0. What do I “see” if I “look” at a star? Surface! What is the surface? What you see

1. Temperature ← Planck spectrum

2. \(E = hf = h \frac{c}{\lambda} \)

3. Strength of a given spectral line:

 \[\frac{1}{e^{E/kT}} \rightarrow \text{Temperature} \]

 \[\rightarrow F_{\text{surface}} = 0.7^4 + \text{Porb} \rightarrow \text{Size!} \]

Classical: \(x(t) \)

Q.M.: \(\psi(x,t) \) Wave function

\(\in \mathbb{C} \) (State vector)

\(\rightarrow \text{Prob} (x...x+\Delta x) = |\psi(x,t)|^2 \Delta x \)

“Standing” wave functions

Stationary States

Hamiltonian Operator represents energy

\(H \psi = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi + V(x) \psi \)

Stationary states: \(H \psi = E \psi \) (eigenfunctions of \(H \) operator)

[\(E \) is the eigenvalue, \(-\frac{\hbar^2}{2m} \) is the kinetic energy, \(V(x) \) is the potential energy, \(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \) is the kinetic energy, and \(E \) is the binding energy.]