Particle Physics \(\rightarrow \text{pog.161-80} \)

Summary of Matter
- Elementary particles: Smallest possible pieces

Composite Particles
- \(p, n, \) nuclei, \(\pi, K, \eta, \phi, \) \(\omega, \) \(\Lambda, \Lambda' \)
- \(\Delta^+, \Sigma^+, \Sigma^0, \Sigma^- \) \(\text{baryons} \)
- \(s = 0, \frac{1}{2} \)

Elementary Particles
- No internal structure

Quarks
- \(u, d, s, c, b, \) \(\tau \)
- \(s = \frac{1}{2} \)
- \(\bar{u}, \bar{d}, \bar{s}, \bar{c}, \bar{b}, \bar{\tau} \)
- Leptons + quarks obey Pauli E.P.

Leptons
- \(e^+, e^-, \mu^+, \mu^- \)
- \(\nu_e, \nu_{\mu}, \nu_\tau \text{ in sum} \)
- \(p = u u d \)
- \(n = u d d \)

Weak I/A
- Weak charge can distinguish \(s, s' \)
- Left-handed particle + right-handed particle
- Left-handed particle: direction of spin opposite motion
- Right-handed particle: direction of spin same as motion
- Weak I/A not mirror-symmetric
- Single quarks do not exist because color charge is
 so strong
- Can't see color charge
different colors are always attracted to each other

3rd kind of charge: color charge
- Red, green, blue
 - P = + +
- Every quark comes in 3 colors
- Leptons don't have color

- What kind of quark, anti?, L/R-handed, color
 If quark is L, anti-quark is R
- Each color has anti-color, quarks carry anti-color

Bosons (S=1)
- EM: 8 photon
- Weak:
 - d = u + e⁻ + Z
 - W⁺, W⁻, Z°
 - Have mass (heavy)

electron

- Gluons carry 2 charges: color + color
- 8 Gluons

Mesons: 1 quark + 1 anti-quark
- \(\pi^+ \) u\(\bar{d} \)
- \(\pi^0 \) u\(\bar{u} \)

Baryons: 3 quarks

- Standard model: describes everything in observable universe
- Can make predictions, e.g., magnetic dipole moments

Lagrangian = Recycle

Higgs Boson: very heavy particle (2nd heaviest)
- Everything gets mass because of interaction with Higgs field
- More IA = more mass
- Quantum Chromo Dynamics