Greek Alphabet

Capital	А	В	Г	Δ	Е	Ζ	Н	Θ	Ι	K	Λ	М
Lowercase	εα	β	γ	δ	ε	ζ	η	θ, ϑ	ι	к	λ	μ
Name	alpha	beta	gamma	delta	epsilo	on zeta	eta	theta	iota	kappa	lambda	mu
Capital	Ν	Ξ	0	П	Р	Σ	Т	Y	Φ	Х	Ψ	Ω
Lowercase	eν	દ	0	π	ρ	σ	τ	υ	φ, φ	χ	ψ	ω
Name	nu	xi	omicron	pi	rho	sigma	tau	upsilo	n phi	chi	psi	omega

Important constants:

Speed of light: $c = 2.9979 \cdot 10^8$ m/s (roughly a foot per nanosecond) Planck constant: $h = 6.626 \cdot 10^{-34} \text{ J s}$; $\hbar = h / 2\pi = 1.0546 \cdot 10^{-34} \text{ J s}$ Fundamental charge unit: $e = 1.6022 \cdot 10^{-19} \text{ C}$ Coulomb's Law constant: $1/4\pi\epsilon_0 = 8.988 \cdot 10^9 \text{ Nm}^2/\text{C}^{2s}$ Gravitational constant: $G = 6.674 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$ Avogadro constant: $N_A = 6.022 \cdot 10^{23}$ particles per mol; 1 mol = A gram (A = molecular mass) Boltzmann constant: $k = 1.38 \cdot 10^{-23}$ J/K = 8.617 $\cdot 10^{-5}$ eV/K; $R = N_A$ k = 8.314 J/K/mol Stefan-Boltzmann constant: $\sigma = 5.67 \cdot 10^{-8} \text{ W/m}^2\text{K}^4$ Thompson cross section: $\sigma_e = 6.65 \cdot 10^{-29} \text{ m}^2$ Electron mass: $m_e = 9.109 \cdot 10^{-31} \text{ kg}$ Hydrogen atom (¹H) mass: $m_{\rm H} = 1.6735 \cdot 10^{-27}$ kg (A = 1.0078) Helium atom (⁴He) mass: $m_{4_{He}} = 6.6465 \cdot 10^{-27}$ kg (A = 4.0026) Hubble constant: $H_0 = 68$ km/s / Mpc $M_{\text{Earth}} = 5.97 \cdot 10^{24} \text{ kg}$; $R_{\text{Earth}} = 6.371 \cdot 10^{6} \text{ m}$ $M_{\rm sun} = 1.989 \, 10^{30} \, \text{kg}$; $R_{\rm sun} = 6.955 \, 10^8 \, \text{m}$, $\Delta_{\rm earth-sun} = 1 \, \text{A.U.} = 1.496 \, 10^{11} \, \text{m}$ $L_{sun} = 3.84 \cdot 10^{26}$ W (corresponds to black-body effective temperature T = 5777 K; M = 4.83)

Useful conversions:

1 A.U. = $1.496 \cdot 10^{11}$ m; 1 parsec = 1 pc = 206,265 A.U. = $3.086 \cdot 10^{16}$ m = 3.262 light years Absolute magnitude: M = m at 10 pc distance; $M_2 = M_1 + 2.5 \cdot \log_{10}(L_1/L_2)$ L =luminosity = light energy emitted/second; $M = 71.29 - 2.5 \cdot \log(L/Watt)$

Apparent magnitude: $m = M + 5 \log_{10}(d/10 \text{ pc}); m_2 = m_1 + 2.5 \log_{10}(F_1/F_2)$

$$F = \text{brightness} = \text{light absorbed/second/m}^2; \ F = \frac{L}{4\pi d^2}; \ m = 66.29 - 2.51 \text{g}\left(\frac{L}{1\text{W}}\right) + 51 \text{g}\left(\frac{d}{1\text{ pc}}\right)$$

1 fm (= 1 "Fermi") = 10^{-15} m, 1 nm = 10^{-9} m = 10 Å; 1 PHz = 10^{15} Hz $1 \text{ eV} = e^{-1}\text{V} = 1.602 \cdot 10^{-19} \text{ J}$ (Energy of elementary charge after 1 V potential difference) $1 \text{ keV} = 1000 \text{ eV}, 1 \text{ MeV} = 10^{6} \text{ eV}, \text{GeV} = 10^{9} \text{ eV}, 1 \text{ TeV} = 10^{12} \text{ eV}$ New unit of mass m: $1 \text{ eV}/c^2$ = mass equivalent of 1 eV (Relativity!) = $1.78 \cdot 10^{-36} \text{ kg}$ Momentum p: $1 \text{ eV}/c = 5.34 \cdot 10^{-28} \text{ kg m/s}$; p in eV/c = mass in eV/c^2 times velocity in units of c Planck contant: $\hbar c = 197.33 \text{ eV} \text{ nm} (1 \text{ nm} = 10^{-9} \text{ m}); \hbar = 6.582 \cdot 10^{-16} \text{ eVs} = 0.658 \text{ eV} / \text{PHz}$ Fine-structure constant: $\alpha = e^2 / 4\pi\epsilon_0 \hbar c = 1/137.036$ Electron mass: $m_{\rm e} = 510,999 \text{ eV}/c^2 \approx 0.511 \text{ MeV}/c^2$; Muon mass: $m_{\mu} = 105.658 \text{ MeV}/c^2 \approx 207 m_{\rm e}$ Muon mass: $m_{\mu} = 105.658 \text{ MeV}/c^2 \approx 207 m_e$ Proton mass: $m_p = 938.272 \text{ MeV}/c^2 \approx 1836 m_e$; Neutron mass: $m_n = 939.565 \text{ MeV}/c^2 \approx 1839 m_e$ Neutron mass: $m_{\rm p} = 939.565 \text{ MeV}/c^2 \approx 1839 \text{ m}_{\odot}$ Atomic mass unit (1/12 of the mass of a ¹²C atom, $\Leftrightarrow A = 1$): $u = 931.494 \text{ MeV}/c^2 \approx 1823 \text{ m}_{\odot}$ Rydberg energy: $Ry = m_e c^2 \alpha^2 / 2 = 13.606 \text{ eV}$ Bohr Radius: $a_0 = \hbar c / (m_e c^2 \alpha) = 0.0529$ nm (roughly ½ Å). Planck Length: $l_p = \sqrt{G\hbar/c^3} = 1.616 \cdot 10^{-35}$ m. Planck Energy: $E_p = \hbar c/l_p = 1957 \text{ MJ} = 1.22 \cdot 10^{28} \text{ eV}$ Planck mass: $m_{\rm P} = E_{\rm p}/c^2 = 22 \,\mu \text{g}$. Planck time: $t_{\rm P} = l_{\rm P}/c = 5.39 \, 10^{-44} \, \text{s}$.

Special Relativity:

4-vector: Event $(ct, x, y, z) = (ct, \vec{r}) =: (x^0, x^1, x^2, x^3) = x^{\mu}, \mu = 0...3$

For an inertial system S' moving along the x-axis of S with constant velocity v < c, and with all axes aligned and the same origin ($x^{\mu} = (0,0,0,0) \Leftrightarrow x'^{\mu} = (0,0,0,0)$):

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}; x' = \gamma \left(x - \frac{v}{c}ct\right); ct' = \gamma \left(ct - \frac{v}{c}x\right); y = y'; z = z'$$

Clocks in S' appear to S as if they were going slow by factor $1/\gamma$, and vice versa. Length of object at rest in S' appears contracted by factor $1/\gamma$ in S.

Velocity addition:
$$\frac{u_x}{c} = \frac{\frac{u_x}{c} + \frac{v}{c}}{1 + \frac{u_x}{c} \frac{v}{c}}; \frac{u_y}{c} = \frac{\frac{1}{\gamma} \frac{u_y}{c}}{1 + \frac{u_x}{c} \frac{v}{c}}$$

Doppler shift: $\frac{\lambda_{obs}}{\lambda_{emitted}} = (z+1) = \frac{1+v_{\parallel}/c}{\sqrt{1-v^2/c^2}}$ (v is the **relative** velocity between emitter and

observer and v_{\parallel} is its component along the line of sight; z > 0 is redshift, z < 0 is blueshift)

Invariant interval between two events (points in 4-dim. space-time) separated by $\Delta x^{\mu} = (\Delta ct, \Delta \vec{r})$:

$$(\Delta s)^{2} = (\Delta ct)^{2} - (\Delta \vec{r})^{2} = \sum_{\mu,\nu=0\dots3} \Delta x^{\mu} g_{\mu\nu} \Delta x^{\nu} = (\Delta ct \quad \Delta x \quad \Delta y \quad \Delta z) \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} \Delta ct \\ \Delta x \\ \Delta y \\ \Delta z \end{pmatrix}$$

The 4x4 matrix g is called the "metric" - it helps measure distances in terms of coordinates. The invariant interval has the **same** magnitude in all inertial systems!

Positive $(\Delta s)^2$: "time-like separation" => elapsed "eigen" (proper) time $\Delta \tau = \frac{1}{c} \sqrt{(\Delta s)^2}$ in an inertial

system that travels from the start point (event) to the end point (event) of the interval. Negative $(\Delta s)^2$: "space-like separation" (too far for any causal connection between the events).

 $(\Delta s)^2 = 0$: "light-like separation"; a light ray could travel from one event to the other.

Four-momentum:
$$P^{\mu} = (E/c, P_x, P_y, P_z) = (\Gamma m c, \Gamma m \vec{u}); \Gamma = \frac{1}{\sqrt{1 - \vec{u}^2/c^2}} \cdot u = \text{velocity},$$

 $E = P^{0.}c$ is total energy of object = sum of rest mass energy $(E_{rest} = mc^2)$ plus kinetic energy $T_{kin} = (\Gamma - 1)^* mc^2 (\approx m/2 u^2 \text{ only if } u << c)$. Sum of all momenta is conserved in collisions, separately for each component. Transformation of P^µ to coordinate system S' is analog to x^µ (see above).

Invariant Interval:
$$(P^0)^2 - \vec{P}^2 = \left(\frac{E}{c}\right)^2 - P_x^2 - P_y^2 - P_z^2 = m^2 c^2 \implies E = c\sqrt{m^2 c^2 + \vec{P}^2}; \frac{\vec{u}}{c} = \frac{\vec{P}c}{E}$$
.

Objects with no rest mass (e.g., photons): always u = c, E = |P|c.

Gravity:

Newtonian Gravity:

Relationship between distance *a* of two masses *M* and *m* and orbital period: $\omega^2 = \frac{G(M+m)}{a^3}$ Gravitational potential (=potential energy per unit mass) at a distance *r* from a spherical mass *M*: $\Phi_{grav} = \frac{V_{grav}}{m} = -\frac{GM}{r}$. Gravitational potential energy of uniform sphere of mass *M* and radius *R*: $V_{grav} = -\frac{3}{5}\frac{GM^2}{R}$. Virital Theorem: $T_{kin} = -E_{tot} = \frac{1}{2}|V_{grav}|$ for a system of masses in stable orbits.

General Relativity:

Freely falling reference frames are the new **local** inertial coordinate systems, where photons move with the speed of light in straight lines and a resting object stays at rest in the absence of external forces (**other** than gravity). Objects under the influence of only gravity (no other force) follow "geodesics" (best possible rendition of a "straight line") which maximize the proper time elapsed between 2 points (analog to ordinary straight lines that correspond to the shortest distance between 2 points).

Time Dilation: The local time t_{local} near a massive object elapses more slowly than time t_{∞} in the coordinate system of a fixed observer far away: $\Delta t_{\text{local}} = \sqrt{1 + \frac{2\Phi_{grav}}{c^2}} \Delta t_{\infty}; \Phi_{grav} = \frac{V_{pot}^{grav}}{m} \left(= -\frac{GM}{r} \right)$

(last expression is for spherical mass M)

Schwarzschild radius: $R_s = \frac{2GM}{c^2} \Rightarrow \Delta t_{local} = \sqrt{1 - \frac{R_s}{r}} \Delta t_{\infty}$. Local elapsed time near Schwarzschild

radius (= event horizon) becomes zero for any finite remote elapsed time -> all motion appears to come to a standstill as seen from far away (∞ slow "ageing"). => Schwarzschild metric:

$$(\Delta s)^{2} = \sum_{\mu,\nu=0...3} \Delta x^{\mu} g_{\mu\nu} \Delta x^{\nu} = \left(\Delta ct \quad \Delta r \quad \Delta \theta \quad \Delta \varphi \right) \begin{pmatrix} 1 - R_{s}/r & 0 & 0 & 0 \\ 0 & -1/(1 - R_{s}/r) & 0 & 0 \\ 0 & 0 & -r^{2} & 0 \\ 0 & 0 & 0 & -r^{2} \sin^{2} \theta \end{pmatrix} \begin{pmatrix} \Delta ct \\ \Delta r \\ \Delta \theta \\ \Delta \varphi \end{pmatrix}$$
Proper time $\Delta \tau = \frac{1}{c} \sqrt{(\Delta s)^{2}}$ near spherical mass M : $d\tau = \left(\left[1 - \frac{R_{s}}{r} \right] dt_{\infty}^{2} - \left[1 - \frac{R_{s}}{r} \right]^{-1} \frac{dr^{2}}{c^{2}} - \frac{r^{2} \sin^{2} \theta}{c^{2}} d\theta^{2} - \frac{r^{2} \sin^{2} \theta}{c^{2}} d\varphi^{2} \right)^{1/2}$

Curvature: No **global** inertial coordinate systems are possible in general, since the acceleration of gravity ("free fall") has different magnitudes and different directions at different points in space. Consequence: "straight" lines (= geodesics) become curved (both in real space -> bending of light around massive objects, and in space-time -> different rates of falling at different radial distance); parallel straight lines (light rays) can converge in a single point (Gravitational lensing) etc. => space-time itself is curved! **Consequences**: Light rays bending near massive objects (stars etc.), time-dilation and red-shift of light emitted near massive objects, event horizons,...

Universe at large:

Co-moving coordinate system: $\vec{r_c} = const$. for a point (object) locally at rest relative to "Hubble flow"; true distance from origin $D = a(t)r_c$. Scale factor a(t) = Radius of curvature in a curved universe (otherwise arbitrary; r_c is meant to be dimensionless). Universal time *t* (same everywhere; defined through Hubble parameter H(t) – see below). t_0 = present time:

Hubble law:
$$v_r = \frac{dD}{dt} = \dot{a}(t)r_c = \frac{\dot{a}(t)}{a(t)}D(t) =: H(t)D \Rightarrow H(t) = \frac{\dot{a}(t)}{a(t)}$$
 (Hubble parameter). At present:
 $H_0 = H(t_0) = \frac{68 - 70 \text{ km/s}}{1 \text{ Mpc}} \approx \frac{1}{14 \cdot 10^9 \text{ yr}}$. Speed of light in co-moving coordinates: $\frac{dr_c}{dt} = \frac{c}{a(t)}$

Redshift for light emitted at t and received at t_0 : $z = \frac{a(t_0)}{a(t)} - 1$. Invariant distance of object at time of

emission:
$$r_c(em.) = \int_{t_e}^{t_0} \frac{c}{a(t)} dt \Rightarrow D(em., t_e) = a(t_e) r_c(em.); D(em., t_0) = a(t_0) r_c(em.).$$

General (Walker-Robertson) metric: $ds^2 = dt^2 - a^2(t) \left[dr_c^2 + S_K^2(r_c) \left(d\theta^2 + \sin^2 \theta \, d\varphi^2 \right) \right].$

Critical density: $\rho_c(t) = \frac{3H^2(t)}{8\pi G}$. Today: $\rho_c(t_0) = \frac{3H_0^2}{8\pi G} \approx 10^{-26} \text{ kg/m}^3 \approx 6 \text{ protons/m}^3 \approx 9 \cdot 10^{-10} \text{ J/m}^3$ Closed Universe (positive curvature): $\rho_{tot} = \rho_M + \rho_R + \rho_\Lambda > \rho_c \Rightarrow K = 1, S_K(r_c) = \sin(r_c)$. Flat Universe (no curvature): $\rho_{tot} = \rho_c \Rightarrow K = 0, S_K(r_c) = r_c$. Open Universe (negative curvature): $\rho_{tot} < \rho_c \Rightarrow K = -1, S_K(r_c) = \sinh(r_c)$.

Evolution:

$$H^{2}(t) = \frac{\dot{a}^{2}(t)}{a^{2}(t)} = \frac{8\pi}{3}G\rho_{tot}(t) - \frac{Kc^{2}}{a^{2}(t)} = H^{2}_{0}\left(\frac{\rho_{tot}(t)}{\rho_{c}(t_{0})} - \frac{Kc^{2}}{H^{2}_{0}a^{2}(t)}\right) = H^{2}_{0}\left(\Omega_{M}(t) + \Omega_{R}(t) + \Omega_{\Lambda}(t) + \Omega_{K}(t)\right)$$
$$\Rightarrow \dot{a}(t) = a(t)H_{0}\sqrt{\Omega_{M}(t) + \Omega_{R}(t) + \Omega_{\Lambda}(t) + \Omega_{K}(t)} \Rightarrow \frac{da}{a} = \sqrt{\Omega_{M}(t) + \Omega_{R}(t) + \Omega_{\Lambda}(t) + \Omega_{K}(t)}H_{0}dt$$

with the following ingredients:

1) Matter (both baryonic and dark matter), non-relativistic, density due to mass:

$$\Omega_M(t) = \frac{\rho_M(t)}{\rho_c(t_0)} = \frac{\rho_M(t_0)}{\rho_c(t_0)} \frac{a_0^3}{a^3(t)} = \Omega_M^0 \frac{a_0^3}{a^3}.$$
 (Note the "mixed definition" where ρ_c is always taken at

today's value). Today: $\Omega_M^0 \approx 0.3$, roughly 26% dark matter and 4% baryons.

2) Radiation (any relativistic particles, including photons, neutrinos in the early Universe and ultra-hot matter): $\Omega_R(t) = \frac{\rho_R(t)}{\rho_c(t_0)} = \frac{\varepsilon(t)/c^2}{\rho_c(t_0)} = \frac{\rho_R(t_0)}{\rho_c(t_0)} \frac{a_0^4}{a^4(t)} = \Omega_R^0 \frac{a_0^4}{a^4}.$

 $\varepsilon(t) = \text{energy density } \propto T^4; T(t) = T(t_0) \frac{a_0}{a(t)}$. Today: $\Omega_R^0 = 8.24 \cdot 10^{-5}$ (mostly due to 2.7 K CMB)

3) Dark energy (cosmological constant Λ): $\Omega_{\Lambda}(t) = \frac{\rho_{\Lambda}(t)}{\rho_{c}(t_{0})} = \frac{\rho_{\Lambda}(t_{0})}{\rho_{c}(t_{0})}$ (const.) = Ω_{Λ}^{0} . Today, $\Omega_{\Lambda}^{0} \approx 0.7$.

4) Curvature: $\Omega_K(t) = -\frac{Kc^2}{H_0^2 a^2(t)} = \Omega_K^0 \frac{a_0^2}{a^2}$. Note: By definition $\Omega_K^0 = 1 - \Omega_M^0 - \Omega_R^0 - \Omega_\Lambda^0$. In principle, can

be negative (open Universe) or positive (closed Universe). Today's value unknown but very close to 0 (within 2%). Must have been extremely close to 0 in the early Universe (Inflation predicts 0).

General behavior of scale factor for different scenarios (dominance of one of the Ω terms): Matter dominated Universe: $a(t) = a_0 \left(1 + \frac{3}{2}H_0t\right)^{2/3}$ Radiation dominance: $a(t) = a_0 \left(1 + 2H_0t\right)^{1/2}$ Dark energy/inflation dominance: $a(t) = a_0 e^{H_0 t}$. (Negative) curvature dominance: $a(t) = a_0 + ct$

Quantum Mechanics:

Formal/abstract (*for experts only*): All knowledge about a system is encoded in state vector $|\psi\rangle$. State vectors can be linearly combined, and we can define a scalar product $\langle \psi' | \psi \rangle$ (complex number). By convention all state vectors are normalized to 1: $\langle \psi | \psi \rangle = 1$.

Observables O are represented by operators Ω with eigenvectors $|\varphi_i\rangle$ and eigenvalues ω_i (real numbers): $\Omega |\varphi_i\rangle = \omega_i |\varphi_i\rangle$. Any measurement of O must give one of these eigenvalues as result. After we measure ω_i , the system will be in the state described by vector $|\varphi_i\rangle$ ("collapse of the state"). The probability to measure this particular eigenvalue is given by $\Pr(\omega_i) = |\langle \varphi_i | \psi \rangle|^2$. The average (expectation value) for the observable over many independent trials is $\langle O \rangle = \langle \psi | \Omega | \psi \rangle$ with a standard deviation $\Delta O = \sqrt{\langle O^2 \rangle - \langle O \rangle^2}$.

Heisenberg's uncertainty principle: Position *x* and momentum *p* cannot be predicted with arbitrary precision simultaneously; $\Delta x \Delta p \ge \hbar/2$.

Time evolution (Schrödinger Equation): $|\psi\rangle(t)$; $\frac{\partial}{\partial t}|\psi\rangle(t) = \frac{1}{i\hbar}\mathbf{H}|\psi\rangle(t)$ where **H** is the Hamil-

tonian operator that represents total mechanical energy (kinetic and potential). Eigenstates of **H**: $\mathbf{H} | \varphi_E \rangle = E | \varphi_E \rangle; \quad | \varphi_E \rangle (t) = | \varphi_E \rangle e^{-iEt/\hbar}$ represent bound (stationary) states

CONSEQUENCES:

- 1) In general, only probabilistic predictions can be made about measurements of observables
- 2) Quantization of light (in form of photons) and of energy levels in atoms, nuclei, molecules,...

Hydrogen-like atoms:

(Nucleus of mass m_2 and charge Ze, bound particle of mass m_1 and charge -e)

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r} = -\frac{Z\alpha\hbar c}{r}$$

Strictly speaking, mass must be replaced by "reduced mass" of 2-body system with masses m_1

and
$$m_2$$
: $\mu = \frac{m_1 m_2}{m_1 + m_2} \approx m_1$ if $m_1 << m_2$

Energy Eigenvalues = possible energy levels of "stationary bound states":

 $E_n = -\frac{\mu}{m_e} \frac{Z^2}{n^2} Ry \approx -\frac{1}{n^2} Ry \text{ for hydrogen atom } (n = 1, 2, ...; Ry = m_e c^2 \alpha^2 / 2 = 13.6 \text{ eV}). \text{ Degenerate}$

in ℓ and m; $\ell = 0, 1, ..., n-1, m_{\ell} = -\ell ... + \ell$; also degenerate in electron spin $m_s = \pm 1/2 \Longrightarrow$ total degeneracy $g_n = 2n^2$.

Characteristic radius: $a = \frac{m_e}{\mu_r Z} a_0$ $a_0 = \hbar c / (m_e c^2 \alpha) = 0.53 \text{ Å}.$

Light emitted or absorbed in transition with energy difference $\Delta E = E_{\text{init}} - E_{\text{final}}$: $f = \Delta E/h, \lambda = hc/\Delta E = 2\pi hc/\Delta E$ (Photon energy $E_{\gamma} = hf$ and momentum $p_{\gamma} = h/\lambda$)

Pauli principle:

No two identical Fermions (spin-1/2, 3/2, ... particles) can be in the same exact quantum state.

fit <u>Consequence</u>: Only up to two spin-1/2 particles (one with spin "up", one with spin "down") can in a "phase-space volume" (= ordinary volume V times momentum-space volume $\frac{4\pi}{3}p_f^3$) of size h^3 (Planck's constant cubed). Therefore, a "Fermi gas" (also called a "degenerate gas") of spin-1/2 particles has to occupy available momentum states up to a maximum of the Fermi momentum $p_f = \hbar (3\pi^2)^{1/3} n^{1/3}; \quad n = \frac{N_{tot}}{V}$ where N_{tot} is the total number of Fermions. As a consequence, the minimum total kinetic energy for a Fermi gas with N_{tot} identical fermions in a sphere of radius R is

$$E_{tot}^{kin} = \begin{cases} \frac{3}{5}N_{tot}\frac{p_f^2}{2m} = \frac{3\hbar^2}{10m}N_{tot}\left(3\pi^2\right)^{2/3}\left(\frac{N_{tot}}{V}\right)^{2/3} = \frac{3\hbar^2\left(\frac{9\pi}{4}\right)^{2/3}}{10m}\frac{N_{tot}^{5/3}}{R^2}; \text{non-relativistic} \\ \frac{3}{4}N_{tot}cp_f = \frac{3}{4}\hbar cN_{tot}\left(3\pi^2\right)^{1/3}\left(\frac{N_{tot}}{V}\right)^{1/3} = \frac{3\hbar c\left(\frac{9\pi}{4}\right)^{1/3}}{4}\frac{N_{tot}^{4/3}}{R}; \text{ ultra-relativistic} \end{cases}$$

Astrophysics:

For a white dwarf of mass M, equilibrium between gravity and "Fermi pressure" is reached when

$$R = \frac{\hbar^2 N_{tot}^{5/3}}{m_e G M^2} \left(\frac{9\pi}{4}\right)^{2/3} \text{ with } N_{tot} = \frac{M}{1.008 \text{ g}} \frac{N_A}{2} \cdot (\text{careful: } 1 \text{ g} = 0.001 \text{ kg!})$$

For a neutron star, replace $m_{\rm e}$ with $m_{\rm n}$ and $N_{\rm tot}$ with $N_{tot} = \frac{M}{1.009 \text{ g}} N_A$.

Chandrasekar limit: White dwarfs become unstable beyond $M = 1.4 M_{sun}$; neutron stars become unstable beyond 2 M_{sun} (both due to relativistic effects: the kinetic energy goes up only like 1/R instead of $1/R^2$ as the Fermi momentum approaches the mass of the fermion in magnitude).

Nuclear Physics

Mass-energy of an atom: (*Z* protons, *N* neutrons, A = Z+N):

 $M_{\rm A}c^2 = Z M_{\rm p}c^2 + N M_{\rm p}c^2 + Z m_{\rm e}c^2 - BE$ (Binding energy)

typical binding energies BE = 7-8 MeV A with a maximum of BE/A for nuclei around iron (A=56). Light nuclei have significantly lower BE per nucleon; beyond iron, the BE per nucleon decreases slowly with A (due to Coulomb repulsion).

Energy liberated during a nuclear fusion reaction $1 + 2 \rightarrow 3$: $\Delta E = M_1c^2 + M_2c^2 - M_3c^2$

Energy liberated during a nuclear decay 1 -> 2 + 3: $\Delta E = M_1 c^2 - M_2 c^2 - M_3 c^2$

Density: roughly constant $\rho = 0.16$ Nucleons / fm³ = 2×10¹⁷ kg/m³

Radioactive nuclei:

alpha-decay: $(Z,A) \rightarrow (Z-2,A-2) + {}^{4}\text{He} + \text{energy}$ beta-plus decay: $(Z,A) \rightarrow (Z-1, A) + e^{+} + v_{e}$ beta-minus decay: $(Z,A) \rightarrow (Z+1, A) + e^{-} + \overline{v}_{e}$ Decay probability in time Δt : $\Delta Pr(\Delta t) = \Delta t/\tau$ ($\tau = \text{lifetime} = T_{1/2}/\ln 2$) Number of undecayed nuclei at time *t* (starting with N_0): $N(t) = N_0 e^{-t/\tau}$

Particle Physics

Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle):

quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electron-neutrino, muon-neutrino, tau-neutrino) and their antiparticles:

Name	Symbol	Mass $(MeV/c^2)^*$ J		В	Q (e)	Particle/antiparticle name	Symbol	Q (e)
						Electron / Positron ^[18]	e / e +	-1/+1
Up	u	2.3 ^{+0.7} _{-0.5}	1/2	+1/3	+2/3			.,
Down	d	4.8 +0.5 -0.3	1/2	+1/3	-1/3	Muon / Antimuon ^[19]	μ / μ+	-1 / +1
					:	Tau / Antitau ^[21]	τ / τ +	-1 / +1
Charm	с	1275 ±25	1/2	+1/3	+2/3			
Strange	s	95 ±5	1/2	+1/3	- ¹ / ₃	Electron neutrino / Electron antineutrino ^[34]	v _e / v _e	0
						Muon neutrino / Muon antineutrino ^[34]	$v_{\mu}/\overline{v}_{\mu}$	0
Тор	t	173 210 ±510 ± 710	1/2	+1/3	+2/3		-μ. •μ	
Bottom	b	4180 ±30	1/2	+1/3	-1⁄3	Tau neutrino / Tau antineutrino ^[34]	v_{τ} / \overline{v}_{τ}	0

Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics):

Photon γ (electromagnetic interaction), W^+ , W^- , Z^0 (weak interaction), gluons (strong interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are massless; the latter gain mass (80-91 GeV/ c^2) through interaction with the Higgs field.

Thermal/Statistical Physics

Boltzmann Distribution: number n(E) of atoms (molecules, ...) out of an ensemble with a total of N atoms (...) with given energy E in a system with absolute temperature T (in K).

Discrete energy levels E_i (e.g., quantum systems) with degeneracy g_i (= number of eigenstates of the Hamiltonian with energy eigenvalue E_i):

$$n(E_i) = Cg_i e^{-E_i/kT} = \frac{g_i}{e^{(E_i - \mu)/kT}}; C = e^{\mu/kT} = N / \sum g_i e^{-E_i/kT}$$

(C is a normalization constant; μ is the "chemical potential")

Continuous energy levels *E* (classical system, e.g. monatomic gas) with state density g(E)dE (= volume in "phase space" between energy *E* and energy E + dE): $dn(E...E + dE) = C g(E)dE e^{-E/kT}$; $C = N / \int g(E)dE e^{-E/kT}$

State density for simple monatomic gas: $g(E)dE = 4\pi p^2 dp = 4\pi m \sqrt{2mE} dE$

Consequences: Ideal gas law $PV = nRT = nN_A kT$, (*n* = number of mols; $N = nN_A$); average energy per degree of freedom (dimension of motion) = $\frac{1}{2} kT$ => total kinetic energy of a monatomic gas = 3/2 kT per atom or $E_{tot} = \frac{3}{2} nN_A kT = \frac{3}{2} nRT$

Fermi-Dirac Distribution (for a system of indistinguishable Fermions):

 $n(E_i) = N \frac{g_i}{e^{(E_i - \mu)/kT} + 1}$; μ here is right above the Fermi energy = the highest filled energy level

necessary to accommodate all N fermions, where all lower energy levels are filled with as many Fermions as the Pauli principle allows

(= the state of a (degenerate) Fermi gas at close to zero temperature).

Bose-Einstein Distribution (for a system of indistinguishable bosons):

 $n(E_i) = N \frac{g_i}{e^{(E_i - \mu)/kT} - 1}$; μ here is right below the ground state energy (the lowest available energy)

level). If T goes to zero, all levels but that lowest energy level are empty = Bose-Einstein condensation.

Photon density for black-body radiation:
$$\frac{dn_{\gamma}(\lambda...\lambda+d\lambda)}{dV} = \frac{8\pi}{\lambda^4} \frac{d\lambda}{e^{hc/\lambda kT} - 1} = 8\pi \frac{f^2}{c^3} \frac{df}{e^{hf/kT} - 1}$$

Energy density (= energy contained in electromagnetic radiation of wave length λ , per unit volume *V*) for black-body radiation (i.e., Bose-Einstein Distribution for a photon gas:

$$\frac{dE}{V} = 8\pi h \frac{f^3}{c^3} \frac{df}{e^{hf/kT} - 1} = \frac{8\pi hc}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1}$$
; Energy flux/surface area $\frac{dE}{dAdt} = \frac{2\pi hc^2}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1}$
(Planck's Law); Maximum for $\lambda = \frac{hc}{4.9663kT} = \frac{2.9 \text{ mm}}{T[K]}$. Total over all wave lengths: σT^4

Propagation of electromagnetic waves

Energy per volume dV in wave length interval $d\lambda$: $\frac{dE(\lambda...\lambda + d\lambda)}{dV} = u_{\lambda}d\lambda; u_{\lambda} = \text{specific energy density.}$ Example: black-body $u_{\lambda} = \frac{dn_{\gamma}}{d\lambda} \frac{hc}{\lambda} = \frac{8\pi hc}{\lambda^5} \frac{1}{e^{hc/\lambda kT} - 1}$ Total (integral over all wave lengths): $dE_{tot}/dV = 4\sigma/c T^4$ Maximum intensity per unit wave length interval for $\lambda = 2.9$ mm / T [K] (Wien displacement law) Total power emitted (intensity integrated over all wave lengths) $I = \sigma T^4$ (Stefan-Boltzmann equation) Total luminosity of spherical black-body of radius R: $L = 4\pi R^2 \sigma T^4$ Apparent brightness (flux density) at distance d: $F = \frac{L}{4\pi d^2}$ Power emitted per area dA into solid angle $d\Omega$ in wave length interval $d\lambda$: $\frac{dE(\lambda...\lambda + d\lambda)}{dt \, dA \, d\Omega} = \cos\theta \cdot I_{\lambda}(\theta, \varphi) \, d\lambda \quad ; I_{\lambda} = \text{specific intensity.}$ Average: $\langle I_{\lambda} \rangle = \frac{1}{4\pi} \iint I_{\lambda}(\theta, \varphi) d\Omega = \frac{c}{4\pi} u_{\lambda}$. Ex.: black-body: $\langle I_{\lambda} \rangle = \frac{2hc^2}{2^5} \frac{d\lambda}{c^{hc/\lambda kT} - 1}$ Power emitted in positive (neg.) z-direction per area dA perpendicular to z and per $d\lambda$: Radiation flux density $F_{\lambda} = \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2} \cos\theta \cdot I_{\lambda}(\theta,\varphi) \sin\theta d\theta$ For isotropic specific intensity (for top hemisphere): $\Rightarrow F_{\lambda} = \pi \langle I_{\lambda} \rangle$ Black-body radiation: $F_{\lambda}d\lambda = \frac{2\pi hc^2}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1} = 2\pi hc \frac{f^3}{c^3} \frac{df}{e^{hf/kT} - 1}$ Radiation pressure in z-direction: $dP_{\lambda}^{z} = \frac{2}{c} d\lambda \int_{0}^{2\pi} d\varphi \int_{0}^{\pi/2(\pi)} \cos^{2}\theta \cdot I_{\lambda}(\theta,\varphi) \sin\theta d\theta$ For isotropic specific intensity in top hemisphere: $\Rightarrow dP_{\lambda}^{z} = \frac{4\pi}{3c} \langle I_{\lambda} \rangle d\lambda = \frac{1}{3} u_{\lambda} d\lambda \Rightarrow P_{tot} = \frac{1}{3} \frac{E_{tot}}{V}$ Scattering probability: $d \Pr = \frac{N_{atoms}}{V} \sigma ds = \frac{\rho}{m_{true}} \sigma ds = \rho \kappa ds$; $\sigma = cross section, \rho = density.$ $\kappa = \sigma/m_{Atom}$ = opacity. Mean free path $\ell = 1/\kappa\sigma$. $\tau = D/\ell$ = optical depth. Total pathlength = $D\tau$. For ionized star atmospheres (70% H), Rosseland opacity $\bar{\kappa} \approx 0.034 \text{ m}^2/\text{kg}$. For fully ionized hydrogen, $\overline{\kappa} = \frac{\sigma_e}{m_{tr}} = 0.042 \text{ m}^2/\text{kg} \implies L_{\text{max}} = \frac{4\pi GMc}{\overline{\kappa}} = (3.3 - 3.8) \cdot 10^4 \frac{L_{sun}M}{M_{max}} \text{ (Eddington Luminosity Limit).}$