Cosm(et)ology

PHYS313

Sebastian Kuhn

Large Scale Structure of Universe

- The Universe is expanding...
- Hubble Constant $\mathrm{H}_{0}=70 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}=1 / 14 \mathrm{Gyr}$
- ...initially it was filled with a smooth distribution of dark matter
- and a smaller amount of nucleons + electrons
- very small initial density fluctuations...
- ...which began to clump to create the seeds of filaments, superclusters, walls, ... , galaxies (central black holes?)

General Relativity - again

Reminder: Local coordinates (t, \mathbf{r}) but distance defined by metric:

$$
d s^{2}=\left(\begin{array}{cc}
d c t & d \vec{r}
\end{array}\right)\left(\begin{array}{l}
g_{\mu \nu}
\end{array}\right)\binom{d c t}{d \vec{r}}
$$

- Co-moving coordinate system: $\vec{r}_{c}=$ const. for a point (object) locally at rest relative to "Hubble flow"; true distance from origin $D=a(t) r_{c}$. Scale factor $a(t)=$ Radius of curvature in a curved universe (otherwise arbitrary; r_{c} is meant to be dimensionless). Universal time t (same everywhere; defined through Hubble parameter $H(t)$ - see later).
- Hubble law: $v_{r}(t)=\frac{d D(t)}{d t}=\dot{a}(t) r_{c}=\frac{\dot{a}(t)}{a(t)} D(t)=: H(t) D(t)$
- At present: $H_{0}=H\left(t_{0}\right)=\frac{\dot{a}\left(t_{0}\right)}{a\left(t_{0}\right)}=\frac{68-69 \mathrm{~km} / \mathrm{s}}{1 \mathrm{Mpc}} \approx \frac{1}{14 \cdot 10^{9} \mathrm{yr}}$
- Speed of light in co-moving coordinates: $\frac{d r_{c}}{d t}=\frac{c}{a(t)}$
- Redshift for light emitted at t and received at $t_{0}: \quad z=\frac{a\left(t_{0}\right)}{a(t)}-1$

Examples

- If we observe an object with redshift z,
- How long ago was light emitted?

$$
\begin{aligned}
& z+1=\frac{a\left(t_{0}\right)}{a\left(t_{e}\right)} \Rightarrow \frac{a\left(t_{0}\right)}{z+1}=a\left(t_{e}\right)=a\left(t_{0}\right)-\int_{t_{e}}^{t_{0}} \dot{a}(t) d t \\
& \Rightarrow \int_{t_{e}}^{t_{0}} \dot{a}(t) d t=\frac{z}{z+1} a\left(t_{0}\right) \Rightarrow \text { solve for } t_{e} \text { if } \dot{a}(t) \text { is known. }
\end{aligned}
$$

- How far is that object now?
- How far was it when the light was emitted?

$$
r_{c}(e m .)=\int_{t_{e}}^{t_{0}} \frac{c}{a(t)} d t \Rightarrow D\left(e m ., t_{e}\right)=a\left(t_{e}\right) r_{c}(e m .) ; D\left(e m ., t_{0}\right)=a\left(t_{0}\right) r_{c}(e m .)
$$

Examples

- Assume $\dot{a}(t)=\dot{a}=$ const.
- How long ago was light emitted?

$$
\int_{t_{e}}^{t_{0}} \dot{a} d t=\dot{a}\left(t_{0}-t_{e}\right)=\frac{z}{z+1} a\left(t_{0}\right) \Rightarrow\left(t_{0}-t_{e}\right)=\frac{z}{z+1} \frac{a\left(t_{0}\right)}{\dot{a}}=\frac{z}{z+1} \frac{1}{H_{0}}
$$

- How far is that object now?
- How far was it when the light was emitted?

$$
\begin{aligned}
& r_{c}(e m .)=\int_{t_{e}}^{t_{0}} \frac{c}{a\left(t_{0}\right)-\dot{a}\left(t_{0}-t\right)} d t=\frac{c}{\dot{a}} \ln \left(\frac{a\left(t_{0}\right)}{a\left(t_{0}\right)-\dot{a}\left(t_{0}-t_{e}\right)}\right)=\frac{c}{\dot{a}} \ln (z+1) \\
& \Rightarrow D\left(\text { em. }, t_{e}\right)=a\left(t_{e}\right) r_{c}(\text { em. }) ; D\left(\text { em. } t_{0}\right)=a\left(t_{0}\right) r_{c}(\text { em. })=\frac{c}{H_{0}} \ln (z+1)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Walker-Robertson metric } \\
& d s^{2}=d t^{2}-a^{2}(t)\left[d r_{c}^{2}+S_{K}^{2}\left(r_{c}\right)\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
\end{aligned}
$$

- Closed Universe, positive curvature ($\mathrm{K}=+1$): $S_{K}\left(r_{c}\right)=\sin \left(r_{c}\right)$
- Flat Universe, no curvature ($\mathrm{K}=0$):

$$
S_{K}\left(r_{c}\right)=r_{c}
$$

- Open Universe, negative curvature ($K=-1$):

$$
S_{K}\left(r_{c}\right)=\sinh \left(r_{c}\right)
$$

