Greek Alphabet

Capital	A	B	Γ	Δ	E	Z	H	Θ	I	K	Λ	M
Lowercase α	β	γ	δ	ε	ζ	η	θ, ϑ	l	κ	λ	μ	

Name alpha beta gamma delta epsilon zeta eta theta iota kappa lambda mu

Capital	N	Ξ	O	Π	P	Σ	T	Y	Φ	X	Ψ	Ω
Lowercase ν	ξ	o	π	ρ	σ	τ	v	ϕ, φ	χ	ψ	ω	

Name nu xi omicron pi rho sigma tau upsilon phi chi psi omega

Fundamental constants:

Speed of light: $c=2.9979 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ (roughly a foot per nanosecond)
Planck constant: $h=6.626 \cdot 10^{-34} \mathrm{~J} \mathrm{~s} ; \hbar=h / 2 \pi$
Fundamental charge unit: $e=1.602 \cdot 10^{-19} \mathrm{C}$
Electron mass: $m_{\mathrm{e}}=9.109 \cdot 10^{-31} \mathrm{~kg}$
Coulomb's Law constant: $k=1 / 4 \pi \varepsilon_{0}=8.988 \cdot 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
Gravitational constant: $G=6.67410^{-11} \mathrm{Nm}^{2} / \mathrm{kg}^{2}$
Avogadro constant: $N_{\mathrm{A}}=6.022 \cdot 10^{23}$ particles per mol
Boltzmann constant: $k=1.38 \cdot 10^{-23} \mathrm{~J} / \mathrm{K}=8.617 \cdot 10^{-5} \mathrm{eV} / \mathrm{K} ; R=N_{\mathrm{A}} \cdot k=8.314 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$

Useful conversions:

$1 \mathrm{fm}\left(=1\right.$ "Fermi") $=10^{-15} \mathrm{~m}, 1 \mathrm{~nm}=10^{-9} \mathrm{~m}=10 \AA ; 1 \mathrm{PHz}=10^{15} \mathrm{~Hz}$ ("Petahertz")
$1 \mathrm{eV}=e \cdot 1 \mathrm{~V}=1.602 \cdot 10^{-19} \mathrm{~J}$ (Energy of elementary charge after 1 V potential difference)
$1 \mathrm{keV}=1000 \mathrm{eV}, 1 \mathrm{MeV}=10^{6} \mathrm{eV}, \mathrm{GeV}=10^{9} \mathrm{eV}, 1 \mathrm{TeV}=10^{12} \mathrm{eV}$ ("Tera-electronvolt")
New unit of mass $m: 1 \mathrm{eV} / c^{2}=$ mass equivalent of 1 eV (Relativity!) $=1.78 \cdot 10^{-36} \mathrm{~kg}$
Momentum $p: 1 \mathrm{eV} / c=5.34 \cdot 10^{-28} \mathrm{~kg} \mathrm{~m} / \mathrm{s} ; p$ in $\mathrm{eV} / c=$ mass in eV / c^{2} times velocity in units of c
Planck contant: $\hbar=h / 2 \pi=197.33 \mathrm{eV} / c \cdot \mathrm{~nm}=6.582 \cdot 10^{-16} \mathrm{eV} \cdot \mathrm{s}=0.658 \mathrm{eV} / \mathrm{PHz}$
Fine-structure constant: $\alpha=e^{2} / 4 \pi \varepsilon_{0} \hbar c=1 / 137.036$
Electron mass: $m_{\mathrm{e}}=510,999 \mathrm{eV} / c^{2} \approx 0.511 \mathrm{MeV} / c^{2}$
Muon mass: $m_{\mu}=105.658 \mathrm{MeV} / c^{2} \approx 207 \cdot m_{\mathrm{e}}$
Proton mass: $m_{\mathrm{p}}=938.272 \mathrm{MeV} / c^{2} \approx 1836 \cdot m_{\mathrm{e}}$
Neutron mass: $m_{\mathrm{n}}=939.565 \mathrm{MeV} / c^{2} \approx 1839 \cdot m_{\mathrm{e}}$
Atomic mass unit ($1 / 12$ of the mass of a ${ }^{12} \mathrm{C}$ atom) : $u=931.494 \mathrm{MeV} / c^{2} \approx 1823 \cdot m_{\mathrm{e}}$
Rydberg constant: $R y=m_{\mathrm{e}} c^{2} \alpha^{2} / 2=13.606 \mathrm{eV}$
Bohr Radius: $a_{0}=\hbar c /\left(m_{\mathrm{e}} c^{2} \alpha\right)=0.0529 \mathrm{~nm}$ (roughly $1 / 2 \AA$).

Special Relativity:

For an inertial system S ' moving along the x -axis of S with constant velocity $v<c$, and with all axes aligned and the same origin $\left(x=y=z=c t=0 \Leftrightarrow x^{\prime}=y^{\prime}=z^{\prime}=c t^{\prime}=0\right)$:

$$
\gamma=\frac{1}{\sqrt{1-v^{2} / c^{2}}} ; x^{\prime}=\gamma\left(x-\frac{v}{c} c t\right) ; c t^{\prime}=\gamma\left(c t-\frac{v}{c} x\right) ; y=y^{\prime} ; z=z^{\prime}
$$

Clocks in S' appear to S as if they were going slow by factor $1 / \gamma$, and vice versa.
Length of object at rest in S^{\prime} appears contracted by factor $1 / \gamma$ in S.
Velocity addition: $\frac{u_{x}}{c}=\frac{\frac{u_{x}^{\prime}}{c}+\frac{v}{c}}{1+\frac{u_{x}^{\prime}}{c} \frac{v}{c}} ; \frac{u_{y}}{c}=\frac{\frac{1}{\gamma} \frac{u_{y}}{c}}{1+\frac{u_{x}^{\prime}}{c} \frac{v}{c}}$.
Four-vectors: $x^{\mu}=(c t, x, y, z) ; x_{\mu}=(c t,-x,-y,-z) \quad(\mu=0,1,2,3$ for $c t, x, y, z)$.
Invariant interval between two events (=points in 4-dim. space-time):
$\Delta x^{\mu}=(\Delta c t, \Delta x, \Delta y, \Delta z) \Rightarrow \Delta s^{2}=\Delta x^{\mu} \Delta x_{\mu}=\Delta c t^{2}-\Delta x^{2}-\Delta y^{2}-\Delta z^{2}$ (same in all inertial systems.)
Positive Δs^{2} : "time-like separation", $\Delta s^{2}=$ square of elapsed eigentime $c \tau$ in a system that travels from the start point (event) to the end point (event) of the interval.
Negative Δs^{2} : "space-like separation", $-\Delta s^{2}=$ square of distance between the two events in a system (which always exists!) where they occur simultaneously. $\Delta s^{2}=0$: "light-like separation"; a light ray could travel from one event to the other.
Four-momentum: $P^{\mu}=\left(E / c, P_{x}, P_{y}, P_{z}\right)=(\Gamma m c, \Gamma m \vec{u}) ; \Gamma=\frac{1}{\sqrt{1-\vec{u}^{2} / c^{2}}}$. Sum of all momenta is conserved in collisions, separately for each component. $0^{\text {th }}$ component times c is total energy, including kinetic and rest mass energy $\left(E_{\text {rest }}=m c^{2}\right)$. Transformation of P^{μ} to coordinate system S^{\prime} is analog to x^{μ} (see above).
Invariant: $P^{\mu} P_{\mu}=\frac{E^{2}}{c^{2}}-\vec{P}^{2}=m^{2} c^{2} \Rightarrow E=\sqrt{m^{2} c^{4}+\vec{P}^{2} c^{2}} ; \quad \frac{\vec{u}}{c}=\frac{\vec{P} c}{E}$.

Quantum Mechanics:

Formal/abstract: All possible knowledge about a system is encoded in its state vector $|\psi\rangle$ - often only probabilities can be predicted. State vectors are members of a (complex) Hilbert space: they can be added, multiplied by a complex number (scalar), and we can define a scalar product $\left\langle\psi_{1} \mid \psi_{2}\right\rangle$ (= some complex number c, with $\left\langle\psi_{2} \mid \psi_{1}\right\rangle=c^{*}$). All state vectors must be normalizable and by convention are normalized to $1:\langle\psi \mid \psi\rangle=1$.

Example: Motion in Motion in 1D $=>$ state vector represented by "wave function" $\psi(\mathrm{x})$. Addition: $\left[\psi_{1}+\psi_{2}\right](x)=\psi_{1}(x)+\psi_{2}(x)$. Multiplication with scalar: $\left[c \psi_{1}\right](x)=c \psi_{1}(x)$.
Scalar product: $\left\langle\psi_{1} \mid \psi_{2}\right\rangle=\int_{-\infty}^{\infty} \psi_{1}^{*}(x) \psi_{2}(x) d x$. Normalizable: $\left.\langle\psi \mid \psi\rangle\right\rangle=\int_{-\infty}^{\infty} \psi^{*}(x) \psi(x) d x<\infty$. Probability to find particle in interval $x \ldots x+\mathrm{d} x: d \operatorname{Pr}(x \ldots x+d x)=|\psi(x)|^{2} d x=\psi(x)^{*} \psi(x) d x$ (assuming normalized state vector, $\langle\psi \mid \psi\rangle=1$).

Formal/abstract: Operators are linear functions turning vectors into other vectors: $\mathbf{O}|\psi\rangle=|\varphi\rangle ; \mathbf{O}[c|\psi\rangle]=c|\varphi\rangle ; \mathbf{O}\left[\left|\psi_{1}\right\rangle+\left|\psi_{2}\right\rangle\right]=\mathbf{O}\left|\psi_{1}\right\rangle+\mathbf{O}|\psi\rangle_{2}$. A vector $\left|\varphi_{\omega}\right\rangle$ is called an eigenvector of an operator \mathbf{O} with eigenvalue ω (=complex number) IF $\mathbf{O}\left|\varphi_{\omega}\right\rangle=\omega\left|\varphi_{\omega}\right\rangle$. Observables are represented by (Hermitian) operators $\boldsymbol{\Omega}$ with only real eigenvalues ω_{i}. Any measurement of the observable must give one of these eigenvalues as result. After we measure ω_{i}, the system will be in the state described by vector $\left|\varphi_{\omega_{i}}\right\rangle$ ("collapse of the wave function"). The probability to measure this particular eigenvalue for a state described by $|\psi\rangle$ is given by $\operatorname{Pr}\left(\omega_{i}\right)=\left|\left\langle\varphi_{\omega_{i}} \mid \psi\right\rangle\right|^{2}$. The average (expectation value) for the observable over many independent trials with the same initial state $|\psi\rangle$ is $\langle\Omega\rangle_{\psi}=\langle\psi| \boldsymbol{\Omega}|\psi\rangle$ with standard deviation $\sigma_{\Omega}=\sqrt{\left\langle\Omega^{2}\right\rangle-\langle\Omega\rangle^{2}}$.

Example: Motion in Motion in 1D => Important observables:
Position $\mathbf{X} \psi(x)=x \cdot \psi(x) \rightarrow$ eigenvectors $\psi_{x_{0}}(x)=\delta\left(x-x_{0}\right)$ w/ eigenvalue x_{0}; Momentum
$\mathbf{P} \psi(x)=\frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x) \rightarrow$ eigenvectors $\psi_{p_{0}}(x)=e^{i p_{0} x / \hbar} \mathrm{w} /$ eigenvalue p_{0}; Hamiltonian (= total energy, kinetic plus potential): $\mathbf{H} \psi(x)=\left(\frac{\mathbf{P}^{2}}{2 m}+V(X)\right) \psi(x)=-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)+V(x) \psi(x)$.
Heisenberg's uncertainty principle: Position x and momentum p cannot be predicted with arbitrary precision simultaneously; $\sigma_{x} \sigma_{p} \geq \hbar / 2$.
Formal/abstract: Time evolution (Schrödinger Equation): State vector becomes function of time: $|\psi\rangle(t) ; \quad \frac{\partial}{\partial t}|\psi\rangle(t)=\frac{1}{i \hbar} \mathbf{H}|\psi\rangle(t)$ where \mathbf{H} is the Hamiltonian operator.
Eigenstates of $\mathbf{H}: \mathbf{H}\left|\varphi_{E}\right\rangle=E\left|\varphi_{E}\right\rangle \Rightarrow>$ "stationary" solutions of Schrödinger Equation: $\left|\psi_{E}(t)\right\rangle=\left|\varphi_{E}\right\rangle e^{-i E t / \hbar}$ (no time dependence for any observable).
Example: Motion in $1 \mathrm{D}=>$ Eigenvalue equation: $-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}} \psi(x)+V(x) \psi(x)=E \psi(x)$.
Solution: "Stationary States". Eigenstates of the free Hamiltonian $(V(x)=0)$:

$$
\psi_{p}(x, t)=A e^{\frac{i}{\hbar} p x} e^{-\frac{i p^{2}}{\hbar 2 m} t} \text { (simultaneously eigenstates of momentum operator) }
$$

Gaussian Wave Package:

= Linear combination of "free Hamiltonian eigenstates" (but not an eigenstate itself), with Gaussian weighting over a range of momenta. At time $t=0$:

$$
\psi_{G W P}(x, t=0)=\sqrt{\frac{1}{\sqrt{2 \pi} \sigma_{p}}} \int_{-\infty}^{\infty} e^{-\frac{\left(p-p_{0}\right)^{2}}{4 \sigma_{p}^{2}}} e^{\frac{i}{\hbar} p x} d p=\sqrt{\frac{1}{\sqrt{2 \pi} \sigma_{x}}} e^{\frac{i}{\hbar} p_{0} x} e^{-\frac{x^{2}}{4 \sigma_{x}^{2}}} ; \sigma_{x}=\frac{\hbar}{2 \sigma_{p}}
$$

Average momentum p_{0}, with standard deviation σ_{p}. Average position $x=0$; standard deviation for position is $\sigma_{x}=\frac{\hbar}{2 \sigma_{p}}$ which is the smallest possible given Heisenberg's
Uncertainty Relation. However, σ_{x} will increase with time while σ_{p} is constant.
Eigenstates of a 1-dim. square well potential ($V(x)=0$ for $0 \leq x \leq L$, infinite elsewhere):

$$
\varphi_{n}(x)=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right) ; E_{n}=\frac{n^{2} \pi^{2} \hbar^{2}}{2 m L^{2}}, n=1,2, \ldots
$$

Eigenstates of Harmonic Oscillator:

$$
\begin{aligned}
& \mathbf{H}=\frac{\mathbf{P}^{2}}{2 m}+\frac{m \omega^{2}}{2} \mathbf{X}^{2} \\
& \varphi_{n}(x)=A H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) e^{-\frac{m \omega}{2 \hbar} x^{2}} ; E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega, n=0,1, \ldots \\
& H_{0}(y)=1, H_{1}(y)=2 y, H_{2}(y)=4 y^{2}-2 \\
& A_{0}=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}, A_{1}=\frac{1}{\sqrt{2}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}, A_{2}=\frac{1}{\sqrt{8}}\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} .
\end{aligned}
$$

Quantum Mechanics in 3D:

Cartesian coordinates: (x, y, z)
$\psi(x, y, z) ; \mathbf{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)+V(x, y, z) ; \Delta \operatorname{Pr}(\vec{r}, \Delta \tau)=|\psi(x, y, z)|^{2} \Delta \tau$
(Small volume $\Delta \tau=\Delta x \Delta y \Delta z$ located at position ($\mathrm{x}, \mathrm{y}, \mathrm{z}$)).
Separation of variables: Look for solutions for the eigenvalue equation of the type $\psi(x, y, z)=\psi_{1}(x) \psi_{2}(y) \psi_{3}(z)$
Example: Infinite square well in 3D:
$\varphi_{n j k}(x, y, z)=\sqrt{\frac{8}{L^{3}}} \sin \frac{n \pi x}{L} \sin \frac{j \pi y}{L} \sin \frac{k \pi z}{L} ; E_{n j k}=\left(n^{2}+j^{2}+k^{2}\right) \frac{\hbar^{2} \pi^{2}}{2 m L^{2}}$
Spherical coordinates: r, θ, ϕ
Small volume for probability: $\Delta \tau=r^{2} \Delta r \sin \theta \Delta \theta \Delta \phi$

Hamiltonian in spherical coordinates:
$\mathbf{H}=-\frac{\hbar^{2}}{2 m}\left(\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \vartheta \frac{\partial}{\partial \vartheta}+\frac{1}{r^{2}} \frac{1}{\sin ^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}}\right)+V(r)$
$=-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{2 m r^{2}} \overrightarrow{\mathbf{L}}^{2}+V(r)$
Here, $\overrightarrow{\mathbf{L}}^{2}$ is the squared orbital angular momentum operator with eigenfunctions $Y_{\ell m}(\vartheta, \varphi) ; \overrightarrow{\mathbf{L}}^{2} Y_{\ell m}=\hbar^{2} \ell(\ell+1) Y_{\ell m} ; \ell=0,1,2 \ldots ; \mathbf{L}_{z} Y_{\ell m}=\hbar m Y_{\ell m} ; m=-\ell,-\ell+1, \ldots, \ell$
(\mathbf{L}_{z} is the z -component of the angular momentum operator). Examples:
$\begin{aligned} & Y_{1}^{-1}(\theta, \varphi)=\frac{1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{-i \varphi} \cdot \sin \theta \\ & Y_{00}(\vartheta, \varphi)=\sqrt{\frac{1}{4 \pi}} ; \quad \begin{aligned} Y_{1}^{0}(\theta, \varphi) & =\frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos \theta \quad= \\ Y_{1}^{1}(\theta, \varphi) & =\frac{-1}{2} \sqrt{\frac{3}{2 \pi}} \cdot e^{i \varphi} \cdot \sin \theta\end{aligned},\end{aligned}$
Separation of variables: Look for eigenstates of the Hamiltonian of form $\psi_{E \ell m}(r, \vartheta, \varphi)=R_{E, \ell}(r) Y_{\ell m}(\vartheta, \varphi)$ with $-\frac{\hbar^{2}}{2 m} \frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} R_{E, \ell}(r)+\frac{\hbar^{2} \ell(\ell+1)}{2 m r^{2}} R_{E, \ell}(r)+V(r) R_{E, \ell}(r)=E \cdot R_{E, \ell}(r)$
Probability to find particle in volume $\Delta \tau$ at position $(r, \theta, \phi):\left|\psi_{E \ell m}(r, \vartheta, \varphi)\right|^{2} \Delta \tau$ Radial probability distribution: $\Delta \operatorname{Pr}(r \ldots r+\Delta r)=\left|R_{\mathrm{E}, \ell}(r)\right|^{2} r^{2} \Delta r$

Hydrogen-like atoms:

(Nucleus of mass m_{2} and charge $Z e$, bound particle of mass m_{1} and charge $-e$)
$V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r}=-\frac{Z \alpha \hbar c}{r} \quad \alpha=e^{2} / 4 \pi \varepsilon_{0} \hbar c$
Mass must be replaced by "reduced mass" of 2-body system with masses m_{1} and m_{2} :
$\mu_{r}=\frac{m_{1} m_{2}}{m_{1}+m_{2}}$
Energy Eigenvalues:
$E_{n \ell}=-\frac{\mu_{r}}{m_{e}} \frac{Z^{2}}{n^{2}} R y\left(n=1,2, \ldots ; R y=m_{\mathrm{e}} c^{2} \alpha^{2} / 2=13.6 \mathrm{eV}\right)$. Degenerate in ℓ and $m ; \ell=0$,
$1, \ldots, n-1, m_{\ell}=-\ell \ldots+\ell$; also degenerate in electron spin $m_{\mathrm{s}}= \pm 1 / 2=>$ total degeneracy $2 n^{2}$.
Characteristic radius: $a=\frac{m_{e}}{\mu_{r} Z} a_{0} \quad a_{0}=\hbar c /\left(m_{\mathrm{e}} c^{2} \alpha\right)=0.53 \AA=0.053 \mathrm{~nm}$.
Eigenstates: $\psi_{n, \ell, m}(r, \vartheta, \varphi)=R_{n, \ell}(r) Y_{\ell m}(\vartheta, \varphi) . R_{\mathrm{n}, \ell}(r)$ (examples):
$R_{1,0}(r)=\frac{2}{a^{3 / 2}} e^{-r / a} ; R_{2,0}(r)=\frac{2-r / a}{\sqrt{8} a^{3 / 2}} e^{-r / 2 a} ; R_{2,1}(r)=\frac{r / a}{\sqrt{24} a^{3 / 2}} e^{-r / 2 a}$

Energy of a photon: $E_{r}=h f=h c / \lambda$
Momentum of a photon: $p_{v}=h / \lambda$
Light emitted or absorbed in transition with energy difference $\Delta E=E_{\text {init }}-E_{\text {final }}$:
$f=\Delta E / h, \lambda=h c / \Delta E=2 \pi \hbar c / \Delta E$
Pauli principle: No two identical Fermions (spin-1/2, $3 / 2, \ldots$ particles) can be in the same exact quantum state. (-> See Fermi-Dirac statistics)

Nuclear Physics

Mass-energy of an atom: (Z protons, N neutrons, $A=Z+N$):
$M_{\mathrm{A}} c^{2}=Z M_{\mathrm{p}} c^{2}+N M_{\mathrm{n}} c^{2}+Z m_{\mathrm{e}} c^{2}-B E$ (Binding energy)
typical binding energies $B E=7-8 \mathrm{MeV} \cdot A$ with a maximum for nuclei around iron ($A=56$). Light nuclei have significantly lower $B E$ per nucleon; beyond iron, the $B E$ per nucleon decreases slowly with A (due to Coulomb repulsion).
Energy liberated during a nuclear fusion reaction $1+2->3: \Delta E=M_{1} c^{2}+M_{2} c^{2}-M_{3} c^{2}$
Energy liberated during a nuclear decay $1->2+3: \Delta E=M_{1} c^{2}-M_{2} c^{2}-M_{3} c^{2}$
Density: roughly constant $\rho=0.16$ Nucleons $/ \mathrm{fm}^{3}=2 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
Radioactive nuclei:
alpha-decay: $(Z, A) \rightarrow(Z-2, A-2)+{ }^{4} \mathrm{He}+$ energy
beta-plus decay: $(Z, A) \rightarrow(Z-1, A)+\mathrm{e}^{+}+v_{\mathrm{e}}$
beta-minus decay: $(Z, A) \rightarrow(Z+1, A)+\mathrm{e}^{-}+\bar{v}_{e}$
Decay probability in time $\Delta t: \Delta \operatorname{Pr}(\Delta t)=\Delta t / \tau\left(\tau=\right.$ lifetime $\left.=T_{1 / 2} / \ln 2\right)$
Number of undecayed nuclei at time t (starting with $\left.N_{0}\right): N(\mathrm{t})=N_{0} \mathrm{e}^{-t / \tau}$

Particle Physics

Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle): quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electronneutrino, muon-neutrino, tau-neutrino) and their antiparticles:

Name	Symbol	Mass (MeV/c²)*	J	B	$Q(e)$	Particle/antiparticle name	Symbol	Q (e)
						Electron / Positron ${ }^{[18]}$	$\mathrm{e}^{-} / \mathrm{e}^{+}$	$-1 /+1$
Up	u	$2.3{ }_{-0.5}^{+0.7}$	1/2	+1/3	+2/3			
Down	d	$4.8{ }_{-0.3}^{+0.5}$	1/2	+1/3	-1/3	Muon / Antimuon ${ }^{[19]}$	μ^{-} / μ^{+}	$-1 /+1$
					!	Tau / Antitau ${ }^{\text {[21] }}$	τ^{-} / τ^{+}	$-1 /+1$
Charm	c	1275 ± 25	1/2	+1/3	$+2 / 3$			
Strange	s	95 ± 5	1/2	+ $1 / 3$	$-1 / 3$	Electron neutrino / Electron antineutrino ${ }^{[34]}$	$\mathrm{v}_{\mathrm{e}} / \overline{\mathrm{v}}_{\mathrm{e}}$	0
						Muon neutrino / Muon antineutrino ${ }^{[34]}$	v_{μ} / \bar{v}_{μ}	0
Top	t	$173210 \pm 510 \pm 710$	$1 / 2$	+1/3	+2/3	Tau neutrino / Tau antineutrino ${ }^{[34]}$	$\mathrm{v}_{\mathrm{T}} / \overline{\mathrm{v}}_{\tau}$	0
Bottom	b	4180 ± 30	1/2	+1/3	$-1 / 3$			

Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics): Photon γ (electromagnetic interaction), W^{+}, W, Z^{0} (weak interaction), gluons (strong interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are massless; the latter gain mass ($80-91 \mathrm{GeV} / c^{2}$) through interaction with the Higgs field. All interactions proceed via gauge bosons coupling to various charges:

- electromagnetic interaction: electric charge (+ or -) (all Fermions except neutrinos, plus W bosons)
- weak interaction: weak charges ("weak isospin and weak hypercharge") - all particles except photons, gluons
- strong interaction: color charges ("red","green","blue") - all quarks and gluons.

Molecules and Condensed Matter

Ionic Bond: One atom gives up 1 (or more) electron(s), the other picks it (them) up; binding through electrostatic attraction.
Covalent Bond: Electron(s) shared between two atoms. Example: Let $\psi_{1}\left(\vec{r}_{e}\right)=$ wave function for hydrogen ground state with proton at position 1, and $\psi_{2}\left(\vec{r}_{e}\right)$ for proton at position 2. Symmetric superposition $\psi_{S}\left(\vec{r}_{e}\right)=\frac{1}{\sqrt{2}} \psi_{1}\left(\vec{r}_{e}\right)+\frac{1}{\sqrt{2}} \psi_{2}\left(\vec{r}_{e}\right)$ is attractive (net charge between protons), antisymmetric superposition $\psi_{A}\left(\vec{r}_{e}\right)=\frac{1}{\sqrt{2}} \psi_{1}\left(\vec{r}_{e}\right)-\frac{1}{\sqrt{2}} \psi_{2}\left(\vec{r}_{e}\right)$ is nonbinding (zero net charge between protons).
Metallic Bond: Many electrons (one or more per atom) shared between a large number N of atoms -> positively charged "rest atoms" in "Fermi gas" of electrons. Electron energy eigenstates are clustered in "bands"; highest (partially or totally unoccupied) band = conduction band, next lower (filled) band = valence band. Each band contains of order N eigenstates. Interaction between electron gas and oscillation modes (=phonons) of the "rest atoms" gives rise to conductive heating, $V=R I$, and superconductivity (Bose-Einstein condensation of "Cooper pairs" of electrons).
Conductors: partially filled conduction band and/or overlapping conduction and valence bands. Isolators: Completely empty conduction band, completely filled valence band, large band gap. Semi-conductors: Similar to isolators, but with smaller band gap. Can conduct at finite temperatures (see Fermi-Dirac distribution below). Conductivity increased through electron donor (n -doped) or electron acceptor (p -doped) impurities. pn -junction $=$ diode .

Thermal/Statistical Physics

Boltzmann Distribution: number $n(E)$ of atoms (molecules, ...) out of an ensemble with a total of N atoms (...) with given energy E in a system with absolute temperature T (in K).

Discrete energy levels E_{i} (e.g., quantum systems) with degeneracy g_{i} (= number of eigenstates of the Hamiltonian with energy eigenvalue E_{i}):

$$
n\left(E_{i}\right)=C g_{i} e^{-E_{i} / k T}=\frac{g_{i}}{e^{\left(E_{i}-\mu\right) / k T}} ; C=e^{\mu / k T}=N / \sum g_{i} e^{-E_{i} / k T}
$$

(C is a normalization constant; μ is the "chemical potential")
Continuous energy levels E (classical system, e.g. monatomic gas) with state density
$g(E) \mathrm{d} E$ (= volume in "phase space" between energy E and energy $E+\mathrm{d} E$):
$d n(E \ldots E+d E)=C g(E) d E e^{-E / k T} ; C=N / \int g(E) d E e^{-E / k T}$
State density for simple monatomic gas:
$g(E) d E=4 \pi p^{2} d p=4 \pi m \sqrt{2 m E} d E$
Consequences: Ideal gas law $P V=n R T=n N_{\mathrm{A}} k T$, ($n=$ number of mols; $N=n N_{\mathrm{A}}$); average energy per degree of freedom (dimension of motion) $=1 / 2 k T=>$ total kinetic energy of a monatomic gas $=3 / 2 k T$ per atom or $E_{\text {tot }}=3 / 2 n N_{\mathrm{A}} k T=\frac{3}{2} n R T$
Fermi-Dirac Distribution (for a system of indistinguishable Fermions):
$n\left(E_{i}\right)=N \frac{g_{i}}{e^{\left(E_{i}-\mu\right) / k T}+1} ; \mu$ here is right above the Fermi energy $=$ the highest filled energy level necessary to accommodate all N fermions, where all lower energy levels are filled with as many Fermions as the Pauli principle allows (= the state of a (degenerate) Fermi gas at (close to) zero temperature).
Bose-Einstein Distribution (for a system of indistinguishable bosons):
$n\left(E_{i}\right)=N \frac{g_{i}}{e^{\left(E_{i}-\mu\right) / k T}-1} ; \mu$ here is right below the ground state energy (the lowest available energy level). If T goes to zero, all levels but that lowest energy level are empty $=$ Bose-Einstein condensation.
Photon density for black-body radiation: $\frac{d n_{\gamma}(\lambda \ldots \lambda+d \lambda)}{d V}=\frac{8 \pi}{\lambda^{4}} \frac{d \lambda}{e^{h c / \lambda k T}-1}=8 \pi \frac{f^{2}}{c^{3}} \frac{d f}{e^{h f / k T}-1}$
Energy density (= energy contained in electromagnetic radiation of frequency f or wave length λ, per unit volume V) for black-body radiation (i.e., Bose-Einstein Distribution for a photon gas - Planck's Law):
$\frac{d E}{V}=8 \pi h \frac{f^{3}}{c^{3}} \frac{d f}{e^{h f / k T}-1}=\frac{8 \pi h c}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda k T}-1}$; Energy flux/surface area $\frac{d E}{d A d t}=\frac{2 \pi h c^{2}}{\lambda^{5}} \frac{d \lambda}{e^{h c / \lambda k T}-1}$

