The following formulas might be useful:

FUNDAMENTAL CONSTANTS

$$
\begin{array}{rll}
\epsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{Nm}^{2} & & \text { (permittivity of free space) } \\
\mu_{0}=4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2} & & \text { (permeability of free space) } \\
c & =3.00 \times 10^{8} \mathrm{~m} / \mathrm{s} & \\
e & =1.60 \times 10^{-19} \mathrm{C} & \text { (speed of light) } \\
m & =9.11 \times 10^{-31} \mathrm{~kg} & \text { (charge of the electron) } \\
m \text { (mass of the electron) }
\end{array}
$$

SPHERICAL AND CYLINDRICAL COORDINATES

Spherical

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=r \sin \theta \cos \phi \\
y=r \sin \theta \sin \phi \\
z=r \cos \theta
\end{array}\right. \\
& \left\{\begin{array} { l }
{ r = \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } } \\
{ \theta = \operatorname { t a n } ^ { - 1 } (\sqrt { x ^ { 2 } + y ^ { 2 } } / z) } \\
{ \phi = \operatorname { t a n } ^ { - 1 } (y / x) }
\end{array} \left\{\begin{array}{l}
\hat{\mathbf{x}}=\sin \theta \cos \phi \hat{\mathbf{r}}+\cos \theta \cos \phi \hat{\boldsymbol{\theta}}-\sin \phi \hat{\boldsymbol{\phi}} \\
\hat{\mathbf{y}}=\sin \theta \sin \phi \hat{\mathbf{r}}+\cos \theta \sin \phi \hat{\boldsymbol{\theta}}+\cos \phi \hat{\boldsymbol{\phi}} \\
\hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\boldsymbol{\theta}}
\end{array}\right.\right. \\
& \begin{array}{l}
\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}} \\
\hat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}} \\
\hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}
\end{array}
\end{aligned}
$$

Cylindrical

$$
\begin{aligned}
& \left\{\begin{array}{l}
x=s \cos \phi \\
y=s \sin \phi \\
z=z
\end{array}\right. \\
& \begin{cases}s=\sqrt{x^{2}+y^{2}} \\
\phi=\tan ^{-1}(y / x) \\
z=z\end{cases}
\end{aligned}\left\{\begin{array}{l}
\hat{\mathbf{x}}=\cos \phi \hat{\mathbf{s}}-\sin \phi \hat{\boldsymbol{\phi}} \\
\hat{\mathbf{y}}=\sin \phi \hat{\mathbf{s}}+\cos \phi \hat{\boldsymbol{\phi}} \\
\hat{\mathbf{z}}=\hat{\mathbf{z}}
\end{array}\right\} \begin{aligned}
& \hat{\mathbf{s}}=\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}} \\
& \hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}} \\
& \hat{\mathbf{z}}=\hat{\mathbf{z}}
\end{aligned}
$$

VECTOR DERIVATIVES

Cartesian. $\quad d \mathbf{l}=d x \hat{\mathbf{x}}+d y \hat{\mathbf{y}}+d z \hat{\mathbf{z}} ; \quad d \tau=d x d y d z$
Gradient : $\quad \nabla t=\frac{\partial t}{\partial x} \hat{\mathbf{x}}+\frac{\partial t}{\partial y} \hat{\mathbf{y}}+\frac{\partial t}{\partial z} \hat{\mathbf{z}}$
Divergence: $\quad \boldsymbol{\nabla} \cdot \mathbf{v}=\frac{\partial v_{x}}{\partial x}+\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z}$
Curl : $\quad \nabla \times \mathbf{v}=\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right) \hat{\mathbf{z}}$
Laplacian: $\quad \nabla^{2} t=\frac{\partial^{2} t}{\partial x^{2}}+\frac{\partial^{2} t}{\partial y^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$
Spherical. $\quad d \mathbf{l}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+r \sin \theta d \phi \hat{\boldsymbol{\phi}} ; \quad d \tau=r^{2} \sin \theta d r d \theta d \phi \quad=r^{2} d r d \cos \theta d \phi$
Gradient $: \quad \nabla t=\frac{\partial t}{\partial r} \hat{\mathbf{r}}+\frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\boldsymbol{\theta}}+\frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}}$
Divergence: $\quad \boldsymbol{\nabla} \cdot \mathbf{v}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} v_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta v_{\theta}\right)+\frac{1}{r \sin \theta} \frac{\partial v_{\phi}}{\partial \phi}$
Curl : $\quad \boldsymbol{\nabla} \times \mathbf{v}=\frac{1}{r \sin \theta}\left[\frac{\partial}{\partial \theta}\left(\sin \theta v_{\phi}\right)-\frac{\partial v_{\theta}}{\partial \phi}\right] \hat{\mathbf{r}}$

$$
+\frac{1}{r}\left[\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi}-\frac{\partial}{\partial r}\left(r v_{\phi}\right)\right] \hat{\theta}+\frac{1}{r}\left[\frac{\partial}{\partial r}\left(r v_{\theta}\right)-\frac{\partial v_{r}}{\partial \theta}\right] \hat{\boldsymbol{\phi}}
$$

Laplacian: $\quad \nabla^{2} t=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial t}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial t}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} t}{\partial \phi^{2}}$
Cylindrical. $\quad d \mathbf{l}=d s \hat{\mathbf{s}}+s d \phi \hat{\boldsymbol{\phi}}+d z \hat{\mathbf{z}} ; \quad d \tau=s d s d \phi d z$
Gradient : $\quad \nabla t=\frac{\partial t}{\partial s} \hat{\mathbf{s}}+\frac{1}{s} \frac{\partial t}{\partial \phi} \hat{\boldsymbol{\phi}}+\frac{\partial t}{\partial z} \hat{\mathbf{z}}$
Divergence: $\quad \nabla \cdot \mathbf{v}=\frac{1}{s} \frac{\partial}{\partial s}\left(s v_{s}\right)+\frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi}+\frac{\partial v_{z}}{\partial z}$
Curl : $\quad \boldsymbol{\nabla} \times \mathbf{v}=\left[\frac{1}{s} \frac{\partial v_{z}}{\partial \phi}-\frac{\partial v_{\phi}}{\partial z}\right] \hat{\mathbf{s}}+\left[\frac{\partial v_{s}}{\partial z}-\frac{\partial v_{z}}{\partial s}\right] \hat{\boldsymbol{\phi}}+\frac{1}{s}\left[\frac{\partial}{\partial s}\left(s v_{\phi}\right)-\frac{\partial v_{s}}{\partial \phi}\right] \hat{\mathbf{z}}$
Laplacian: $\quad \nabla^{2} t=\frac{1}{s} \frac{\partial}{\partial s}\left(s \frac{\partial t}{\partial s}\right)+\frac{1}{s^{2}} \frac{\partial^{2} t}{\partial \phi^{2}}+\frac{\partial^{2} t}{\partial z^{2}}$

Maxwell's Equations

Translation of equations in SI system to those using Gauß system:
$q, \rho, I, \ldots[\mathrm{Gauß}]=\frac{1}{\sqrt{4 \pi \varepsilon_{0}}} q, \rho, I, \ldots[\mathrm{SI}]$
$\vec{E}[\mathrm{Gau} \beta]=\sqrt{4 \pi \varepsilon_{0}} \vec{E}$ [SI]; $\vec{B}[\mathrm{Gauß}]=\sqrt{4 \pi \varepsilon_{0}} c \vec{B}$ [SI]
Maxwell's Equations in free space:

$$
\begin{aligned}
& \vec{\nabla} \cdot \vec{E}=\frac{\rho}{\varepsilon_{0}}[\mathrm{SI}], \vec{\nabla} \cdot \vec{E}=4 \pi \rho \text { [Gauß]; } \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}[\mathrm{SI}], \vec{\nabla} \times \vec{E}=-\frac{1}{c} \frac{\partial \vec{B}}{\partial t}[\text { Gauß }] \\
& \vec{\nabla} \cdot \vec{B}=0 \quad ; \quad \vec{\nabla} \times \vec{B}=\mu_{0}\left(\vec{j}+\varepsilon_{0} \frac{\partial \vec{E}}{\partial t}\right)[\mathrm{SI}], \vec{\nabla} \times \vec{B}=\frac{4 \pi}{c} \vec{j}+\frac{1}{c} \frac{\partial \vec{E}}{\partial t}[\mathrm{Gauß}]
\end{aligned}
$$

Lorentz Force Law: $\vec{F}=Q(\vec{E}+\vec{v} \times \vec{B})[\mathrm{SI}], \vec{F}=Q\left(\vec{E}+\frac{\vec{v}}{c} \times \vec{B}\right)$ [Gauß];
Continuity Equation: $\frac{\partial \rho}{\partial t}+\vec{\nabla} \cdot \vec{J}=0$

AUXILLARY FIELDS

Definitions:

$$
\left\{\begin{array}{l}
\mathbf{D}=\epsilon_{0} \mathbf{E}+\mathbf{P} \\
\mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M}
\end{array}\right.
$$

In linear media:

$$
\begin{cases}\mathbf{P}=\epsilon_{0} \chi_{e} \mathbf{E}, & \mathbf{D}=\epsilon \mathbf{E} \\ \mathbf{M}=\chi_{m} \mathbf{H}, & \mathbf{H}=\frac{1}{\mu} \mathbf{B}\end{cases}
$$

ENERGY, MOMENTUM, AND POWER
Energy: $\quad W=\frac{1}{2} \int\left(\epsilon_{0} E^{2}+\frac{1}{\mu_{0}} B^{2}\right) d \tau$
Momentum: $\quad \mathbf{P}=\epsilon_{0} \int(\mathbf{E} \times \mathbf{B}) d \tau$

Poynting vector: $\quad \mathbf{S}=\frac{1}{\mu_{0}}(\mathbf{E} \times \mathbf{B})$
Larmor formula: $\quad P=\frac{1}{4 \pi \epsilon_{0}} \frac{2}{3} \frac{q^{2} a^{2}}{c^{3}}$

Electrostatics (NO moving charges)

Coulomb's law (Fundamental Form - single charge q at position \vec{r}_{q}):
$\vec{E}(\vec{r})=\frac{q}{4 \pi \varepsilon_{0}} \frac{\vec{r}-\vec{r}_{q}}{\left|\vec{r}-\vec{r}_{q}\right|^{3}}$

Gauss' law (integral version):

$\oiiint_{\text {Closed Surface }} \vec{E} \cdot d \vec{a}=\frac{1}{\varepsilon_{0}} Q_{\text {enclosed }}$

Field of a spherically symmetric charge distribution in free space:
$\vec{E}(\vec{r})=\frac{1}{4 \pi \varepsilon_{o}} \frac{Q(\text { encl within radius } r)}{\mathrm{r}^{2}} \hat{r}$
Field of a cylindrically symmetric charge distribution in free space:
$\vec{E}(\vec{r})=\frac{1}{2 \pi \varepsilon_{o}} \frac{Q / L(\text { encl within radius } s)}{\mathrm{s}} \hat{s}$

Electric potential:

$V(\vec{r})=-\int_{\text {Some path from } \overrightarrow{\mathrm{r}}_{0}}^{\vec{r}} \vec{E}\left(\vec{r}^{\prime}\right) \cdot \vec{l}\left(r^{\prime}\right) \quad ; \quad \vec{E}(\vec{r})=-\vec{\nabla} V(\vec{r}) ; \mathbf{r}_{0}$ is the reference point where $V=0$.

Work done on a charge \mathbf{Q} moved from point \mathbf{r}_{1} to \mathbf{r}_{2} :

$$
W=Q\left(V\left(\mathbf{r}_{2}\right)-V\left(\mathbf{r}_{1}\right)\right)
$$

Energy of a point charge distribution:

$$
W=\frac{1}{2} \cdot \sum_{i=1}^{n} q_{i}\left[\sum_{j \neq 1} \frac{1}{4 \pi \varepsilon_{0}} \frac{q_{j}}{\left|\vec{r}_{i}-\vec{r}_{j}\right|}\right]
$$

Magnetostatics

Cyclotron motion

$\left|p_{\text {perp }}\right|=|Q B R|$ (momentum perpendicular to the magnetic field B for a particle with charge Q, orbiting on a circular or helical trajectory with radius R);
$\omega=\frac{|Q B|}{m}$ (angular velocity of a particle with charge Q, mass m in a field B).
Work on moving charges done by magnetic forces: None.

Current densities produced by some charge distribution, moving with velocity v :

Volume current density: $\mathbf{J}=\rho \mathbf{v}$. Force on this current: $\mathbf{F}=\iiint \mathbf{J}\left(\mathbf{r}^{\prime}\right) \times \mathbf{B}\left(\mathbf{r}^{\prime}\right) \mathrm{d}^{3} r^{\prime}$
Surface current density: $\mathbf{K}=\sigma \mathbf{v}$. Force on this current: $\mathbf{F}=\iint \mathbf{K}\left(\mathbf{r}^{\prime}\right) \times \mathbf{B}\left(\mathbf{r}^{\prime}\right) \mathrm{d} a\left(r^{\prime}\right)$ (take average of \mathbf{B}).
Line current: $\mathbf{I}=\lambda \mathbf{v}$. Force on this current: $\mathbf{F}=\int \mathbf{I}\left(\mathbf{r}^{\prime}\right) \times \mathbf{B}\left(\mathbf{r}^{\prime}\right) \mathrm{d} \ell\left(r^{\prime}\right)$.
Total current flowing through some area A : Volume current density $=>I=\iint \mathbf{J}$ da Surface current density $=>I=\int K_{\text {perp }} d l$
(= Line integral along the intersection of the area A and the surface on which \mathbf{K} is confined, of the component of \mathbf{K} perpendicular to that line)
Continuity equation for Magneto- and Electrostatics: $\vec{\nabla} \overrightarrow{\mathrm{J}}=-\frac{\partial \rho}{\partial \mathrm{t}}=0$.

Biot-Savart law for a steady volume current density:
$\vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \iiint_{\text {All Space }} \vec{J}\left(\vec{r}^{\prime}\right) \times \frac{\vec{r}-\vec{r}^{\prime}}{\left|\vec{r}-\vec{r}^{3}\right|^{3}} d^{3} r^{\prime}$

For the two other kinds of current distributions, the integral goes over a surface or a path.

Ampere's law in integral form

$$
\oint_{\text {osed Loop }} \vec{B} \cdot \overrightarrow{d \ell}=\mu_{0} I_{\text {encl }} \text {, where } I_{\text {encl }} \text { is the current going through any surface spanned }
$$

by the loop, in the direction of the normal on that surface (which is related to the direction of the path around the loop via the right-hand rule).

Electromagnetic waves

Prototype - plane wave:
$\vec{E}(\vec{r}, t)=\vec{E}_{0} \cos (\vec{k} \cdot \vec{r}-\omega t) ; \quad \vec{B}(\vec{r}, t)=\vec{B}_{0} \cos (\vec{k} \cdot \vec{r}-\omega t)$
with
$k=\frac{2 \pi}{\lambda} ; \omega=2 \pi f=\frac{2 \pi}{T}=k \cdot v_{\text {phase }}=k \cdot c / n$
$\vec{E}_{0} \perp \hat{k} ; \vec{B}_{0}=\frac{\hat{k}}{v_{\text {phase }}} \times \vec{E}_{0}=\frac{\vec{k}}{\omega} \times \vec{E}_{0}$
where λ is the wave length, f is the frequency, \vec{k} is the wave vector, $v_{\text {phase }}$ is the phase velocity (which is equal to $c=3 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ in vacuum and equal to c / n in a medium with refractive index n).
Energy density (energy per unit volume, $\mathrm{J} / \mathrm{m}^{3}$):
$\frac{\Delta E}{\Delta V o l}=\frac{\varepsilon_{0}}{2} \vec{E}^{2}(\vec{r}, t)+\frac{1}{2 \mu_{0}} \vec{B}^{2}(\vec{r}, t)=\varepsilon_{0} \vec{E}_{0}^{2} \cos ^{2}(\vec{k} \cdot \vec{r}-\omega t) \Rightarrow\left\langle\frac{\Delta E}{\Delta V o l}\right\rangle=\frac{\varepsilon_{0}}{2} \vec{E}_{0}^{2} \quad$ (average)
Average energy current density (Intensity, "brightness"; W/m²):
$\frac{\Delta E}{\Delta \text { Area } \Delta t}=c \frac{\Delta E}{\Delta V o l}=\frac{c \varepsilon_{0}}{2} \vec{E}_{0}^{2}=\frac{1}{2 \mu_{0} c} \vec{E}_{0}^{2}=|\langle\vec{S}\rangle|$
with the Poynting vector
$\vec{S}=\frac{1}{\mu_{0}} \vec{E}(\vec{r}, t) \times \vec{B}(\vec{r}, t)=\frac{\hat{k}}{\mu_{0} c} \vec{E}_{0}^{2} \cos ^{2}(\vec{k} \cdot \vec{r}-\omega t)$
Momentum flux density (amount of momentum in \vec{k}-direection carried through a unit surface perpendicular to \vec{k} per unit time):
$\langle S\rangle / c=\frac{\varepsilon_{0}}{2} \vec{E}_{0}^{2}$
Radiation pressure P on a surface of area A :
$P=2 \frac{\langle S\rangle}{c} A \cos ^{2} \theta$ (reflection at incident angle θ relative to normal)
$P=\frac{\langle S\rangle}{c} A \cos \theta$ (absorption)

