Introduction: Special Relativity

- Observation: The speed c (e.g., the speed of light) is the same in all coordinate systems (i.e. an object moving with c in \mathbf{S} will be moving with c in \mathbf{S}^{\prime})
- Therefore: If $|\Delta \vec{r}|=c \Delta t \Rightarrow(c \Delta t)^{2}-(\Delta \vec{r})^{2}=0 \quad$ is valid in one coordinate system, it should be valid in all coordinate systems!
- => Introduce 4-dimensional "space-time" coordinates:

$$
x^{0}=c t ;\left(x^{1}, x^{2}, x^{3}\right)=\vec{r}
$$

- => Introduce "metric" g that defines the "distance" between any 2 space-time points (using Einstein's summation convention) as $(\Delta s)^{2}=g_{\mu \nu} \Delta x^{\mu} \Delta x^{v} ; g_{00}=1, g_{11}=g_{22}=g_{33}=-1$, all others $=0$
- Postulate that all products between 2 vectors and the metric is invariant (the same in all coordinate systems)
- Meaning? If $|\Delta \mathrm{ct}|>\Delta \mathbf{r}$, for a moving object, then there is one system S_{0} where $\Delta \mathbf{r}=0=>$ rest frame for that object. $=>\sqrt{(d s)^{2}}$ is the time elapsed in S_{0} between the 2 points ("Eigentime")

Examples

- Object moving (relative to \mathbf{S}) with speed v along x. "Distance" between point $1=(0,0,0,0)$ (origin) and point $2=(c t, v t, 0,0)$: $(\Delta s)^{2}=g_{00}(c t)^{2}+g_{11}(v t)^{2}+g_{22} 0^{2}+g_{33} 0^{2}=(c t)^{2}-(v t)^{2}=(c t)^{2}$ where τ is the "eigentime" (time elapsed between the two points in the frame S_{0} where the object is at rest - i.e. the system moving with v along x -axis) $=>\tau=t \cdot \sqrt{1-v^{2} / c^{2}}=\gamma^{-1} t$
- Consequence: As seen from S , the clock in S_{0} is "going slow"!
- From point of view of S_{o}, it is the clock in S that is going slow!
- With similar arguments, one can prove "length contraction", "relativity of synchronicity" and all the other "relativity weirdness"
- Argument can be extended to other quantities: All must come as 4-vectors or as invariant scalars (or tensors...), and the same metric applies to calculate the "invariant length" of each 4-vector - Example: 4-momentum $p^{\mu}=\left(\frac{E}{c}, \vec{p}\right) ; g_{\mu \nu} p^{\mu} p^{v}=\left(\frac{E}{c}\right)^{2}-\vec{p}^{2}=m^{2} c^{2}$

Now a bit more General...

- Equivalence Principle: Motion in a gravitational field is (locally) indistinguishable to force-free motion in accelerated coordinate system S': $y=-1 / 2 g t^{2}$
- Example: Free fall in elevator
- 2nd example: Clock moving around circle with radius r, angular velocity ω, speed $v=r \omega=>$ goes slow by factor $\sqrt{1-r^{2} \omega^{2} / c^{2}}=\sqrt{1-r " g " / c^{2}}$ where " g " $=r \omega^{2}$ is the centripetal acceleration. If we replace this with a gravitational force, we must choose $\Phi=\cup_{\text {pot }} / \mathrm{m}$ such that $\mathrm{d} \Phi / \mathrm{dr}=-r \omega^{2}=>\Phi=-1 / 2 r^{2} \omega^{2}$ $\Rightarrow \quad \tau_{\text {clock }}=\sqrt{1+2 \Phi(r) / c^{2}} t$
- => New metric: $g_{00}=1+2 \Phi / c^{2}$
- Example: clock at bottom of 50 m tower is slower by $5 \cdot 10^{-15}$ than clock at top. Can be measured using Mößbauer effect!
- More general: Curved space-time!

General Relativity

- Einstein's idea: Space-time is curved, with a metric determined by mass-energy density
- Force-free objects move along geodetics: paths that maximize elapsed eigentime (as measured by metric)
- Example: twin paradox - it is really the stay-at-home twin that ages more
- Most general equations complicated (differential
$G_{\mu v}=\frac{8 \pi G}{c^{4}} T_{\mu v}$ geometry), but special manageable case: spherically symmetric mass M at rest => Schwarzschild metric

$$
(d s)^{2}=\left(1-\frac{2 G M}{r c^{2}}\right)(c d t)^{2}-\left(1-\frac{2 G M}{r c^{2}}\right)^{-1} d r^{2}-r^{2}\left[(d \theta)^{2}+\sin ^{2} \theta(d \phi)^{2}\right]
$$

- Examples: Falling, redshifting, bending, gravitational lensing, Event horizon (Schwarzschild radius)

Calculation: Falling

Radial motion Δr in 2 steps (each taking time $\Delta t): \Delta r_{1}, \Delta r_{2}=\Delta r-\Delta r_{1}$

$$
\begin{aligned}
& \Delta s \approx \sqrt{\left(1+\frac{2 \Phi_{1}}{c^{2}}\right)(\Delta c t)^{2}-\left(\Delta r_{1}\right)^{2}}+\sqrt{\left(1+\frac{2 \Phi_{2}}{c^{2}}\right)(\Delta c t)^{2}-\left(\Delta r_{2}\right)^{2}}=\Delta c t\left[\sqrt{1+\frac{2 \Phi_{1}}{c^{2}}-\left(\frac{\Delta r_{1}}{\Delta c t}\right)^{2}}+\sqrt{1+\frac{2 \Phi_{2}}{c^{2}}-\left(\frac{\Delta r_{2}}{\Delta c t}\right)^{2}}\right] \\
& \approx \Delta c t\left[1+\frac{\Phi_{1}}{c^{2}}-\frac{1}{2}\left(\frac{\Delta r_{1}}{\Delta c t}\right)^{2}+1+\frac{\Phi_{2}}{c^{2}}-\frac{1}{2}\left(\frac{\Delta r_{2}}{\Delta c t}\right)^{2}\right] \approx \Delta c t\left[2+\frac{\Phi_{0}+\frac{d \Phi}{d r} \frac{\Delta r_{1}}{c^{2}}}{c^{2}}-\frac{1}{2}\left(\frac{\Delta r_{1}}{\Delta c t}\right)^{2}+\frac{\Phi_{0}+\frac{d \Phi}{d r} \frac{\Delta r+\Delta r_{1}}{c^{2}}}{c^{2}}-\frac{1}{2}\left(\frac{\Delta r_{2}}{\Delta c t}\right)^{2}\right]
\end{aligned}
$$

Find extremum of Δs w.r.t. Δr_{1} (for which Δr_{1} does Δs become max.?):

$$
\begin{aligned}
& \frac{d \Delta s}{d \Delta r_{1}}=0 \Rightarrow 0=\frac{\frac{1}{2} \frac{d \Phi}{d r}}{c^{2}}-\frac{\Delta r_{1}}{(\Delta c t)^{2}}+\frac{\frac{1}{2} \frac{d \Phi}{d r}}{c^{2}}-\frac{\Delta r_{2}(-1)}{(\Delta c t)^{2}}=\frac{1}{\Delta c t}\left[\frac{\Delta r_{2}}{\Delta c t}-\frac{\Delta r_{1}}{\Delta c t}\right]+\frac{1}{c^{2}} \frac{d \Phi}{d r} \\
& =\frac{1}{c^{2}}\left[\frac{1}{\Delta t}\left(v_{2}-v_{1}\right)+\frac{d \Phi}{d r}\right] \Rightarrow \quad a=-\frac{d \Phi}{d r} \text { q.e.d. }
\end{aligned}
$$

=> Black Holes

- Beyond a certain density, NOTHING can prevent gravitational collapse!
- If there were a new source of pressure, that pressure would have energy ($P=1 / 3-2 / 3 u$), which causes more gravitation => gravity wins over
- Singularity in space-time (infinitely dense mass point, infinite curvature; no classical treatment possible)
- For spherical mass at rest, Schwarzschild metric applies and we have an event horizon at $r=R_{\mathrm{S}}=2 G M / c^{2}=3 \mathrm{~km} M / M_{\text {sun }}$ (Schwarzschild radius)
- as object approaches r_{S} from outside, clock appears to slow to a crawl and light emitted gets redshifted to ∞ long wavelength
- along light path, $\mathrm{d} s=0=>\mathrm{d} r= \pm\left(1-r_{\mathrm{s}} / r\right) \cdot \mathrm{d} c t=>$ light becomes ∞ slow and never can cross from inside r_{S} to outside
- From outside, it takes exponential time for star surface to reach r_{S}
- Rate of photon emission decreases exponentially (less than $1 / \mathrm{s}$ after 10 ms)
- All material that falls in over time "appears" frozen on the surface of event horizon but doesn't emit any photons or any other information
- Co-moving coordinate system: will cross event horizon in finite time => no return!

Sample trajectories

Black holes in the Wild

- Smallest black holes likely $>3 M_{\text {sun }}$ (supernovae of 25 $M_{\text {sun }}$ star followed by complete core collapse)
- mostly detectable as invisible partner in binary system
- some radiation from accretion disks (esp. X-ray) smallest radius about $3 r_{s}$; about $5-10 \%$ of gravitational pot. energy gets converted into luminosity (much more than fusion in stars in case of ns/bh)
- White dwarf: $L \cong L_{\text {sun }}(U V)$; ns/bh 1000's times more (X-ray, gamma-ray)
- Gigantonormous black holes in center of galaxies (see later in semester)
- Primordial black holes?

Black holes in the Wild

Gravitational Waves

