PHYSICS 313 - Winter/Spring Semester 2017 - ODU

Astrophysics - Problem Set 9 - Solution

Problem 1

Mark each of the following items with "Y" or "T" if they can be found in our own galaxy, the Milky Way, and with " F " or " N " if they don't exist within the Milky Way (including its halo):

1a) Individual (unbound, single) quarks. \mathbf{N}
1b) Positrons. $\quad \mathbf{Y}$
1c) Neutrinos. $\quad \mathbf{Y}$
1d) Photons. $\quad \mathbf{Y}$
1e) Some type of dark matter. $\quad \mathbf{Y}$
1f) Hydrogen gas \mathbf{Y}
1g) Dust particles. Y
1h) 10 Trillion main sequence stars. N ["only" 20 billion]
1i) White dwarfs. Y
1j) More than 1000 planets. $\quad \mathbf{Y}$
1k) Neutron stars. Y
11) Sun-mass black holes. Y

1m) (At least one) supermassive black hole. \mathbf{Y}
1n) Quasars.
10) Globular clusters. $\quad \mathbf{Y}$

1p) Magnetic fields. $\quad \mathbf{Y}$
1q) Spiral arms. Y
1r) Central bulge. Y
1s) Noodles. Y [This may seem silly, but apart from real pasta - which our Galaxy certainly contains - new evidence points to so-called "plasma noodles" spanning many light-years; not to mention the "nuclear pasta" in the outer parts of neutron stars...]

Problem 2

The following is a set of multiple choice questions. Answer each with a single digit:
2a) Which of the following statements about the Milky way is correct? 2
1 - Stars in the spiral arms collide with each other all the time.
2 - Most stars in the disk are moving roughly with the same speed.
3 - A star that is born in a spiral arm stays within that same arm for all of its life.
4 - Our galaxy contains no black holes with more than 10 solar masses.

2b) Which of the following types of electromagnetic radiation is unsuitable to observe the center of our galaxy? 3
1 - Infrared radiation
2 - Radio waves
3 - Visible light
4 -x-rays.

PHYSICS 313 - Winter/Spring Semester 2017 - ODU

Problem 3 - Show your work (not only final results)

Some halo stars and globular clusters circle our Milky Way at radii as large as 50 kpc . Assume they move with tangential velocity $200 \mathrm{~km} / \mathrm{s}$. Calculate the total mass required for the Milky Way to explain this motion in terms of Keplerian orbits (i.e., assuming a spherical mass M inside the orbit, calculate the size of M in units of solar masses, $2 \times 10^{30} \mathrm{~kg}$). Compare this number with the visible luminosity, which is roughly 20 billion times that of the sun.
Note: $1 \mathrm{pc}=3 \times 10^{16} \mathrm{~m}$.
Answ.: Setting the centripetal acceleration, $a=v^{2} / r$, equal to the gravitational acceleration due to a central mass M yields

$$
\frac{v^{2}}{r}=\frac{G M}{r^{2}} \Rightarrow \quad M=\frac{r v^{2}}{G}=\frac{\left(50,000 \times 3 \cdot 10^{16} \mathrm{~m}\right)(200,000 \mathrm{~m} / \mathrm{s})^{2}}{6.67 \cdot 10^{-11}}=9 \cdot 10^{41} \mathrm{~kg}=4.5 \cdot 10^{11} \mathrm{M}_{\text {sun }}
$$

So, compared to the sun, the whole Milky Way appears to be more than 20 times as massive per unit of luminosity (making it likely that it contains "dark matter").

Problem 4 - Final numerical results suffice, but you may show your work "in case"

Calculate the Schwarzschild radius of a black hole with mass $4 \cdot 10^{6} \mathrm{M}_{\text {sun }}$. Compare to the following sizes:

1) The radius of a star with the same mass and the density of a typical red giant like Betelgeuse $\left(10^{-5} \mathrm{~kg} / \mathrm{m}^{3} ; 1 / 100\right.$ millionth the density of water!)
2) The diameter of an object that varies on the time scale of 1 hour (assuming that for causality to hold, the object cannot be larger than the distance traveled by light in 1 hour)
3) The closest approach of the orbit of star S0-16, which has an orbit with major half axis of 900 AU and an eccentricity of $\mathrm{e}=0.95$.
4) The resolution of a long-baseline radio interferometer, $10^{-3} \mathrm{arcsec}$, over the distance from Earth to the galactic center (8 kpc).
Answ.: Using $r_{\mathrm{S}}=2 G M / c^{2}=3 \mathrm{~km} M / M_{\text {sun }}$, we get a Schwarzschild radius of $1.2 \cdot 10^{10} \mathrm{~m}=$ 0.08 AU , well inside the orbit of Mercury. In comparison,
5) A star with mass $4 \cdot 10^{6} \mathrm{M}_{\text {sun }}$ and density $10^{-5} \mathrm{~kg} / \mathrm{m}^{3}$ would have a volume of $8 \cdot 10^{41} \mathrm{~m}^{3}$ and therefore (assuming a sphere) a radius of $r=5.75 \cdot 10^{13} \mathrm{~m}=384 \mathrm{AU}$, which is much larger than the observed upper limits (below).
6) Light travels $300,000 \mathrm{~km}$ in 1 second, which comes out to 7.2 AU in one hour. This would be the diameter of an object that fluctuates coherently within 1 hour. The radius would be even smaller, 3.6 AU.
7) This distance of closest approach for $\mathrm{S} 0-16$ would be $(1-\varepsilon) 900 \mathrm{AU}=45 \mathrm{AU}$, which is larger than the upper limit in 2) and definitely can accommodate the calculated Schwarzschild radius, but is incompatible with a "Betelgeuse"-type giant star.

PHYSICS 313 - Winter/Spring Semester 2017 - ODU

4) The resolution of such an interferometer would be 8000 pc times $10^{-3} \mathrm{arcsec}$. By the very definition of a parsec, 1 pc times a resolution of $1 \operatorname{arcsec}$ equals 1 AU . Therefore, 8000 pc times 10^{-3} arcsec must equal 8 AU , again in agreement with 2) and other limits as well as the Schwarzschild radius, but inconsistent with a stellar object. So the best bet is indeed a Black Hole.
