \mathrm{eV}, 1 \mathrm{MeV}=10^{6} \mathrm{eV}, \mathrm{GeV}=10^{9} \mathrm{eV}, 1 \mathrm{TeV}=10^{12} \mathrm{eV}$
New unit of mass $m: 1 \mathrm{eV} / c^{2}=$ mass equivalent of 1 eV (Relativity!) $=1.78 \cdot 10^{-36} \mathrm{~kg}$
Momentum $p: 1 \mathrm{eV} / c=5.34 \cdot 10^{-28} \mathrm{~kg} \mathrm{~m} / \mathrm{s} ; p$ in $\mathrm{eV} / c=$ mass in eV / c^{2} times velocity in units of c
Planck contant: $\hbar c=197.33 \mathrm{eV} \mathrm{nm}\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right) ; \hbar=6.582 \cdot 10^{-16} \mathrm{eVs}=0.658 \mathrm{eV} / \mathrm{PHz}$
Fine-structure constant: $\alpha=e^{2} / 4 \pi \varepsilon_{0} \hbar c=1 / 137.036$
Electron mass: $m_{\mathrm{e}}=510,999 \mathrm{eV} / c^{2} \approx 0.511 \mathrm{MeV} / c^{2}$; Muon mass: $m_{\mu}=105.658 \mathrm{MeV} / c^{2} \approx 207 \cdot m_{\mathrm{e}}$
Muon mass: $m_{\mu}=105.658 \mathrm{MeV} / c^{2} \approx 207 \cdot m_{\mathrm{e}}$
Proton mass: $m_{\mathrm{p}}=938.272 \mathrm{MeV} / c^{2} \approx 1836 \cdot m_{\mathrm{e}}$; Neutron mass: $m_{\mathrm{n}}=939.565 \mathrm{MeV} / c^{2} \approx 1839 \cdot m_{\mathrm{e}}$ Neutron mass: $m_{\mathrm{n}}=939.565 \mathrm{MeV} / c^{2} \approx 1839 \cdot m_{\mathrm{e}}$
Atomic mass unit ($1 / 12$ of the mass of a ${ }^{12} \mathrm{C}$ atom, $\Leftrightarrow A \equiv 1$): $u=931.494 \mathrm{MeV} / c^{2} \approx 1823 \cdot m_{\mathrm{e}}$
Rydberg energy: $\mathrm{Ry}=m_{\mathrm{e}} c^{2} \alpha^{2} / 2=13.606 \mathrm{eV}$
Bohr Radius: $a_{0}=\hbar c /\left(m_{\mathrm{e}} c^{2} \alpha\right)=0.0529 \mathrm{~nm}$ (roughly $1 / 2 \AA$).
Planck Length: $l_{p}=\sqrt{G \hbar / c^{3}}=1.616 \cdot 10^{-35} \mathrm{~m}$. Planck Energy: $E_{P}=\hbar c / l_{P}=1957 \mathrm{MJ}=1.22 \cdot 10^{28} \mathrm{eV}$
Planck mass: $m_{\mathrm{P}}=E_{\mathrm{p}} / c^{2}=22 \mu \mathrm{~g}$. Planck time: $t_{\mathrm{P}}=l_{\mathrm{P}} / c=5.39 \cdot 10^{-44} \mathrm{~s}$.

Special Relativity:

4-vector: Event $(c t, x, y, z)=(c t, \vec{r})=:\left(x^{0}, x^{1}, x^{2}, x^{3}\right)=x^{\mu}, \mu=0 \ldots 3$
For an inertial system S^{\prime} moving along the x -axis of S with constant velocity $v<c$, and with all axes aligned and the same origin $\left(x^{\mu}=(0,0,0,0) \Leftrightarrow x^{, \mu}=(0,0,0,0)\right)$:

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} ; x^{\prime}=\gamma\left(x-\frac{v}{c} c t\right) ; c t^{\prime}=\gamma\left(c t-\frac{v}{c} x\right) ; y=y^{\prime} ; z=z^{\prime}
$$

Clocks in S^{\prime} appear to S as if they were going slow by factor $1 / \gamma$, and vice versa.
Length of object at rest in S^{\prime} appears contracted by factor $1 / \gamma$ in S.
Velocity addition: $\frac{u_{x}}{c}=\frac{\frac{u_{x}^{\prime}}{c}+\frac{v}{c}}{1+\frac{u_{x}^{\prime}}{c} \frac{v}{c}} ; \frac{u_{y}}{c}=\frac{\frac{1}{\gamma} \frac{u_{y}^{\prime}}{c}}{1+\frac{u_{x}^{\prime}}{c} \frac{v}{c}}$.
Doppler shift: $\frac{\lambda_{\text {obs }}}{\lambda_{\text {emitted }}}=(z+1)=\frac{1+v_{\|} / c}{\sqrt{1-v^{2} / c^{2}}} \quad(v$ is the relative velocity between emitter and
observer and $v_{\|}$is its component along the line of sight; $z>0$ is redshift, $z<0$ is blueshift)

PHYSICS 313 - Winter/Spring Semester - ODU

Invariant interval between two events (points in 4-dim. space-time) separated by $\Delta x^{\mu}=(\Delta c t, \Delta \vec{r})$:

$$
(\Delta s)^{2}=(\Delta c t)^{2}-(\Delta \vec{r})^{2}=\sum_{\mu, v=0 . .3} \Delta x^{\mu} g_{\mu v} \Delta x^{v}=\left(\begin{array}{llll}
\Delta c t & \Delta x & \Delta y & \Delta z
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{c}
\Delta c t \\
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right)
$$

The 4 x 4 matrix g is called the "metric" - it helps measure distances in terms of coordinates. The invariant interval has the same magnitude in all inertial systems!
Positive ($\Delta \mathrm{s})^{2}$: "time-like separation" $=>$ elapsed "eigen" (proper) time $\Delta \tau=\frac{1}{c} \sqrt{(\Delta s)^{2}}$ in an inertial system that travels from the start point (event) to the end point (event) of the interval. Negative $(\Delta s)^{2}$: "space-like separation" (too far for any causal connection between the events).
$(\Delta s)^{2}=0$: "light-like separation"; a light ray could travel from one event to the other.
Four-momentum: $P^{u}=\left(E / c, P_{x}, P_{y}, P_{z}\right)=(\Gamma m c, \Gamma m \vec{u}) ; \Gamma=\frac{1}{\sqrt{1-\vec{u}^{2} / c^{2}}} \cdot u=$ velocity,
$E=P^{0} c$ is total energy of object $=$ sum of rest mass energy $\left(E_{\text {rest }}=m c^{2}\right)$ plus kinetic energy $T_{\text {kin }}=(\Gamma-1)^{*} m c^{2}\left(\approx m / 2 u^{2}\right.$ only if $\left.u \ll c\right)$. Sum of all momenta is conserved in collisions, separately for each component. Transformation of P^{μ} to coordinate system S^{\prime} is analog to x^{μ} (see above).
Invariant Interval: $\left(P^{0}\right)^{2}-\vec{P}^{2}=\left(\frac{E}{c}\right)^{2}-P_{x}^{2}-P_{y}^{2}-P_{z}^{2}=m^{2} c^{2} \Rightarrow E=c \sqrt{m^{2} c^{2}+\vec{P}^{2}} ; \frac{\vec{u}}{c}=\frac{\vec{P} c}{E}$.
Objects with no rest mass (e.g., photons): always $u=c, E=|\mathrm{P}| c$.

Gravity:

Newtonian Gravity:

Relationship between distance a of two masses M and m and orbital period: $\omega^{2}=\frac{G(M+m)}{a^{3}}$
Gravitational potential (=potential energy per unit mass) at a distance r from a spherical mass M :
$\Phi_{g r a v}=\frac{V_{g r a v}}{m}=-\frac{G M}{r}$. Gravitational potential energy of uniform sphere of mass M and radius R :
$V_{g r a v}=-\frac{3}{5} \frac{G M^{2}}{R}$. Virital Theorem: $T_{k i n}=-E_{\text {tot }}=\frac{1}{2}\left|V_{\text {grav }}\right|$ for a system of masses in stable orbits.

General Relativity:

Freely falling reference frames are the new local inertial coordinate systems, where photons move with the speed of light in straight lines and a resting object stays at rest in the absence of external forces (other than gravity). Objects under the influence of only gravity (no other force) follow "geodesics" (best possible rendition of a "straight line") which maximize the proper time elapsed between 2 points (analog to ordinary straight lines that correspond to the shortest distance between 2 points).

PHYSICS 313 - Winter/Spring Semester - ODU

Time Dilation: The local time $t_{\text {local }}$ near a massive object elapses more slowly than time t_{∞} in the coordinate system of a fixed observer far away: $\Delta t_{\text {local }}=\sqrt{1+\frac{2 \Phi_{\text {grav }}}{c^{2}}} \Delta t_{\infty} ; \Phi_{\text {grav }}=\frac{V_{\text {pot }}^{\text {grav }}}{m}\left(=-\frac{G M}{r}\right)$ (last expression is for spherical mass M) Schwarzschild radius: $R_{s}=\frac{2 G M}{c^{2}} \Rightarrow \Delta t_{\text {local }}=\sqrt{1-\frac{R_{s}}{r}} \Delta t_{\infty}$. Local elapsed time near Schwarzschild radius (= event horizon) becomes zero for any finite remote elapsed time -> all motion appears to come to a standstill as seen from far away (∞ slow "ageing"). => Schwarzschild metric:
$(\Delta s)^{2}=\sum_{\mu, v=0.3} \Delta x^{\mu} g_{\mu v} \Delta x^{v}=\left(\begin{array}{llll}\Delta c t & \Delta r & \Delta \theta & \Delta \varphi\end{array}\right)\left(\begin{array}{cccc}1-R_{S} / r & 0 & 0 & 0 \\ 0 & -1 /\left(1-R_{S} / r\right) & 0 & 0 \\ 0 & 0 & -r^{2} & 0 \\ 0 & 0 & 0 & -r^{2} \sin ^{2} \theta\end{array}\right)\left(\begin{array}{c}\Delta c t \\ \Delta r \\ \Delta \theta \\ \Delta \varphi\end{array}\right)$
Proper time $\Delta \tau=\frac{1}{c} \sqrt{(\Delta s)^{2}}$ near spherical mass $M: d \tau=\left(\left[1-\frac{R_{s}}{r}\right] d t_{\infty}^{2}-\left[1-\frac{R_{s}}{r}\right]^{-1} \frac{d r^{2}}{c^{2}}-\frac{r^{2}}{c^{2}} d \theta^{2}-\frac{r^{2} \sin ^{2} \theta}{c^{2}} d \varphi^{2}\right)^{1 / 2}$
Curvature: No global inertial coordinate systems are possible in general, since the acceleration of gravity ("free fall") has different magnitudes and different directions at different points in space. Consequence: "straight" lines (= geodesics) become curved (both in real space $->$ bending of light around massive objects, and in space-time \rightarrow different rates of falling at different radial distance); parallel straight lines (light rays) can converge in a single point (Gravitational lensing) etc. $=>$ space-time itself is curved! Consequences: Light rays bending near massive objects (stars etc.), time-dilation and red-shift of light emitted near massive objects, event horizons,...

Universe at large:

Co-moving coordinate system: $\vec{r}_{c}=$ const. for a point (object) locally at rest relative to "Hubble flow"; true distance from origin $D=a(t) r_{c}$. Scale factor $a(t)=$ Radius of curvature in a curved universe (otherwise arbitrary; r_{c} is meant to be dimensionless). Universal time t (same everywhere; defined through Hubble parameter $H(t)-$ see below). $t_{0}=$ present time: Hubble law: $v_{r}=\frac{d D}{d t}=\dot{a}(t) r_{c}=\frac{\dot{a}(t)}{a(t)} D(t)=: H(t) D \Rightarrow H(t)=\frac{\dot{a}(t)}{a(t)}$ (Hubble parameter). At present: $H_{0}=H\left(t_{0}\right)=\frac{68-70 \mathrm{~km} / \mathrm{s}}{1 \mathrm{Mpc}} \approx \frac{1}{14 \cdot 10^{9} \mathrm{yr}}$. Speed of light in co-moving coordinates: $\frac{d r_{c}}{d t}=\frac{c}{a(t)}$ Redshift for light emitted at t and received at $t_{0}: \quad z=\frac{a\left(t_{0}\right)}{a(t)}-1$. Invariant distance of object at time of emission: $r_{c}(e m)=.\int_{t_{e}}^{t_{0}} \frac{c}{a(t)} d t \Rightarrow D\left(e m ., t_{e}\right)=a\left(t_{e}\right) r_{c}(e m.) ; D\left(e m ., t_{0}\right)=a\left(t_{0}\right) r_{c}(e m$.$) .$
General (Walker-Robertson) metric: $d s^{2}=d t^{2}-a^{2}(t)\left[d r_{c}^{2}+S_{K}^{2}\left(r_{c}\right)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]$.

Critical density: $\rho_{c}(t)=\frac{3 H^{2}(t)}{8 \pi G}$.
Today: $\rho_{c}\left(t_{0}\right)=\frac{3 H_{0}^{2}}{8 \pi G} \approx 10^{-26} \mathrm{~kg} / \mathrm{m}^{3} \approx 6$ protons $/ \mathrm{m}^{3} \approx 9 \cdot 10^{-10} \mathrm{~J} / \mathrm{m}^{3}$
Closed Universe (positive curvature): $\rho_{\text {tot }}=\rho_{M}+\rho_{R}+\rho_{\Lambda}>\rho_{c} \Rightarrow K=1, S_{K}\left(r_{c}\right)=\sin \left(r_{c}\right)$.
Flat Universe (no curvature): $\rho_{\text {tot }}=\rho_{c} \Rightarrow K=0, S_{K}\left(r_{c}\right)=r_{c}$.
Open Universe (negative curvature): $\rho_{\text {tot }}<\rho_{c} \Rightarrow K=-1, S_{K}\left(r_{c}\right)=\sinh \left(r_{c}\right)$.

Evolution:

$$
\begin{aligned}
& H^{2}(t)=\frac{\dot{a}^{2}(t)}{a^{2}(t)}=\frac{8 \pi}{3} G \rho_{\text {tot }}(t)-\frac{K c^{2}}{a^{2}(t)}=H_{0}^{2}\left(\frac{\rho_{\text {tot }}(t)}{\rho_{c}\left(t_{0}\right)}-\frac{K c^{2}}{H_{0}^{2} a^{2}(t)}\right)=H_{0}^{2}\left(\Omega_{M}(t)+\Omega_{R}(t)+\Omega_{\Lambda}(t)+\Omega_{K}(t)\right) \\
& \Rightarrow \dot{a}(t)=a(t) H_{0} \sqrt{\Omega_{M}(t)+\Omega_{R}(t)+\Omega_{\Lambda}(t)+\Omega_{K}(t)} \Rightarrow \frac{d a}{a}=\sqrt{\Omega_{M}(t)+\Omega_{R}(t)+\Omega_{\Lambda}(t)+\Omega_{K}(t)} H_{0} d t
\end{aligned}
$$

with the following ingredients:

1) Matter (both baryonic and dark matter), non-relativistic, density due to mass:
$\Omega_{M}(t)=\frac{\rho_{M}(t)}{\rho_{c}\left(t_{0}\right)}=\frac{\rho_{M}\left(t_{0}\right)}{\rho_{c}\left(t_{0}\right)} \frac{a_{0}^{3}}{a^{3}(t)}=\Omega_{M}^{0} \frac{a_{0}^{3}}{a^{3}}$. (Note the "mixed defintion" where ρ_{c} is always taken at today's value). Today: $\Omega_{M}^{0} \approx 0.3$, roughly 26% dark matter and 4% baryons.
2) Radiation (any relativistic particles, including photons, neutrinos in the early Universe and ultra-hot matter): $\Omega_{R}(t)=\frac{\rho_{R}(t)}{\rho_{c}\left(t_{0}\right)}=\frac{\varepsilon(t) / c^{2}}{\rho_{c}\left(t_{0}\right)}=\frac{\rho_{R}\left(t_{0}\right)}{\rho_{c}\left(t_{0}\right)} \frac{a_{0}^{4}}{a^{4}(t)}=\Omega_{R}^{0} \frac{a_{0}^{4}}{a^{4}}$.
$\varepsilon(t)=$ energy density $\propto T^{4} ; T(t)=T\left(t_{0}\right) \frac{a_{0}}{a(t)}$. Today: $\Omega_{R}^{0}=8.24 \cdot 10^{-5}$ (mostly due to 2.7 K CMB)
3) Dark energy (cosmological constant Λ): $\Omega_{\Lambda}(t)=\frac{\rho_{\Lambda}(t)}{\rho_{c}\left(t_{0}\right)}=\frac{\rho_{\Lambda}\left(t_{0}\right)}{\rho_{c}\left(t_{0}\right)}$ (const.) $=\Omega_{\Lambda}^{0}$. Today, $\Omega_{\Lambda}^{0} \approx 0.7$.
4) Curvature: $\Omega_{K}(t)=-\frac{K c^{2}}{H_{0}^{2} a^{2}(t)}=\Omega_{K}^{0} \frac{a_{0}^{2}}{a^{2}}$. Note: By definition $\Omega_{K}^{0}=1-\Omega_{M}^{0}-\Omega_{R}^{0}-\Omega_{\Lambda}^{0}$. In principle, can be negative (open Universe) or positive (closed Universe). Today's value unknown but very close to 0 (within 2\%). Must have been extremely close to 0 in the early Universe (Inflation predicts 0).

General behavior of scale factor for different scenarios (dominance of one of the Ω terms): Matter dominated Universe: $a(t)=a_{0}\left(1+\frac{3}{2} H_{0} t\right)^{2 / 3}$ Radiation dominance: $a(t)=a_{0}\left(1+2 H_{0} t\right)^{1 / 2}$ Dark energy/inflation dominance: $a(t)=a_{0} e^{H_{0} t}$. (Negative) curvature dominance: $a(t)=a_{0}+c t$

PHYSICS 313 - Winter/Spring Semester - ODU

Quantum Mechanics:

Formal/abstract (for experts only): All knowledge about a system is encoded in state vector $|\psi\rangle$. State vectors can be linearly combined, and we can define a scalar product $\left\langle\psi^{\prime} \mid \psi\right\rangle$ (complex number). By convention all state vectors are normalized to $1:\langle\psi \mid \psi\rangle=1$.
Observables O are represented by operators Ω with eigenvectors $\left|\varphi_{i}\right\rangle$ and eigenvalues ω_{i} (real numbers): $\Omega\left|\varphi_{i}\right\rangle=\omega_{i}\left|\varphi_{i}\right\rangle$. Any measurement of O must give one of these eigenvalues as result. After we measure ω_{i}, the system will be in the state described by vector $\left|\varphi_{i}\right\rangle$ ("collapse of the state"). The probability to measure this particular eigenvalue is given by $\operatorname{Pr}\left(\omega_{i}\right)=\left|\left\langle\varphi_{i} \mid \psi\right\rangle\right\rangle^{2}$. The average (expectation value) for the observable over many independent trials is $\langle O\rangle=\langle\psi| \Omega|\psi\rangle$ with a standard deviation $\Delta O=\sqrt{\left\langle O^{2}\right\rangle-\langle O\rangle^{2}}$.
Heisenberg's uncertainty principle: Position x and momentum p cannot be predicted with arbitrary precision simultaneously; $\Delta x \Delta p \geq \hbar / 2$.
Time evolution (Schrödinger Equation): $|\psi\rangle(t) ; \quad \frac{\partial}{\partial t}|\psi\rangle(t)=\frac{1}{i \hbar} \mathbf{H}|\psi\rangle(t)$ where \mathbf{H} is the Hamiltonian operator that represents total mechanical energy (kinetic and potential). Eigenstates of \mathbf{H} : $\mathbf{H}\left|\varphi_{E}\right\rangle=E\left|\varphi_{E}\right\rangle ; \quad\left|\varphi_{E}\right\rangle(t)=\left|\varphi_{E}\right\rangle e^{-i E t h}$ represent bound (stationary) states

CONSEQUENCES:

1) In general, only probabilistic predictions can be made about measurements of observables
2) Quantization of light (in form of photons) and of energy levels in atoms, nuclei, molecules,...

Hydrogen-like atoms:

(Nucleus of mass m_{2} and charge $Z e$, bound particle of mass m_{1} and charge $-e$)
$V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}=-\frac{Z \alpha \hbar c}{r}$
Strictly speaking, mass must be replaced by "reduced mass" of 2-body system with masses m_{1} and $m_{2}: \mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \approx m_{1}$ if $m_{1} \ll m_{2}$

Energy Eigenvalues = possible energy levels of "stationary bound states":
$E_{n}=-\frac{\mu}{m_{e}} \frac{Z^{2}}{n^{2}} R y \approx-\frac{1}{n^{2}} R y$ for hydrogen atom $\left(n=1,2, \ldots ; R y=m_{\mathrm{e}} c^{2} \alpha^{2} / 2=13.6 \mathrm{eV}\right)$. Degenerate
in ℓ and $m ; \ell=0,1, \ldots, n-1, m_{\ell}=-\ell \ldots+\ell$; also degenerate in electron spin $m_{\mathrm{s}}= \pm 1 / 2 \Rightarrow$ total degeneracy $g_{\mathrm{n}}=2 n^{2}$.
Characteristic radius: $a=\frac{m_{e}}{\mu_{r} Z} a_{0} \quad a_{0}=\hbar c /\left(m_{\mathrm{e}} c^{2} \alpha\right)=0.53 \AA$.

PHYSICS 313 - Winter/Spring Semester - ODU

Light emitted or absorbed in transition with energy difference $\Delta E=E_{\text {init }}-E_{\text {final }}$: $f=\Delta E / h, \lambda=h c / \Delta E=2 \pi \hbar c / \Delta E$ (Photon energy $E_{r}=h f$ and momentum $p_{r}=h / \lambda$)

Pauli principle:

No two identical Fermions (spin-1/2, $3 / 2, \ldots$ particles) can be in the same exact quantum state.
Consequence: Only up to two spin-1/2 particles (one with spin "up", one with spin "down") can in a "phase-space volume" (= ordinary volume V times momentum-space volume $\frac{4 \pi}{3} p_{f}^{3}$) of size h^{3} (Planck's constant cubed). Therefore, a "Fermi gas" (also called a "degenerate gas") of spin-1/2 particles has to occupy available momentum states up to a maximum of the Fermi momentum $p_{f}=\hbar\left(3 \pi^{2}\right)^{1 / 3} n^{1 / 3} ; \quad n=\frac{N_{\text {tot }}}{V}$ where $N_{\text {tot }}$ is the total number of Fermions. As a consequence, the minimum total kinetic energy for a Fermi gas with $N_{\text {tot }}$ identical fermions in a sphere of radius R is

$$
E_{\text {tot }}^{k i n}=\left\{\begin{array}{l}
\frac{3}{5} N_{\text {tot }} \frac{p_{f}^{2}}{2 m}=\frac{3 \hbar^{2}}{10 m} N_{t o t}\left(3 \pi^{2}\right)^{2 / 3}\left(\frac{N_{t o t}}{V}\right)^{2 / 3}=\frac{3 \hbar^{2}\left(\frac{9 \pi}{4}\right)^{2 / 3}}{10 m} \frac{N_{t o t}^{5 / 3}}{R^{2}} ; \text { non-relativistic } \\
\frac{3}{4} N_{t o t} c p_{f}=\frac{3}{4} \hbar c N_{t o t}\left(3 \pi^{2}\right)^{1 / 3}\left(\frac{N_{t o t}}{V}\right)^{1 / 3}=\frac{3 \hbar c\left(\frac{9 \pi}{4}\right)^{1 / 3}}{4} \frac{N_{t o t}^{4 / 3}}{R} ; \text { ultra-relativistic }
\end{array}\right.
$$

Astrophysics:

For a white dwarf of mass M, equilibrium between gravity and "Fermi pressure" is reached when $R=\frac{\hbar^{2} N_{\text {tot }}^{5 / 3}}{m_{e} G M^{2}}\left(\frac{9 \pi}{4}\right)^{2 / 3}$ with $N_{\text {tot }}=\frac{M}{1.008 \mathrm{~g}} \frac{N_{A}}{2} \cdot($ careful: $1 \mathrm{~g}=0.001 \mathrm{~kg}!)$
For a neutron star, replace m_{e} with m_{n} and $N_{\text {tot }}$ with $N_{\text {tot }}=\frac{M}{1.009 \mathrm{~g}} N_{A}$.
Chandrasekar limit: White dwarfs become unstable beyond $M=1.4 M_{\text {sun }}$; neutron stars become unstable beyond $2 M_{\text {sun }}$ (both due to relativistic effects: the kinetic energy goes up only like $1 / R$ instead of $1 / R^{2}$ as the Fermi momentum approaches the mass of the fermion in magnitude).

PHYSICS 313 - Winter/Spring Semester - ODU

Nuclear Physics

Mass-energy of an atom: (Z protons, N neutrons, $A=Z+N$):
$M_{\mathrm{A}} c^{2}=Z M_{\mathrm{p}} c^{2}+N M_{\mathrm{n}} c^{2}+Z m_{\mathrm{e}} c^{2}-B E$ (Binding energy)
typical binding energies $B E=7-8 \mathrm{MeV} \cdot A$ with a maximum of $B E / A$ for nuclei around iron ($A=56$).
Light nuclei have significantly lower $B E$ per nucleon; beyond iron, the $B E$ per nucleon decreases slowly with A (due to Coulomb repulsion).
Energy liberated during a nuclear fusion reaction $1+2->3: \Delta E=M_{1} c^{2}+M_{2} c^{2}-M_{3} c^{2}$
Energy liberated during a nuclear decay $1->2+3: \Delta E=M_{1} c^{2}-M_{2} c^{2}-M_{3} c^{2}$
Density: roughly constant $\rho=0.16$ Nucleons $/ \mathrm{fm}^{3}=2 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
Radioactive nuclei:
alpha-decay: $(Z, A) \rightarrow(Z-2, A-2)+{ }^{4} \mathrm{He}+$ energy
beta-plus decay: $(Z, A) \rightarrow(Z-1, A)+\mathrm{e}^{+}+v_{\mathrm{e}}$
beta-minus decay: $(Z, A) \rightarrow(Z+1, A)+\mathrm{e}^{-}+\bar{v}_{e}$
Decay probability in time $\Delta t: \Delta \operatorname{Pr}(\Delta t)=\Delta t / \tau\left(\tau=\right.$ lifetime $\left.=T_{1 / 2} / \ln 2\right)$
Number of undecayed nuclei at time t (starting with N_{0}): N(t$)=N_{0} \mathrm{e}^{-t / \tau}$

Particle Physics

Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle): quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electron-neutrino, muon-neutrino, tau-neutrino) and their antiparticles:

Name	Symbol	Mass (MeV/c $\left.{ }^{2}\right)^{*}$	J	B	$Q(e)$	Particle/antiparticle name	Symbol	Q (e)
						Electron / Positron ${ }^{[18]}$	$e^{-/} e^{+}$	$-1 /+1$
Up	u	$2.3{ }_{-0.5}^{+0.7}$	1/2	$+1 / 3$	$+2 / 3$			
Down	d	$4.8{ }_{-0.3}^{+0.5}$	1/2	$+1 / 3$	$-1 / 3$	Muon / Antimuon ${ }^{[19]}$	μ^{-} / μ^{+}	$-1 /+1$
					1	Tau / Antitau ${ }^{[21]}$	τ^{-} / τ^{+}	$-1 /+1$
Charm	c	1275 ± 25	1/2	+ $1 / 3$	$+2 / 3$			
Strange	s	95 ± 5	1/2	$+1 / 3$	$-1 / 3$	Electron neutrino / Electron antineutrino ${ }^{[34]}$	$\mathrm{v}_{\mathrm{e}} / \overline{\mathrm{v}}_{\mathrm{e}}$	0
						Muon neutrino / Muon antineutrino ${ }^{[34]}$	v_{μ} / \bar{v}_{μ}	0
Top	t	$173210 \pm 510 \pm 710$	1/2	+1/3	$+2 / 3$			
Bottom	b	4180 ± 30	1/2	+1/3	$-1 / 3$	Tau neutrino / Tau antineutrino ${ }^{[34]}$	$\mathrm{v}_{\mathrm{T}} / \overline{\mathrm{v}}_{\mathrm{T}}$	0

Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics):
Photon γ (electromagnetic interaction), W^{+}, W, Z^{0} (weak interaction), gluons (strong interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are massless; the latter gain mass ($80-91 \mathrm{GeV} / c^{2}$) through interaction with the Higgs field.

PHYSICS 313 - Winter/Spring Semester - ODU

Thermal/Statistical Physics

Boltzmann Distribution: number $n(E)$ of atoms (molecules, ...) out of an ensemble with a total of N atoms (...) with given energy E in a system with absolute temperature T (in K).

Discrete energy levels E_{i} (e.g., quantum systems) with degeneracy g_{i} (= number of eigenstates of the Hamiltonian with energy eigenvalue E_{i}):

$$
n\left(E_{i}\right)=C g_{i} e^{-E_{i} / k T}=\frac{g_{i}}{e^{\left(E_{i}-\mu\right) / k T}} ; C=e^{\mu / k T}=N / \sum g_{i} e^{-E_{i} / k T}
$$

(C is a normalization constant; μ is the "chemical potential")
Continuous energy levels E (classical system, e.g. monatomic gas) with state density $g(E) \mathrm{d} E(=$ volume in "phase space" between energy E and energy $E+\mathrm{d} E$):
$d n(E \ldots E+d E)=C g(E) d E e^{-E / k T} ; C=N / \int g(E) d E e^{-E / k T}$
State density for simple monatomic gas:
$g(E) d E=4 \pi p^{2} d p=4 \pi m \sqrt{2 m E} d E$
Consequences: Ideal gas law $P V=n R T=n N_{\mathrm{A}} k T$, ($n=$ number of mols; $N=n N_{\mathrm{A}}$); average energy per degree of freedom (dimension of motion) $=1 / 2 k T \Rightarrow>$ total kinetic energy of a monatomic gas $=3 / 2 k T$ per atom or $E_{\text {tot }}=3 / 2 n N_{\mathrm{A}} k T=\frac{3}{2} n R T$
Fermi-Dirac Distribution (for a system of indistinguishable Fermions):
$n\left(E_{i}\right)=N \frac{g_{i}}{e^{\left(E_{i}-\mu\right) / k T}+1} ; \mu$ here is right above the Fermi energy $=$ the highest filled energy level necessary to accommodate all N fermions, where all lower energy levels are filled with as many Fermions as the Pauli principle allows (= the state of a (degenerate) Fermi gas at close to zero temperature).
Bose-Einstein Distribution (for a system of indistinguishable bosons):
$n\left(E_{i}\right)=N \frac{g_{i}}{e^{\left(E_{i}-\mu\right) / k T}-1} ; \mu$ here is right below the ground state energy (the lowest available energy level). If T goes to zero, all levels but that lowest energy level are empty = Bose-Einstein condensation.
Photon density for black-body radiation: $\frac{d n_{\gamma}(\lambda \ldots \lambda+d \lambda)}{d V}=\frac{8 \pi}{\lambda^{4}} \frac{d \lambda}{e^{h c / \lambda k T}-1}=8 \pi \frac{f^{2}}{c^{3}} \frac{d f}{e^{h f / k T}-1}$
Energy density (= energy contained in electromagnetic radiation of wave length λ, per unit volume V) for black-body radiation (i.e., Bose-Einstein Distribution for a photon gas: $\frac{d E}{V}=8 \pi h \frac{f^{3}}{c^{3}} \frac{d f}{e^{h f / k T}-1}=\frac{8 \pi h c}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda k T}-1}$; Energy flux/surface area $\frac{d E}{d A d t}=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda k T}-1}$ (Planck's Law); Maximum for $\lambda=\frac{h c}{4.9663 k T}=\frac{2.9 \mathrm{~mm}}{T[K]}$. Total over all wave lengths: σT^{4}

Propagation of electromagnetic waves

Energy per volume $d V$ in wave length interval $d \lambda$:
$\frac{d E(\lambda \ldots \lambda+d \lambda)}{d V}=u_{\lambda} d \lambda ; u_{\lambda}=$ specific energy density.
Example: black-body $u_{\lambda}=\frac{d n_{\gamma}}{d \lambda} \frac{h c}{\lambda}=\frac{8 \pi h c}{\lambda^{5}} \frac{1}{e^{h c / \lambda k T}-1}$
Total (integral over all wave lengths): $d E_{\text {tot }} / d V=4 \sigma / c T^{4}$
Maximum intensity per unit wave length interval for $\lambda=2.9 \mathrm{~mm} / T[\mathrm{~K}]$
(Wien displacement law)
Total power emitted (intensity integrated over all wave lengths) $I=\sigma T^{4}$
(Stefan-Boltzmann equation)
Total luminosity of spherical black-body of radius R : $L=4 \pi R^{2} \sigma T^{4}$
Apparent brightness (flux density) at distance $d: F=\frac{L}{4 \pi d^{2}}$
Power emitted per area $d A$ into solid angle $d \Omega$ in wave length interval $d \lambda$:
$\frac{d E(\lambda \ldots \lambda+d \lambda)}{d t d A d \Omega}=\cos \theta \cdot I_{\lambda}(\theta, \varphi) d \lambda ; I_{\lambda}=$ specific intensity.
Average: $\left\langle I_{\lambda}\right\rangle=\frac{1}{4 \pi} \iint I_{\lambda}(\theta, \varphi) d \Omega=\frac{c}{4 \pi} u_{\lambda}$. Ex.: black-body: $\left\langle I_{\lambda}\right\rangle=\frac{2 h c^{2}}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda k T}-1}$
Power emitted in positive (neg.) z-direction per area $d A$ perpendicular to z and per $d \lambda$:
Radiation flux density $F_{\lambda}=\int_{0}^{2 \pi} d \varphi \int_{0(\pi / 2)}^{\pi / 2(\pi)} \cos \theta \cdot I_{\lambda}(\theta, \varphi) \sin \theta d \theta$
For isotropic specific intensity (for top hemisphere): $\Rightarrow F_{\lambda}=\pi\left\langle I_{\lambda}\right\rangle$
Black-body radiation: $F_{\lambda} d \lambda=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda k T}-1}=2 \pi h c \frac{f^{3}}{c^{3}} \frac{d f}{e^{h f / k T}-1}$
Radiation pressure in z-direction: $d P_{\lambda}^{z}=\frac{2}{c} d \lambda \int_{0}^{2 \pi} d \varphi \int_{0(\pi / 2)}^{\pi / 2(\pi)} \cos ^{2} \theta \cdot I_{\lambda}(\theta, \varphi) \sin \theta d \theta$
For isotropic specific intensity in top hemisphere: $\Rightarrow d P_{\lambda}^{z}=\frac{4 \pi}{3 c}\left\langle I_{\lambda}\right\rangle d \lambda=\frac{1}{3} u_{\lambda} d \lambda \Rightarrow P_{\text {tot }}=\frac{1}{3} \frac{E_{\text {tot }}}{V}$
Scattering probability: $d \operatorname{Pr}=\frac{N_{\text {atoms }}}{V} \sigma d s=\frac{\rho}{m_{\text {Atom }}} \sigma d s=\rho \kappa d s ; \sigma=$ cross section, $\rho=$ density .
$\kappa=\sigma / m_{\text {Atom }}=$ opacity. Mean free path $\ell=1 / \kappa \sigma \cdot \tau=\mathrm{D} / \ell=$ optical depth. Total pathlength $=D \tau$. For ionized star atmospheres $(70 \% \mathrm{H})$, Rosseland opacity $\bar{\kappa} \approx 0.034 \mathrm{~m}^{2} / \mathrm{kg}$. For fully ionized hydrogen, $\bar{\kappa}=\frac{\sigma_{e}}{m_{H}}=0.042 \mathrm{~m}^{2} / \mathrm{kg} \Rightarrow L_{\max }=\frac{4 \pi G M c}{\bar{\kappa}}=(3.3-3.8) \cdot 10^{4} \frac{L_{\text {sun }} M}{M_{\text {sun }}}$ (Eddington Luminosity Limit).

