Fundamental constants:

Speed of light: $c = 2.9979 \cdot 10^8$ m/s (roughly a foot per nanosecond)

Planck constant: $h = 6.626 \cdot 10^{-34} \text{ J s}$; $h = h / 2\pi = 197.33 \text{ eV/}c$ nm = 0.658 eV/PHz

Fundamental charge unit: $e = 1.602 \cdot 10^{-19} \text{ C}$

Electron mass: $m_e = 9.109 \cdot 10^{-31} \text{ kg}$

Hydrogen atom (1 H) mass: $m_{H} = 1.6735 \cdot 10^{-27} \text{ kg}$ (A = 1.0078)

Helium atom (⁴He) mass: $m_{4He} = 6.6465 \cdot 10^{-27}$ kg (A = 4.0026)

Coulomb's Law constant: $k = 1/4\pi\epsilon_0 = 8.988 \cdot 10^9 \text{ Nm}^2/\text{C}^2$ Gravitational constant: $G = 6.674 \cdot 10^{-11} \text{ Nm}^2/\text{kg}^2$

Avogadro constant: $N_A = 6.022 \cdot 10^{23}$ particles per mol

Special Relativity:

Lorentz Transformation from S to S':

$$\gamma = \frac{1}{\sqrt{1 - v^2/c^2}}; x' = \gamma \left(x - \frac{v}{c}ct\right); ct' = \gamma \left(ct - \frac{v}{c}x\right); y = y'; z = z', \text{ replace } v \text{ with } -v \text{ for S'} -> S$$

Velocity Addition:

$$\frac{u_{x}}{c} = \frac{\frac{u_{x}^{'}}{c} + \frac{v}{c}}{1 + \frac{u_{x}^{'}}{c}}; \frac{u_{y}}{c} = \frac{\frac{1}{\gamma} \frac{u_{y}^{'}}{c}}{1 + \frac{u_{x}^{'}}{c} \frac{v}{c}}$$

Doppler Shift:
$$\frac{\lambda_{obs}}{\lambda_{emitted}} = (z+1) = \frac{1+v_{\parallel}/c}{\sqrt{1-v^2/c^2}}$$

Four-vectors: $x^{\mu} = (ct, x, y, z)$; $x_{\mu} = (ct, -x, -y, -z)$ ($\mu = 0, 1, 2, 3$ for ct, x, y, z).

Invariant (squared) Interval:

$$\Delta x^{\mu} = (\Delta ct, \Delta x, \Delta y, \Delta z) \Rightarrow \Delta s^2 = \Delta x^{\mu} \Delta x_{\mu} = \Delta ct^2 - \Delta x^2 - \Delta y^2 - \Delta z^2$$

Positive Δs^2 : "time-like separation", Δs^2 = square of elapsed time $c\tau$ in a system that travels from the start point (event) to the end point (event) of the interval.

Negative Δs^2 : "space-like separation", $-\Delta s^2$ = square of distance between the two events in a system (which always exists!) where they occur simultaneously.

 $\Delta s^2 = 0$: "light-like separation"; a light ray could travel from one event to the other.

Four-momentum:

$$P^{\mu} = (E/c, P_x, P_y, P_z) = (\Gamma mc, \Gamma m\vec{u}); \Gamma = \frac{1}{\sqrt{1 - \vec{u}^2/c^2}} \cdot u = \text{velocity}.$$

Transformation of P^{μ} to coordinate system S' is analog to x^{μ} (see above).

$$E = P^{0}c$$
, $E_{\text{ess}} = mc^{2}$, $T_{\text{kin}} = (\Gamma - 1) *mc^{2} (\approx m/_{2} u^{2} \text{ only if } u << c)$; **Photons**: $u = c$, $E = |P|c$.

Invariant Interval:
$$(P^0)^2 - \vec{P}^2 = \left(\frac{E}{c}\right)^2 - P_x^2 - P_y^2 - P_z^2 = m^2c^2 \Rightarrow E = c\sqrt{m^2c^2 + \vec{P}^2}; \frac{\vec{u}}{c} = \frac{\vec{P}c}{E}$$

Quantum Mechanics - Motion in 1D:

Scalar Product: $\langle \psi_1 | \psi_2 \rangle = \int_{-\infty}^{\infty} \psi_1^*(x) \psi_2(x) dx$.

Normalization: $\langle \psi | \psi \rangle = \int_{-\infty}^{\infty} \psi^*(x) \psi(x) dx < \infty => |\psi_{\text{normalized}}\rangle = |\psi\rangle / (<\psi | \psi >)^{1/2}$.

Probability of locating a particle in an interval x ... x + dx:

$$d \Pr(x...x + dx) = |\psi(x)|^2 dx = \psi(x)^* \psi(x) dx$$

Operator O with eigenvalue ω and eigenvector $|\phi_{\omega}\rangle$: $O|\varphi_{\omega}\rangle = \omega|\varphi_{\omega}\rangle$.

Position Operator X: $\mathbf{X}\psi(x) = x \cdot \psi(x) \rightarrow \text{eigenvectors } \psi_{x_0}(x) = \delta(x - x_0), \text{ eigenvalue } x_0$

Momentum Operator: $\mathbf{P}\psi(x) = \frac{\hbar}{i} \frac{\partial}{\partial x} \psi(x) \rightarrow \text{eigenvectors } \psi_{p_0}(x) = e^{ip_0x/\hbar}, \text{ eigenvalue } p_0$

Hamiltonian: $\mathbf{H}\psi(x) = \left(\frac{\mathbf{P}^2}{2m} + V(X)\right)\psi(x) = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x) + V(x)\psi(x)$.

Heisenberg: $\sigma_x \sigma_p \ge \hbar/2$.

Schrödinger Equation: $|\psi\rangle(t)$; $\frac{\partial}{\partial t}|\psi\rangle(t) = \frac{1}{i\hbar}\mathbf{H}|\psi\rangle(t)$

Eigenstates of Hamiltonian: $\mathbf{H}|\varphi_{E}\rangle = E|\varphi_{E}\rangle \implies |\psi_{E}(t)\rangle = |\varphi_{E}\rangle e^{-iEt/\hbar}$

Motion in 1-D, eigenstates of the Hamiltonian: $-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2}\psi(x)+V(x)\psi(x)=E\psi(x)$

Eigenstate of the **free Hamiltonian** (V(x)=0): $\psi_p(x,t) = Ae^{\frac{i}{\hbar}px}e^{-\frac{i}{\hbar}\frac{p^2}{2m}t}$

Gaussian Wave Package: $\psi_{GWP}(x,t=0) = \sqrt{\frac{1}{\sqrt{2\pi}\sigma_p}} \int_{-\infty}^{\infty} e^{\frac{-(p-p_0)^2}{4\sigma_p^2}} e^{\frac{i}{\hbar}px} dp = \sqrt{\frac{1}{\sqrt{2\pi}\sigma_x}} e^{\frac{i}{\hbar}p_0x} e^{\frac{-x^2}{4\sigma_x^2}}; \sigma_x = \frac{\hbar}{2\sigma_p}$

Eigenstates for a **1-dim square well**: $(V(x)=0, 0 \le x \le L, \infty \text{ else})$

$$\varphi_n(x) = 0 \text{ for } x < 0, x > L; \text{ else } \varphi_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right); E_n = \frac{n^2 \pi^2 \hbar^2}{2mL^2}, n = 1, 2, ...$$

Eigenstates of Harmonic Oscillator: $\mathbf{H} = \frac{\mathbf{P}^2}{2m} + \frac{m\omega^2}{2}\mathbf{X}^2 \Rightarrow$

$$\varphi_n(x) = AH_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right)e^{-\frac{m\omega}{2\hbar}x^2}; E_n = (n+\frac{1}{2})\hbar\omega, n = 0,1,...$$

$$H_0(y) = 1, H_1(y) = 2y, H_2(y) = 4y^2 - 2;$$

$$A_0 = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}, A_1 = \frac{1}{\sqrt{2}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}, A_2 = \frac{1}{\sqrt{8}} \left(\frac{m\omega}{\pi\hbar}\right)^{1/4}.$$

Quantum Mechanics in 3D:

Cartesian coordinates: (x,y,z); $\Delta \tau = \Delta x \Delta y \Delta z$

$$\psi(x,y,z); \mathbf{H} = -\frac{\hbar^2}{2m} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) + V(x,y,z); \Delta \Pr(\vec{r}, \Delta \tau) = \left| \psi(x,y,z) \right|^2 \Delta \tau$$

Infinite square well:
$$\varphi_{njk}(x,y,z) = \sqrt{\frac{8}{L^3}} \sin \frac{n\pi x}{L} \sin \frac{j\pi y}{L} \sin \frac{k\pi z}{L}$$
; $E_{njk} = (n^2 + j^2 + k^2) \frac{\hbar^2 \pi^2}{2mL^2}$

Spherical coordinates: r, θ , φ ; $\Delta \tau = r^2 \Delta r \sin \theta \Delta \theta \Delta \varphi$

$$\mathbf{H} = -\frac{\hbar^2}{2m} \left(\frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{1}{\sin \vartheta} \frac{\partial}{\partial \vartheta} \sin \vartheta \frac{\partial}{\partial \vartheta} + \frac{1}{r^2} \frac{1}{\sin^2 \vartheta} \frac{\partial^2}{\partial \varphi^2} \right) + V(r)$$

$$= -\frac{\hbar^2}{2m} \frac{1}{r^2} \frac{\partial}{\partial r} r^2 \frac{\partial}{\partial r} + \frac{1}{2mr^2} \vec{\mathbf{L}}^2 + V(r)$$

 \vec{L}^2 is the squared orbital angular momentum operator with eigenfunctions

$$Y_{\ell m}(\vartheta,\varphi); \vec{\mathbf{L}}^{2}Y_{\ell m} = \hbar^{2}\ell(\ell+1)Y_{\ell m}; \ell=0,1,2...; \mathbf{L}_{z}Y_{\ell m} = \hbar mY_{\ell m}; m=-\ell,-\ell+1,...,\ell$$

Examples:

$$\begin{split} Y_1^{-1}(\theta,\varphi) &= \frac{1}{2} \sqrt{\frac{3}{2\pi}} \cdot e^{-i\varphi} \cdot \sin\theta \\ Y_1^0(\theta,\varphi) &= \frac{1}{2} \sqrt{\frac{3}{\pi}} \cdot \cos\theta &= \\ Y_{00}(\vartheta,\varphi) &= \sqrt{\frac{1}{4\pi}} \,; \quad Y_1^1(\theta,\varphi) &= \frac{-1}{2} \sqrt{\frac{3}{2\pi}} \cdot e^{i\varphi} \cdot \sin\theta \end{split}$$

Separation of Variables: $\psi_{E\ell m}(r,\vartheta,\varphi) = R_{E,\ell}(r)Y_{\ell m}(\vartheta,\varphi)$ with

$$-\frac{\hbar^2}{2m}\frac{1}{r^2}\frac{\partial}{\partial r}r^2\frac{\partial}{\partial r}R_{E,\ell}(r) + \frac{\hbar^2\ell(\ell+1)}{2mr^2}R_{E,\ell}(r) + V(r)R_{E,\ell}(r) = E \cdot R_{E,\ell}(r)$$

Probability to find particle in volume $\Delta \tau$ at position (r, θ, ϕ) : $\left| \psi_{E\ell m}(r, \vartheta, \varphi) \right|^2 \Delta \tau$ Radial probability distribution: $\Delta \Pr(r...r+\Delta r) = |R_{E,\ell}(r)|^2 r^2 \Delta r$

Hydrogen-like atoms:

(Nucleus of mass m_1 and charge Ze, bound particle of mass m_1 and charge -e)

$$V(r) = -\frac{Ze^2}{4\pi\varepsilon_0 r} = -\frac{Z\alpha\hbar c}{r} \quad \alpha = e^2 / 4\pi\varepsilon_0 \hbar c$$

Reduced mass of 2-body system with masses m_1 and m_2 : $\mu_r = \frac{m_1 m_2}{m_1 + m_2}$

Energy Eigenvalues:
$$E_{n\ell} = -\frac{\mu_r}{m_e} \frac{Z^2}{n^2} Ry (n = 1, 2, ...; Ry = m_e c^2 \alpha^2 / 2 = 13.6 \text{ eV}).$$

Degenerate in ℓ and m; $\ell = 0, 1, ..., n-1, m_{\ell} = -\ell ... + \ell$;

also degenerate in electron spin $m_s = \pm 1/2 = >$ total degeneracy $2n^2$.

Characteristic radius:
$$a = \frac{m_e}{\mu_r Z} a_0$$
 $a_0 = \hbar c / (m_e c^2 \alpha) = 0.53 \text{ Å} = 0.053 \text{ nm}.$

Eigenstates: $\psi_{n,\ell,m}(r,\vartheta,\varphi) = R_{n,\ell}(r)Y_{\ell m}(\vartheta,\varphi)$. $R_{n,\ell}(r)$ (examples):

$$R_{1,0}(r) = \frac{2}{a^{3/2}} e^{-r/a}; R_{2,0}(r) = \frac{2 - r/a}{\sqrt{8}a^{3/2}} e^{-r/2a}; R_{2,1}(r) = \frac{r/a}{\sqrt{24}a^{3/2}} e^{-r/2a}$$

Energy of a photon: $E_{\gamma} = hf = hc/\lambda$

Momentum of a photon: $p_{\gamma} = h/\lambda$

Light emitted or absorbed in transition with energy difference $\Delta E = E_{\text{init}} - E_{\text{final}}$:

$$f = \Delta E/h$$
, $\lambda = hc/\Delta E = 2\pi\hbar c/\Delta E$

Pauli principle: No two identical Fermions (spin-1/2, 3/2, ... particles) can be in the same exact quantum state.

Molecules and Condensed Matter

Ionic Bond: One atom gives up 1 (or more) electron(s), the other picks it (them) up; binding through electrostatic attraction.

Covalent Bond: Electron(s) shared between two atoms. Example: Let $\psi_1(\vec{r_e})$ = wave function for hydrogen ground state with proton at position 1, and $\psi_2(\vec{r_e})$ for proton at

position 2. Symmetric superposition
$$\psi_S(\vec{r_e}) = \frac{1}{\sqrt{2}} \psi_1(\vec{r_e}) + \frac{1}{\sqrt{2}} \psi_2(\vec{r_e})$$
 is attractive (net charge

between protons), antisymmetric superposition
$$\psi_A(\vec{r}_e) = \frac{1}{\sqrt{2}} \psi_1(\vec{r}_e) - \frac{1}{\sqrt{2}} \psi_2(\vec{r}_e)$$
 is non-

binding (zero net charge between protons).

Metallic Bond: Many electrons (one or more per atom) shared between a large number N of atoms -> positively charged "rest atoms" in "Fermi gas" of electrons. Electron energy eigenstates are clustered in "bands"; highest (partially or totally unoccupied) band = conduction band, next lower (filled) band = valence band. Each band contains of order N eigenstates. Interaction between electron gas and oscillation modes (=phonons) of the "rest atoms" gives rise to conductive heating, V = RI, and superconductivity (Bose-Einstein condensation of "Cooper pairs" of electrons).

Conductors: partially filled conduction band and/or overlapping conduction and valence bands. *Isolators*: Completely empty conduction band, completely filled valence band, large band gap. *Semi-conductors*: Similar to isolators, but with smaller band gap. Can conduct at finite temperatures (see Fermi-Dirac distribution below). Conductivity increased through electron donor (n-doped) or electron acceptor (p-doped) impurities. pn-junction = diode.

Particle Physics

Fundamental Fermions (spin-1/2 particles obeying Pauli Exclusion Principle): quarks (up, down, charm, strange, top, bottom) and leptons (electron, muon, tau, electronneutrino, muon-neutrino, tau-neutrino) and their antiparticles.

Force-mediating Gauge Bosons (spin-1 particles obeying Bose-Einstein statistics): Photon γ (electromagnetic interaction), W^+ , W^- , Z^0 (weak interaction), gluons (strong interaction) [graviton (gravity) only conjectured]. All except weak interaction bosons are massless; the latter gain mass (80-91 GeV/ c^2) through interaction with the Higgs field.

Name	Symbol	Mass (MeV/c²)*	J	В	Q (e)
Up	u	2.3 ^{+0.7} _{-0.5}	1/2	+1/3	+2/3
Down	d	4.8 ^{+0.5} _{-0.3}	1/2	+1/3	-1/3
Charm	С	1275 ±25	1/2	+1//3	+2/3
Strange	S	95 ±5	1/2	+1//3	-1/3
Тор	t	173 210 ±510 ± 710	1/2	+1/3	+2/3
Bottom	b	4180 ±30	1/2	+1/3	-1/3

Particle/antiparticle name	Symbol	Q (e)
Electron / Positron ^[18]	e ⁻ / e ⁺	-1 / +1
Muon / Antimuon ^[19]	μ^{-}/μ^{+}	-1 / +1
Tau / Antitau ^[21]	τ -/ τ +	-1 / +1
Electron neutrino / Electron antineutrino ^[34]	v_e / \overline{v}_e	0
Muon neutrino / Muon antineutrino ^[34]	v_{μ}/\bar{v}_{μ}	0
Tau neutrino / Tau antineutrino ^[34]	$v_{\tau} / \bar{v}_{\tau}$	0

All interactions proceed via gauge bosons coupling to various charges:

- electromagnetic interaction: electric charge (+ or -) (all charged Fermions plus W bosons)
- weak interaction: weak charges ("weak isospin and weak hypercharge") all particles except gluons
- strong interaction: color charges ("red", "green", "blue") all quarks and gluons.

Nuclear Physics

Mass-energy of an atom: (Z protons, N neutrons, A = Z+N):

$$M_{\rm A}c^2 = Z M_{\rm p}c^2 + N M_{\rm n}c^2 + Z m_{\rm e}c^2 - BE$$
 (Binding energy)

typical binding energies BE = 7-8 MeV·A with a maximum for nuclei around iron (A=56). Light nuclei have significantly lower BE per nucleon; beyond iron, the BE per nucleon decreases slowly with A (due to Coulomb repulsion).

Energy liberated during a nuclear fusion reaction $1 + 2 \rightarrow 3$: $\Delta E = M_1 c^2 + M_2 c^2 - M_3 c^2$

Energy liberated during a nuclear decay 1 -> 2 + 3: $\Delta E = M_1 c^2 - M_2 c^2 - M_3 c^2$

Density: roughly constant $\rho = 0.16$ Nucleons / fm³ = 2×10^{17} kg/m³

Radioactive nuclei:

alpha-decay: $(Z,A) \rightarrow (Z-2,A-2) + {}^{4}\text{He} + \text{energy}$

beta-plus decay: $(Z,A) \rightarrow (Z-1,A) + e^+ + v_e$

beta-minus decay: $(Z,A) \rightarrow (Z+1,A) + e^{-} + \bar{\nu}_{e}$

Decay probability in time Δt : $\Delta Pr(\Delta t) = \Delta t / \tau \ (\tau = lifetime = T_{1/2} / ln \ 2)$

Number of undecayed nuclei at time t (starting with N_0): $N(t) = N_0 e^{-t/\tau}$