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Pop Quiz!!

Is the universe homogeneous?
Roughly! If averaged over scales of 109 pc.

Is the universe isotropic?
Roughly! If you average over large enough angular range and ignore the foreground.

Is the universe static?
No! The universe is constantly changing in many ways.

Lecture Notes

We know that the universe is expanding. We can express that with the so called Hubble Constant, which refers to the time
of today. This is given by the notation H0. More importantly, the Hubble Constant is not actually a constant. It changes
with time, which we will call the Hubble Parameter.

H(t) = Hubble Parameter
H(t0) = H0 where t0 represents today.

Even if the velocity were exactly constant, since you have to divide by a length scale all length scales were shorter in the
early universe, the H was bigger in earlier times of the universe. This leads to one of many violations of special relativity.

Violations of Special Relativity

• There IS a perferred inertial system at any given point! It it the point where the CMB does not have a dipole
modulation. That is, it is at rest with respect to the CMB.

• There IS a universal time! Anywhere in the universe there is a way to define an absolute time. This is defined by the
Hubble Constant(Parameter), H(t). The hubble constant itself is measured in units of 1

time . With this, anything else
can be defined as a function of time.

• Speeds greater than the speed of light!

Brief History of the Universe

At some point in time (t > 0) there was an event, which we call The Big Bang. Any time before that or even at time t = 0 is
meaningless, in that we don’t know how to represent or calculate anything about it in any meaningful way. The earliest time
that we can make some predictions about is t = 10−37seconds after The Big Bang, when inflation began. Inflation is the
sudden and enormous (a factor of 1028) expansion of the universe in about 10−35 seconds to approximately the size of a golf
ball. Initially it was filled with elementary particles that constantly collided: a primordial soup of elementary particles. They
would eventually combine to form protons and neutrons, which would then combine to form nuclei. Keep in mind that this
takes place all in the first few minutes and it set the ground for how many protons, helium atoms, etc. were around in the
beginning. After 400,000 years the ”soup” cooled down enough for these nuclei to combine with electrons and the universe
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became filled with a gas of neutral atoms and became transparent to light. The CMB is from photons emitted at this moment.

After a few hundred million years (maybe less) the universe started to clump and form dark matter, which formed
structures that attracted gas and dust and eventually formed stars. This is called the Era of Reionization, due to the massive
stars producing enough ultra-violet light to re-ionize some of the gas. Some time after (a billion years or so), the first galaxies
formed and the universe looked almost the same as it does today.

Defining Fixed Positions in a Universal Coordinate System

How do we describe the universe as a whole in a way that is consistent with General Relativity? GR acts by modifying the
distance between two points by use of a metric. We need to find the metric of the universe as a whole.

As there is a preferred inertial system at any given point, we must practice caution. Whatever we call our preferred
inertial system is not the same for a galaxy moving away from us at 0.1c or even 0.01c. That galaxy will have its own
preferred inertial system which is at rest with respect to what it sees from the CMB. If we think about any point in the
universe, the tricky part is defining that point’s position. The idea is to give it a position that does not change over time if
that point is in its own preferred inertial system. This coordinate system, labeled a co-moving coordinate system, is defined
by the dimensionless quantity ~rc. Instead of saying that some galaxy is however far away in the direction of the constellation
Taurus, which as we know would not remain constant for many reasons, it would instead be given an absolute coordinate ~rc
that does not change over time. We do this by taking the distance to this object and divide it by a time dependent scale
factor a(t).

~rc =
~d

a(t)

Instead of keeping track of how every object moves with the expansion of the universe, we instead give an object a fixed
position from which we can determine its distance from us.

~rc · a(t) = ~d = c · ∆t

The Hubble Parameter

What is the value of the scale factor? The best way to go about it is that it is completely arbitrary. But, if we assume the
universe has a radius (it’s curved), then we just choose a(t) to be the radius. If the universe has no radius (it’s flat), then a(t)
is arbitrary. There are only three possibilities for the shape of the universe (which will be expanded on in a later lecture):

• Flat, infinite Universe of no curvature. K = 0.

• Spherical, finite (closed) Universe of positive curvature. K = +1. This is the only case where ȧ(t) = 0 is possible.

• Infinite (open) Universe of negative curvature (”Saddle” Universe). K = −1. This is the only case where ȧ(t) = constant
is at least possible.

If the distance an object has from us at some time is given by

~d(t) = a(t) · ~rc

then how fast it is moving away can be found by

d

dt
~d(t) =

d

dt
[a(t) · ~rc] = ȧ(t) · ~rc

~̇d(t) = ȧ(t) · ~rc = ȧ(t) ·
~d(t)

a(t)
= ~d(t) · ȧ(t)

a(t)
= H(t)~d(t)

The velocity with which something moves away from us must be proportional to how far away from us it is. The quantity
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H(t) =
ȧ(t)

a(t)

is the Hubble Parameter, the rate of expansion of the universe. It is easily seen that it is going to change with time, unless
a(t) is a constant. There is a connection between a(t) and the content of the universe, in fact, a(t) is completely determined
by what’s inside the universe. Einstein came up with a cosmological constant to make a(t) constant and later, after Mr.
Hubble discovered that the universe was in fact expanding, he scrapped the idea and instead set to find a solution to the laws
of General Relativity for an expanding universe. Today, it turns out that we DO need a cosmological constant; however, we
refer to it as Dark Energy (more on Dark Energy and its effects on the universe next lecture).

Hubble’s law, being an exact solution, lends way to a violation of special relativity: speeds greater than the speed of light.
No matter how big H0 may be, there is some distance away that the rate of expansion will exceed the speed of light. How
do we reconcile this expanding scale factor with the observed redshift?

Relating the Scale Factor and Relativistic Redshift

The relativistic equation for redshift

z =

√
1 + v

c

1 − v
c

− 1 =
λobs
λemit

− 1 ≈ v

c

has a limit for the velocity such that v = c. For any possible, real value of z, the velocity has to be less than the speed of
light. To solve this problem, we relate it instead to the scale factor of the universe. To visualize this relationship, consider
the following thought experiment:

Picture a moving walkway that is also being stretched in one direction. Along the walkway there is a nicely
inscribed distance scale (which corresponds to ~rc). Imagine a bunch of people hopping onto the walkway at
fixed intervals (once every period of an optical oscillation, i.e. with a frequency ν.) If they all hop on during a
short piece of time, they all have the same separation ∆~rc, since the band hasn’t stretched appreciably. These
people are supposed to represent the peaks and valleys of a light wave. Each peak and each valley will move
with the speed of light, which means that their distance in co-moving coordinates stays constant:

∆d = c · ∆t

∆d = ∆~rc · a(t)

∆~rc
∆t

=
c

a(t)

That is, the true distance between the peaks and valleys increases with time, proportional to a(t).As the
universe expands, light becomes slower and slower as measured in co-moving coordinates because the distance
between any two co-moving coordinates is increasing. For the few wiggles of a lightwave over a few hundred

nanometers within a tiny fraction of a second, the ∆~(rc)
∆t is the same for all valleys and peaks of that wave.

Ultimately, in terms of the co-moving coordinates the light wave has fixed wavelength. That means

λ

a(t)
≈ constant

Simply put, once light reaches our position we get a wavelength that has been stretched by the same amount as the
increase in size of the universe. We can write

λobs
λemit

=
a(tobs)

a(temit)
= z + 1
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It turns out that this means the redshift is also proportional to the hubble constant. To find a time when light was
emitted, we start with

a(tobs)

a(temit)
= z + 1

Through a little algebra we obtain:
a(tobs) − a(temit) = z · a(temit)

The left side is equal to the integral over the time derivative:

a(tobs) − a(temit) =

∫ tobs

temit

ȧ(t)dt

∫ tobs

temit

ȧ(t)dt =
z

z + 1
a(tobs)

Which can be solved for temit if ȧ(t) is known. The coefficient of a(tobs) is the fractional increase of the universe since
emission, compared to today. We can use the equation for the speed of light to calculate where that object was when the
light was emitted and where the object is today. To find the position when light was emitted:

d~rc
dt

=
c

a(t)

∆~rcemit
=

∫ t0

temit

c · dt
a(t)

We can multiply the result with atemit to find the actual distance the object had from us at the time of emission. Since
the position in co-moving coordinates does not change with time, we can use that to find out how far the object is away from
us today, by simply multiplying by the size of the universe today:

∆~rcemit · a(t0) = ∆d.

If we assume that the size of the universe increases by the same amount every year (meaning ȧ(t) is constant) then the
value of today’s hubble constant tells us exactly when the universe began. (This scenario is roughly correct for a Universe
that is mostly dominated by negative curvature, with little “stuff” in it.) Keep in mind that even though ȧ(t) is constant it
does not mean that the Hubble parameter is time independent, because a(t) still changes with time. Remember:

H(t) =
ȧ(t)

a(t)

Which is a velocity over a distance, and as we know velocity is merely a distance over a change in time. This simplifies to be
a unit of 1

t . Simply put, the inverse of H0 is the age of the universe in this case, t0 = 1/H0, and we can write:

a(t) = ȧ · t = a0H0t.

In general, for a constant ȧ(t) (which implies negative curvature), the integral∫ t0

te

ȧ(t)dt

is just the time difference multiplied by ȧ. From the equation above:∫ tobs

temit

ȧ(t)dt =
z

z + 1
a(t0)

ȧ(t0 − te) =
z

z + 1
a(t0)

4



t0 − te =
z

z + 1

a(t0)

ȧ
=

z

z + 1

1

H0

To find the distance to a light emitter yields:

∆~rcemit
=

∫ t0

temit

c · dt
a0H0t

=
c

a0H0
ln

t0
temit

.

Since
t0
temit

=
ȧt0
ȧtemit

=
a0

a(temit)
= z + 1

we can conclude that the distance today is

D(em., t0) = a0∆~rcemit
=

c

H0
ln(z + 1)

and the distance at the time of emission

D(em., temit) =
c

H0(z + 1)
ln(z + 1)

Walker-Robinson Metric

This metric, given by
ds2 = dt2 − a2(t)[dr2

c + S2
K(rc)(dθ

2 + sin2θdφ2)]

is the distance between two points while accounting for the curvature for the universe.

• Closed Universe, positive curvature (K = +1)
SK(rc) = sin(rc)

• Flat Universe, no curvature (K = 0)
SK(rc) = rc

• Open Universe, negative curvature (K = −1)
SK(rc) = sinh(rc)

5


