
Lecture Notes PHYS323 9/20/16 
 
Concluded (for now) discussion of Special Relativity 
Short mention of General Relativity: Scheme to incorporate gravity into Special 
Relativity not as a force, but as a curvature of space-time. 
 
Now pivoting to Quantum Mechanics (QM). First question: What “obvious” everyday 
notions about reality do we have to give up on in the light of this 2nd early 20th-century 
revolution in Physics? 
 

 
 
As this screen shot shows, the underlying idea of Classical Mechanics (CM) - including 
Special Relativity - is that observables like velocity, position, momentum, angular 
momentum, energy etc. are “real” properties that particles or systems of particles “have” 
- while we can’t measure them with infinite precision, they do have precise values on a 
continuum (real numbers). In particular, it makes sense to talk about these quantities as 
well-defined functions of time - r(t), p(t) etc. Furthermore, Newtonian dynamics connect 
them among each other - e.g., position determines force, and force in turn determines 
change of momentum. 
Similarly for waves, e.g. electromagnetic waves, that can be characterized by continuous, 
arbitrarily precise (in principle) values of electric and magnetic fields everywhere in 
space. 
 
Quantum Mechanics is more akin to the idea by Plato that we cannot observe the world 
“as it really is”, but rather we can only derive laws about our observations. Objects like 



particles or systems are not characterized by precise values of observables, but rather by 
their “state vectors” which contain all the information we can have about those objects 
(from observations). Instead of predicting precise values for observables, these state 
vectors (a.k.a “wave functions”) only predict probabilities for certain outcomes. Even 
more strange, some observables can only assume discrete values out of a pre-determined 
set (like eyes on a die) - not a continuous range of values (example: energy of an electron 
bound in an atom). Hence, to study QM we must study probability: 
 

 
 
Distinguish between discrete outcomes (eyes on a die) with a given probability for each 
outcome and continuous range of outcomes (wait times for a bus) with a given 
probability distribution - in that case, the probability of a certain observation with a 
given range is proportional to the size of that range: ΔProb(x…x+Δx) = p(x) . Δx. In the 
first case, the probability for a set of outcomes (e.g., “more than 3 eyes” is the sum over 
the individual outcomes (here: 1/6 + 1/6 + 1/6 = ½), and the sum over all probabilities is 
1. In the second case, the probability for an outcome in a larger range is the integral of 
p(x) over that range, and the integral over the whole possible range of outcomes is 1. 
 
Some examples and definitions (see screen shot on next page): 
- flat distribution (all outcomes equally likely 
- “Gaussian bell curve” - symmetric around maximum 
- skewed distribution (long “tail” on one side of maximum 
For each distribution, one can define the  
- Mode: The value x for which the distribution (or probability) reaches its maximum; the 
most likely outcome 
- Median: The value x for which the probability of a result below x is equally likely 
(50%) as for a result above x (“split the distribution in the middle”) 
- Average or Mean or Expectation Value: Best estimate of result (see below) 



 

 
 
 
Can define the expectation value for any function of the observable, f(x): 
f = f (x)p(x)dx∫  

(the integration goes over the full range of possible outcomes) 
Expectation value for the variable itself (i.e., its Mean or Average): 
µ ≡ x = xp(x)dx∫  
Expectation value for the mean square deviation from the mean (known as the variance): 
σ 2 = x −µ( )2 = x −µ( )2 p(x)dx∫ = x2p(x)dx∫ − 2µ xp(x)dx∫ +µ 2 p(x)dx∫ =

= x2 − 2µ x +µ 2 = x2 − x 2
 

The square root of the variance is known as the “standard deviation” and provides a 
measure on the “uncertainty” of the outcome, i.e., how far any given measurement likely 
will deviate from the average: 
Δx ≡ σ 2 = x2 − x 2  


