Greek Alphabet

Capital	A	В	Γ	Δ	E	Z	Н	Θ	I	K	Λ	M
Lowercase	α	β	γ	δ	ε	ζ	η	θ , ϑ	ι	κ	λ	μ
Name	alpha	beta	gamma	delta	epsilo	n zeta	eta	theta	iota	kappa	lambda	mu
Capital	N	Ξ	O	Π	P	Σ	T	Y	Φ	X	Ψ	Ω
Lowercase	ν	ξ	o	π	ρ	σ	τ	υ	φ, φ	χ	ψ	ω
Name	nu	xi	omicron	pi	rho s	sigma	tau	upsilo	n phi	chi	psi	omega

Fundamental constants:

Speed of light: $c = 2.9979 \cdot 10^8$ m/s (roughly a foot per nanosecond)

Planck constant: $h = 6.626 \cdot 10^{-34} \text{ J s}$; $\hbar = h / 2\pi$ Fundamental charge unit: $e = 1.602 \cdot 10^{-19} \text{ C}$

Electron mass: $m_e = 9.109 \cdot 10^{-31} \text{ kg}$

Coulomb's Law constant: $k = 1/4\pi\epsilon_0 = 8.988 \cdot 10^9 \text{ Nm}^2/\text{C}^2$

Gravitational constant: $G = 6.674 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$

Avogadro constant: $N_A = 6.022 \cdot 10^{23}$ particles per mol

Boltzmann constant: $k = 1.38 \cdot 10^{-23} \text{ J/K} = 8.617 \cdot 10^{-5} \text{ eV/K}$; $R = N_A \cdot k = 8.314 \text{ J/K/mol}$

Useful conversions:

1 fm (= 1 "Fermi") = 10^{-15} m, 1 nm = 10^{-9} m = 10 Å; 1 PHz = 10^{15} Hz ("Petahertz")

 $1 \text{ eV} = e \cdot 1\text{V} = 1.602 \cdot 10^{-19} \text{ J}$ (Energy of elementary charge after 1 V potential difference)

 $1 \text{ keV} = 1000 \text{ eV}, 1 \text{ MeV} = 10^6 \text{ eV}, \text{GeV} = 10^9 \text{ eV}, 1 \text{ TeV} = 10^{12} \text{ eV}$ ("Tera-electronvolt")

New unit of mass m: $1 \text{ eV}/c^2 = \text{mass equivalent of } 1 \text{ eV} \text{ (Relativity!)} = 1.78 \cdot 10^{-36} \text{ kg}$

Momentum p: 1 eV/c = $5.34 \cdot 10^{-28}$ kg m/s; p in eV/c = mass in eV/c² times velocity in units of c

Planck contant: $\hbar = h/2\pi = 197.33 \text{ eV/}c \text{ nm} = 6.582 \cdot 10^{-16} \text{ eV s} = 0.658 \text{ eV/PHz}$

Fine-structure constant: $\alpha = e^2 / 4\pi \epsilon_0 \hbar c = 1/137.036$

Electron mass: $m_e = 510,999 \text{ eV}/c^2 \approx 0.511 \text{ MeV}/c^2$

Muon mass: $m_{\mu} = 105.658 \text{ MeV}/c^2 \approx 207 \text{ m}_{e}$

Proton mass: $m_p = 938.272 \text{ MeV}/c^2 \approx 1836 \text{ } m_e$

Neutron mass: $m_n = 939.565 \text{ MeV}/c^2 \approx 1839 \cdot m_e$

Atomic mass unit (1/12 of the mass of a 12 C atom): $u = 931.494 \text{ MeV}/c^2 \approx 1823 \text{ } m_e$

Rydberg constant: $Ry = m_e c^2 \alpha^2 / 2 = 13.606 \text{ eV}$

Bohr Radius: $a_0 = \hbar c / (m_e c^2 \alpha) = 0.0529$ nm (roughly ½ Å).

Special Relativity:

For an inertial system S' moving along the x-axis of S with constant velocity v < c, and with all axes aligned and the same origin $(x = y = z = ct = 0 \Leftrightarrow x' = y' = z' = ct' = 0)$:

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}; x' = \gamma \left(x - \frac{v}{c}ct\right); ct' = \gamma \left(ct - \frac{v}{c}x\right); y = y'; z = z'$$

Clocks in S' appear to S as if they were going slow by factor $1/\gamma$, and vice versa.

Length of object at rest in S' appears contracted by factor $1/\gamma$ in S.

Velocity addition:
$$\frac{u_x}{c} = \frac{\frac{u_x}{c} + \frac{v}{c}}{1 + \frac{u_x}{c} \frac{v}{c}}; \frac{u_y}{c} = \frac{\frac{1}{\gamma} \frac{u_y}{c}}{1 + \frac{u_x}{c} \frac{v}{c}}.$$

Four-vectors: $x^{\mu} = (ct, x, y, z)$; $x_{\mu} = (ct, -x, -y, -z)$ ($\mu = 0, 1, 2, 3$ for ct, x, y, z).

Invariant interval between two events (=points in 4-dim. space-time):

$$\Delta x^{\mu} = (\Delta ct, \Delta x, \Delta y, \Delta z) \Rightarrow \Delta s^{2} = \Delta x^{\mu} \Delta x_{\mu} = \Delta ct^{2} - \Delta x^{2} - \Delta y^{2} - \Delta z^{2} \text{ (same in all inertial systems.)}$$

Positive Δs^2 : "time-like separation", Δs^2 = square of elapsed eigentime $c\tau$ in a system that travels from the start point (event) to the end point (event) of the interval.

Negative Δs^2 : "space-like separation", $-\Delta s^2$ = square of distance between the two events in a system (which always exists!) where they occur simultaneously.

 $\Delta s^2 = 0$: "light-like separation"; a light ray could travel from one event to the other.

Four-momentum:
$$P^{\mu} = (E/c, P_x, P_y, P_z) = (\Gamma mc, \Gamma m\vec{u}); \Gamma = \frac{1}{\sqrt{1 - \vec{u}^2/c^2}}$$
. Sum of all

momenta is conserved in collisions, separately for each component. 0^{th} component times c is total energy, including kinetic and rest mass energy ($E_{rest} = mc^2$). Transformation of P^{μ} to coordinate system S' is analog to x^{μ} (see above).

Invariant:
$$P^{\mu}P_{\mu} = \frac{E^2}{c^2} - \vec{P}^2 = m^2c^2 \Rightarrow E = \sqrt{m^2c^4 + \vec{P}^2c^2}$$
; $\frac{\vec{u}}{c} = \frac{\vec{P}c}{E}$.

Quantum Mechanics:

Formal/abstract: All *possible* knowledge about a system is encoded in its state vector $|\psi\rangle$ - often only probabilities can be predicted. State vectors are members of a (complex) Hilbert space: they can be added, multiplied by a complex number (scalar), and we can define a scalar product $\langle \psi_1 | \psi_2 \rangle$ (= some complex number c, with $\langle \psi_2 | \psi_1 \rangle = c^*$). All state vectors must be normalizable and by convention are normalized to 1: $\langle \psi | \psi \rangle = 1$.

Example: Motion in Motion in 1D => state vector represented by "wave function" $\psi(x)$. Addition: $[\psi_1 + \psi_2](x) = \psi_1(x) + \psi_2(x)$. Multiplication with scalar: $[c\psi_1](x) = c\psi_1(x)$.

Scalar product: $\langle \psi_1 | \psi_2 \rangle = \int_{-\infty}^{\infty} \psi_1^*(x) \psi_2(x) dx$. Normalizable: $\langle \psi | \psi \rangle = \int_{-\infty}^{\infty} \psi^*(x) \psi(x) dx < \infty$.

Probability to find particle in interval x...x+dx: $d\Pr(x...x+dx) = |\psi(x)|^2 dx = \psi(x)^* \psi(x) dx$ (assuming normalized state vector, $\langle \psi | \psi \rangle = 1$).

Formal/abstract: Operators are linear functions turning vectors into other vectors: $\mathbf{O}|\psi\rangle = |\varphi\rangle; \mathbf{O}[c|\psi\rangle] = c|\varphi\rangle; \mathbf{O}[|\psi_1\rangle + |\psi_2\rangle] = \mathbf{O}|\psi_1\rangle + \mathbf{O}|\psi\rangle_2$. A vector $|\varphi_{\omega}\rangle$ is called an eigenvector of an operator \mathbf{O} with eigenvalue ω (=complex number) IF $\mathbf{O}|\varphi_{\omega}\rangle = \omega|\varphi_{\omega}\rangle$.

Observables are represented by (Hermitian) operators Ω with only **real** eigenvalues ω_i . Any measurement of the observable must give one of these eigenvalues as result. After we measure ω_i , the system will be in the state described by vector $|\varphi_{\omega_i}\rangle$ ("collapse of the wave function"). The probability to measure this particular eigenvalue for a state described by $|\psi\rangle$ is given by $\Pr(\omega_i) = \left|\left\langle \varphi_{\omega_i} \middle| \psi \right\rangle\right|^2$. The average (expectation value) for the observable over many independent trials with the same initial state $|\psi\rangle$ is $\langle \Omega \rangle_{\psi} = \langle \psi | \Omega | \psi \rangle$ with standard deviation $\sigma_{\Omega} = \sqrt{\langle \Omega^2 \rangle - \langle \Omega \rangle^2}$.

Example: Motion in Motion in 1D => Important observables:

Position $\mathbf{X}\psi(x) = x \cdot \psi(x) \rightarrow \text{eigenvectors } \psi_{x_0}(x) = \delta(x - x_0) \text{ w/ eigenvalue } x_0; \text{ Momentum}$

$$\mathbf{P}\psi(x) = \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x)$$
 \rightarrow eigenvectors $\psi_{p_0}(x) = e^{ip_0x/\hbar}$ w/ eigenvalue p_0 ; Hamiltonian (= total

energy, kinetic plus potential):
$$\mathbf{H}\psi(x) = \left(\frac{\mathbf{P}^2}{2m} + V(X)\right)\psi(x) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\psi(x)$$
.

Heisenberg's uncertainty principle: Position x and momentum p cannot be predicted with arbitrary precision simultaneously; $\sigma_x \sigma_p \ge \hbar/2$.

Formal/abstract: Time evolution (Schrödinger Equation): State vector becomes function of time: $|\psi\rangle(t)$; $\frac{\partial}{\partial t}|\psi\rangle(t) = \frac{1}{i\hbar}\mathbf{H}|\psi\rangle(t)$ where **H** is the Hamiltonian operator.

Eigenstates of **H**: $\mathbf{H}|\varphi_E\rangle = E|\varphi_E\rangle$ => "stationary" solutions of Schrödinger Equation: $|\psi_E(t)\rangle = |\varphi_E\rangle e^{-iEt/\hbar}$ (no time dependence for any observable).

Example: Motion in 1D => Eigenvalue equation: $-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\psi(x) = E\psi(x)$.

Solution: "Stationary States". Eigenstates of the free Hamiltonian (V(x) = 0):

 $\psi_p(x,t) = Ae^{\frac{i}{\hbar}px}e^{-\frac{i}{\hbar}\frac{p^2}{2m}t}$ (simultaneously eigenstates of momentum operator)

Gaussian Wave Package:

= Linear combination of "free Hamiltonian eigenstates" (but not an eigenstate itself), with Gaussian weighting over a range of momenta. At time t = 0:

$$\psi_{GWP}(x,t=0) = \sqrt{\frac{1}{\sqrt{2\pi\sigma_{p}}}} \int_{-\infty}^{\infty} e^{-\frac{(p-p_{0})^{2}}{4\sigma_{p}^{2}}} e^{\frac{i}{\hbar}px} dp = \sqrt{\frac{1}{\sqrt{2\pi\sigma_{x}}}} e^{\frac{i}{\hbar}p_{0}x} e^{-\frac{x^{2}}{4\sigma_{x}^{2}}}; \sigma_{x} = \frac{\hbar}{2\sigma_{p}}$$

Average momentum p_0 , with standard deviation σ_p . Average position x = 0; standard deviation for position is $\sigma_x = \frac{\hbar}{2\sigma_p}$ which is the smallest possible given Heisenberg's

Uncertainty Relation. However, σ_x will increase with time while σ_p is constant. Eigenstates of a 1-dim. square well potential (V(x) = 0 for $0 \le x \le L$, infinite elsewhere):

$$\varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right); E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}, n = 1, 2, ...$$

Eigenstates of Harmonic Oscillator:

$$\mathbf{H} = \frac{\mathbf{P}^{2}}{2m} + \frac{m\omega^{2}}{2}\mathbf{X}^{2}$$

$$\varphi_{n}(x) = AH_{n}\left(\sqrt{\frac{m\omega}{\hbar}}x\right)e^{-\frac{m\omega}{2\hbar}x^{2}}; E_{n} = (n + \frac{1}{2})\hbar\omega, n = 0,1,...$$

$$H_{0}(y) = 1, H_{1}(y) = 2y, H_{2}(y) = 4y^{2} - 2;$$

$$A_{0} = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}, A_{1} = \frac{1}{\sqrt{2}}\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}, A_{2} = \frac{1}{\sqrt{8}}\left(\frac{m\omega}{\pi\hbar}\right)^{1/4}.$$

Quantum Mechanics in 3D:

Cartesian coordinates: (x,y,z)

$$\psi(x,y,z); \mathbf{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + V(x,y,z); \Delta \Pr(\vec{r}, \Delta \tau) = \left| \psi(x,y,z) \right|^2 \Delta \tau$$

(Small volume $\Delta \tau = \Delta x \Delta y \Delta z$ located at position (x,y,z)).

Separation of variables: Look for solutions for the eigenvalue equation of the type $\psi(x, y, z) = \psi_1(x)\psi_2(y)\psi_3(z)$

Example: Infinite square well in 3D:

$$\varphi_{njk}(x,y,z) = \sqrt{\frac{8}{L^3}} \sin \frac{n\pi x}{L} \sin \frac{j\pi y}{L} \sin \frac{k\pi z}{L}; E_{njk} = (n^2 + j^2 + k^2) \frac{\hbar^2 \pi^2}{2mL^2}$$

Spherical coordinates: r, θ , ϕ

Small volume for probability: $\Delta \tau = r^2 \Delta r \sin \theta \Delta \theta \Delta \phi$

Hamiltonian in spherical coordinates:

$$\mathbf{H} = -\frac{\hbar^2}{2m} \left(\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \vartheta \frac{\partial}{\partial \vartheta} + \frac{1}{r^2} \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \right) + V(r)$$

$$= -\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{2mr^2} \vec{\mathbf{L}}^2 + V(r)$$

Here, $\vec{\mathbf{L}}^2$ is the squared orbital angular momentum operator with eigenfunctions $Y_{\ell m}(\vartheta,\varphi); \vec{\mathbf{L}}^2 Y_{\ell m} = \hbar^2 \ell(\ell+1) Y_{\ell m}; \ell=0,1,2...; \mathbf{L}_z Y_{\ell m} = \hbar m Y_{\ell m}; m=-\ell,-\ell+1,...,\ell$

 (\mathbf{L}_z) is the z-component of the angular momentum operator). Examples:

$$\begin{split} Y_1^{-1}(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{3}{2\pi}} \cdot e^{-i\varphi} \cdot \sin\theta \\ Y_{00}(\vartheta,\varphi) &= \sqrt{\frac{1}{4\pi}}; & Y_1^0(\theta,\varphi) &= \frac{1}{2}\sqrt{\frac{3}{\pi}} \cdot \cos\theta &= \\ Y_1^1(\theta,\varphi) &= \frac{-1}{2}\sqrt{\frac{3}{2\pi}} \cdot e^{i\varphi} \cdot \sin\theta \end{split}$$

Separation of variables: Look for eigenstates of the Hamiltonian of form $\psi_{E\ell m}(r,\vartheta,\varphi) = R_{E,\ell}(r)Y_{\ell m}(\vartheta,\varphi)$ with

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r}R_{E,\ell}(r) + \frac{\hbar^2\ell(\ell+1)}{2mr^2}R_{E,\ell}(r) + V(r)R_{E,\ell}(r) = E \cdot R_{E,\ell}(r)$$

Probability to find particle in volume $\Delta \tau$ at position (r, θ, ϕ) : $\left| \psi_{E\ell m}(r, \theta, \varphi) \right|^2 \Delta \tau$ Radial probability distribution: $\Delta \Pr(r...r+\Delta r) = |R_{E,\ell}(r)|^2 r^2 \Delta r$

Hydrogen-like atoms:

(Nucleus of mass m_2 and charge Ze, bound particle of mass m_1 and charge -e)

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r} = -\frac{Z\alpha\hbar c}{r} \quad \alpha = e^2 / 4\pi\varepsilon_0 \hbar c$$

Mass must be replaced by "reduced mass" of 2-body system with masses m_1 and m_2 :

$$\mu_r = \frac{m_1 m_2}{m_1 + m_2}$$

Energy Eigenvalues:

$$E_{n\ell} = -\frac{\mu_r}{m_e} \frac{Z^2}{n^2} Ry \ (n = 1, 2, ...; Ry = m_e c^2 \alpha^2 / 2 = 13.6 \text{ eV}).$$
 Degenerate in ℓ and m ; $\ell = 0$,

 $1, \dots, n-1, m_{\ell} = -\ell \dots + \ell$; also degenerate in electron spin $m_s = \pm 1/2 = >$ total degeneracy $2n^2$.

Characteristic radius: $a = \frac{m_e}{\mu_r Z} a_0$ $a_0 = \hbar c / (m_e c^2 \alpha) = 0.53 \text{ Å} = 0.053 \text{ nm}.$

Eigenstates: $\psi_{n,\ell,m}(r,\vartheta,\varphi) = R_{n,\ell}(r)Y_{\ell m}(\vartheta,\varphi)$. $R_{n,\ell}(r)$ (examples):

$$R_{1,0}(r) = \frac{2}{a^{3/2}} e^{-r/a}; R_{2,0}(r) = \frac{2 - r/a}{\sqrt{8}a^{3/2}} e^{-r/2a}; R_{2,1}(r) = \frac{r/a}{\sqrt{24}a^{3/2}} e^{-r/2a}$$

Energy of a photon: $E_r = hf = hc/\lambda$ Momentum of a photon: $p_r = h/\lambda$

Light emitted or absorbed in transition with energy difference $\Delta E = E_{\rm init} - E_{\rm final}$: $f = \Delta E/h$, $\lambda = hc/\Delta E = 2\pi\hbar c/\Delta E$

Pauli principle: No two identical Fermions (spin-1/2, 3/2, ... particles) can be in the same exact quantum state. (-> See Fermi-Dirac statistics)

Nuclear Physics

Mass-energy of an atom: (Z protons, N neutrons, A = Z+N):

$$M_{\rm A}c^2 = Z M_{\rm p}c^2 + N M_{\rm n}c^2 + Z m_{\rm e}c^2 - BE$$
 (Binding energy)

typical binding energies $BE = 7-8 \text{ MeV} \cdot A$ with a maximum for nuclei around iron (A=56).

Light nuclei have significantly lower *BE* per nucleon; beyond iron, the *BE* per nucleon decreases slowly with *A* (due to Coulomb repulsion).

Energy liberated during a nuclear fusion reaction 1 + 2 -> 3: $\Delta E = M_1 c^2 + M_2 c^2 - M_3 c^2$

Energy liberated during a nuclear decay 1 -> 2 + 3: $\Delta E = M_1c^2 - M_2c^2 - M_3c^2$

Density: roughly constant $\rho = 0.16$ Nucleons / fm³ = 2×10^{17} kg/m³

Radioactive nuclei:

alpha-decay: $(Z,A) \rightarrow (Z-2,A-2) + {}^{4}He + energy$

beta-plus decay: $(Z,A) \rightarrow (Z-1,A) + e^+ + v_e$

beta-minus decay: $(Z,A) \rightarrow (Z+1,A) + e^{-} + \overline{\nu}_{e}$

Decay probability in time Δt : $\Delta Pr(\Delta t) = \Delta t / \tau (\tau = \text{lifetime} = T_{1/2} / \ln 2)$

Number of undecayed nuclei at time t (starting with N_0): $N(t) = N_0 e^{-t/\tau}$

Particle Physics

Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle): quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electron-neutrino, muon-neutrino, tau-neutrino) and their antiparticles:

Name	Symbol	Mass (MeV/c²)*	J	В	Q (e)
Up	u	2.3 ^{+0.7} _{-0.5}	1/2	+1//3	+2/3
Down	d	4.8 ^{+0.5} _{-0.3}	1/2	+1//3	-1/3
Charm	С	1275 ±25	1/2	+1//3	+2/3
Strange	s	95 ±5	1/2	+1/3	-1/3
Тор	t	173 210 ±510 ± 710	1/2	+1/3	+2/3
Bottom	b	4180 ±30	1/2	+1/3	-1/3

Particle/antiparticle name	Symbol	Q (e)
Electron / Positron ^[18]	e ⁻ / e ⁺	-1 / +1
Muon / Antimuon ^[19]	μ / μ +	-1 / +1
Tau / Antitau ^[21]	τ -/ τ +	-1 / +1
Electron neutrino / Electron antineutrino ^[34]	v_e / \overline{v}_e	0
Muon neutrino / Muon antineutrino ^[34]	$v_{\mu}/\overline{v}_{\mu}$	0
Tau neutrino / Tau antineutrino ^[34]	$v_{\tau} / \overline{v}_{\tau}$	0

Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics): Photon γ (electromagnetic interaction), W^+ , W^- , Z^0 (weak interaction), gluons (strong interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are massless; the latter gain mass (80-91 GeV/ c^2) through interaction with the Higgs field. All interactions proceed via gauge bosons coupling to various charges:

- electromagnetic interaction: electric charge (+ or -) (all Fermions except neutrinos, plus W bosons)
- weak interaction: weak charges ("weak isospin and weak hypercharge") all particles except photons, gluons
- strong interaction: color charges ("red", "green", "blue") all quarks and gluons.

Molecules and Condensed Matter

Ionic Bond: One atom gives up 1 (or more) electron(s), the other picks it (them) up; binding through electrostatic attraction.

Covalent Bond: Electron(s) shared between two atoms. Example: Let $\psi_1(\vec{r_e})$ = wave function for hydrogen ground state with proton at position 1, and $\psi_2(\vec{r_e})$ for proton at position 2. Symmetric superposition $\psi_S(\vec{r_e}) = \frac{1}{\sqrt{2}} \psi_1(\vec{r_e}) + \frac{1}{\sqrt{2}} \psi_2(\vec{r_e})$ is attractive (net charge between protons), antisymmetric superposition $\psi_A(\vec{r_e}) = \frac{1}{\sqrt{2}} \psi_1(\vec{r_e}) - \frac{1}{\sqrt{2}} \psi_2(\vec{r_e})$ is non-

binding (zero net charge between protons).

Metallic Bond: Many electrons (one or more per atom) shared between a large number N of atoms -> positively charged "rest atoms" in "Fermi gas" of electrons. Electron energy eigenstates are clustered in "bands"; highest (partially or totally unoccupied) band = conduction band, next lower (filled) band = valence band. Each band contains of order N eigenstates. Interaction between electron gas and oscillation modes (=phonons) of the "rest atoms" gives rise to conductive heating, V = RI, and superconductivity (Bose-Einstein condensation of "Cooper pairs" of electrons).

Conductors: partially filled conduction band and/or overlapping conduction and valence bands. *Isolators*: Completely empty conduction band, completely filled valence band, large band gap. *Semi-conductors*: Similar to isolators, but with smaller band gap. Can conduct at finite temperatures (see Fermi-Dirac distribution below). Conductivity increased through electron donor (n-doped) or electron acceptor (p-doped) impurities. pn-junction = diode.

Thermal/Statistical Physics

Boltzmann Distribution: number n(E) of atoms (molecules, ...) out of an ensemble with a total of N atoms (...) with given energy E in a system with absolute temperature T (in K).

Discrete energy levels E_i (e.g., quantum systems) with degeneracy g_i (= number of eigenstates of the Hamiltonian with energy eigenvalue E_i):

$$n(E_i) = Cg_i e^{-E_i/kT} = \frac{g_i}{e^{(E_i - \mu)/kT}}; C = e^{\mu/kT} = N / \sum g_i e^{-E_i/kT}$$

(C is a normalization constant; μ is the "chemical potential")

Continuous energy levels E (classical system, e.g. monatomic gas) with state density g(E)dE (= volume in "phase space" between energy E and energy E + dE):

$$dn(E...E + dE) = C g(E) dE e^{-E/kT}; C = N / \int g(E) dE e^{-E/kT}$$

State density for simple monatomic gas:

$$g(E)dE = 4\pi p^2 dp = 4\pi m \sqrt{2mE} dE$$

Consequences: Ideal gas law $PV = nRT = nN_AkT$, $(n = \text{number of mols}; N = nN_A)$; average energy per degree of freedom (dimension of motion) = ½ kT = > total kinetic energy of a monatomic gas = 3/2 kT per atom or $E_{\text{tot}} = \frac{3}{2} nN_AkT = \frac{3}{2} nRT$

Fermi-Dirac Distribution (for a system of indistinguishable Fermions):

$$n(E_i) = N \frac{g_i}{e^{(E_i - \mu)/kT} + 1}$$
; μ here is right above the Fermi energy = the highest filled

energy level necessary to accommodate all N fermions, where all lower energy levels are filled with as many Fermions as the Pauli principle allows

(= the state of a (degenerate) Fermi gas at (close to) zero temperature).

Bose-Einstein Distribution (for a system of indistinguishable bosons):

$$n(E_i) = N \frac{g_i}{e^{(E_i - \mu)/kT} - 1}$$
; μ here is right below the ground state energy (the lowest

available energy level). If T goes to zero, all levels but that lowest energy level are empty = Bose-Einstein condensation.

Photon density for black-body radiation:
$$\frac{dn_{\gamma}(\lambda...\lambda+d\lambda)}{dV} = \frac{8\pi}{\lambda^4} \frac{d\lambda}{e^{hc/\lambda kT}-1} = 8\pi \frac{f^2}{c^3} \frac{df}{e^{hf/kT}-1}$$

Energy density (= energy contained in electromagnetic radiation of frequency f or wave length λ , per unit volume V) for black-body radiation (i.e., Bose-Einstein Distribution for a photon gas - Planck's Law):

$$\frac{dE}{V} = 8\pi h \frac{f^3}{c^3} \frac{df}{e^{hf/kT} - 1} = \frac{8\pi hc}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1}$$
; Energy flux/surface area
$$\frac{dE}{dAdt} = \frac{2\pi hc^2}{\lambda^5} \frac{d\lambda}{e^{hc/\lambda kT} - 1}$$