Lecture 03: Alpha, Beta, and Gamma Radiation: Radiation and Radioactive Material
TWO DEMOS: slide 8 slide 32 (2-3 min)

Did you know?
- Highly radioactive material decays quickly?
- The term “radiation” may sound scary, but it refers to anything emitted (that is, radiated)
 - We really only worry about radiation that breaks chemical bonds (ionizing radiation)

- Radiation (in broader sense) includes
 - Sound waves
 - Gravitational waves
 - Fast-moving subatomic particles from
 - Nuclear decay (alpha & beta particles, gamma rays)

- Cosmic rays (mostly muons, heavy cousins of the electron)
- Accelerators
 - Other electromagnetic waves (lower energy than gamma)

- Electromagnetic waves (only wavelength varies)
 - Travel like waves
 - Interact like discrete particles
 - Quantized, photon energy $E = hc/\lambda$
 - Radio & TV (0.1-10^2 m)
 - Microwave (~1 cm)
 - Heats water by resonant absorption

- Infrared (10^-4 – 10^-6 m); Visual (400 – 800 nm)
- UV (10-400 nm)
 - Typical chemical bond energy ~ eV
 - UV photon energy > 3 eV
 - Photons energetic enough to break chemical bonds (sun burn)
• **X-rays (0.01-10 nm)** 1 – 300 keV photons
 - Named because they were new and unknown
 - Interaction probability decreases with energy
 - Energy more mismatched with atomic energies
 - Less likely to interact
 - Higher energy x-rays are more penetrating

• **Gamma rays (< 0.01 nm)** 300+ keV photons
 - Named because they were new and unknown
 - Interaction probability decreases with energy
 - Energy more mismatched with atomic energies
 - Less likely to interact
 - Higher energy x-rays are more penetrating

• We worry about **ionizing** radiation
 - All radiation interacts in matter
 - Ionizing radiation deposits enough energy to break chemical bonds
 - Weakens materials
 - Damages DNA
 - X-rays, gamma rays (even UV), fast moving subatomic particles

• **Radioactive** materials emit (nuclear) radiation via nuclear decay
 - Radioactivity measured in disintegrations per time
 - 1 Becquerel = 1 disintegration / second (SI)
 - 1 curie = 3.7×10^8 Becquerels

• **So how big is a Curie?**
 - I use microCi sources in the lab, minimal precautions
 - Be careful with mCi
 - AVOID Ci

Radioactive materials emit radiation via nuclear decay
• Radiation measured in particle flux
 - #/time or #/area-time
 - Geiger counter: cpm → dpm
 - Let’s look at a Geiger counter!
 - long pause → demo
• DEMO: Geiger counter here
 – Audible clicks
 – Measure count rate on dial

• Radiation also measured in
 – Absorbed dose in exposed material
 • 100 rad = 1 Gray = 1 J/kg
 deposited energy
 – Enough energy to lift 1 kg by 10 cm (4 in)
 – Very little heat (< milli K)
 – Can break a LOT of chemical bonds

• Biological effects
 • 100 Rem = 1 Sievert
 – Background radiation ~ 0.6 Rem/yr
 • Correct grays and rads for bio effects of different radiation in different tissues
 – $\beta, \gamma = 1$, $\alpha = 20$, n, p in between
 • Banana equiv dose (informal)
 – 0.1 μSv = 10 μRem

• Half Life
 • $1/2$ nuclei in a sample decay in one τ
 • Impossible to predict which specific nuclei
 • Coin toss analogy
 • 800 \rightarrow 400 \rightarrow 200 \rightarrow 100 \rightarrow 50 \rightarrow 25
 • Short τ \rightarrow very radioactive
 – But not for long
 • Long τ \rightarrow not very radioactive

• Different isotopes have different half-lives
 – Too many p or n \rightarrow away from the valley of stability
 – 16O VERY stable, now add p
 • 17F τ = 64 s,
 • 18Ne τ = 1.7 s,
 • 19Na τ < 40 ns
• How big is 1 Curie (4e10 disint / sec)?
• That depends on the half life
 –238U, $\tau = 5e9$ yr
 • Now we need to convert years to seconds
 –$\pi \times 10^7$ s story

• $\tau = (5e9$ yr$)(3e7$ s/yr$) = 1.5e17$ s
• $4e10$ dis/s $\times 1.5e17$ s $= 6e27$ atoms
• $(6e27$ at$)/(6e23$ at/mo$) = 10^4$ mole
• 1 Curie (4e10 disint / sec)

• τ = 8 d $\sim 7e5$ s
• $4e10$ dis/s $\times 7e5$ s $= 3e16$ atoms
• $(3e16$ at$)/(6e23$ at/mo$) = 5e-8$ mole

• 1 Curie (4e10 disint / sec)
• 1 g of U238 is still 1 g and about 1 µCi
• 1 g of 131I: $45 \tau \rightarrow 2^{-45} \sim 3e-14$
• Only 6 nCi remains, the rest has decayed to 131Xe

• So how did we discover this?
 –Crookes’s tubes make cathode rays, visible on fluorescent screens
 –Roentgen noticed fluorescent screens elsewhere in the lab glowing faintly despite shielding \rightarrow x-rays!

• Crookes didn’t have fluorescent screens. He kept returning fogged film to be replaced, instead of investigating why it kept fogging.
 –Limited instrumentation (film and fluor screens)
• Becquerel looked to see if fluorescent materials (which emit light) also emit x-rays.
 –Place material on sealed film in sun.
 –Only Uranium-sulfite worked
 –But it worked without sunlight too
 –Then checked regular U
 –It worked too!

• Curie’s found uranium ore even more effective at fogging film than uranium itself
 –Isolated radium and polonium

13 min

• Three main types of nuclear decay (αβγ)
 –All emitted by radium and its decay products
 –Behave differently in a magnetic field
 • α deflected one way
 • β deflected the other way
 • γ undeflected

• α and β have opposite charges
• γ uncharged
• Fission is completely different (and much rarer)

• α particle = 4He (2p + 2n) very tightly bound
• Daughter nucleus has A-4, Z-2, N-2
 –2p and 2n carried away by α
 –Moves 2 down and 2 left on chart of nuclides
 –241/95Am → 237/93Np + α
 –238/92U → 234/90Th + α

Graphics for post
Show Phet alpha decay
without commentary
Why alpha decay and not proton emission?
• Heavy nuclei are bound by about 8 MeV per nucleon
 – Need to find 8 MeV to emit a proton
 – The alpha particle is already bound by 7 MeV per nucleon so it is much easier to find the energy to emit an alpha particle

α decay due to Electric repulsion stronger than the strong force attraction
• Conserves charge, #n, and #p (expla)
• Conserves energy: Difference in BE → KE of fragments
 – $Q = (m_A - m_B - m_\alpha)c^2$
 • Bigger $Q \rightarrow$ shorter τ
 – 4 -- 10 MeV → 10 Gyr to 100 ns

– Conserves momentum:
 • 2-body decay → Equal and opposite momenta
 – α carries most KE
 – monoenergetic
 • Used to measure nuclear mass differences

– Decay due to tunneling
 – Classically forbidden
 – α energy = $Q > 0$
 – Describe shape of potential
 • Potential well at $r < a$
 • $V \sim 1/r$ barrier for $a < r < b$
 – $V(r) = Q$ at $r = b$

– α in well hits barrier a LOT (10^{21} Hz) til it tunnels out
• Inverse process:
 – α’s aimed at nuclei must tunnel in

Figures and graphics for post
• Tunneling details
 – Wave function decreases exponentially in forbidden region
 • Probability decreases by 2 every 0.5 fm
 – Barrier width ~ 30 fm

– Prob(tunnel) ~ $2^{(-60)} \sim 10^{^-18}$.
 • One billion-billionth
 • Tiny!
 – Double energy
 • ~ halve barrier width
 • Probability increases to $2^{(-30)} \sim 10^{^-9}$.
 • τ increases by a factor of a billion!

• α Examples
 – $^{232}/90$Th, $Q = 4$ MeV, $\tau = 15$ Gyr
 • Age of universe
 – $^{226}/90$Th, $Q = 6$ MeV, $\tau = 30$ min
 – $^{220}/90$Th, $Q = 9$ MeV, $\tau = 10^{-5}$ s

• Chart of the nuclides
 • Proton number vs neutron number
 • Stable isotopes in black
 • Yellow = alpha decay (heavier, more p rich)

• Beta radiation and the weak nuclear force
 • Two kinds of beta decay:
 – RIGHT or BELOW the valley of stability (pink)
 – Too many p: $p \rightarrow n + e^- + \bar{\nu}$
 – First kind of “beta decay”, now beta- decay
 – Moves diagonally up and left on the chart of nuclides

• LEFT or ABOVE the valley of stability (blue)
 – Too many p: $p \rightarrow n + e^+ + \nu$
 • beta+ decay
 • aka “positron emission”
 • Moves diagonally down and right on the chart of nuclides
Another way to change $p \rightarrow n$:

- **electron conversion**

 - $p + e^- \rightarrow n + \nu$
 - Move one box diagonally down
 - Keep total number $p+n$ unchanged

- ν $(m=0, q=0)$ existence inferred from continuous decay e energy spectrum
- Max e energy used to measure nuclear ΔM
- Described by Fermi theory
- No tunneling barrier, just weak
- Prob \sim overlap of init and final states
- Also depends on angular momentum

- **Examples:**

 - $^{14/6}C \rightarrow 14/7N + e^- + \text{anti-}\nu$
 - $^{239/93}Np \rightarrow 239/94Pu + e^- + \text{anti-}\nu$
 - $^{26/13}Al \rightarrow 26/12Mg + e^+ + \nu$
 - τ varies from 10^{-3} to 10^{23} s (10^{15} yr $>>$ age of universe)

- **Weak force**

 - Conserves E, p, charge, total $(n+p)$ (expand)
 - Conserves # electrons (e+ anti of e-)
 - $#e^- + #\nu - #e^+ - #\text{anti-nu}$ unchanged
 - Changes $p \leftrightarrow n$
 - Atomic weight unchanged

- **γ rays (photons) and the EM force**

 - No change in A, Z, or N
 - Most α and β decays leave excited daughter
 - De-excites via γ emission
 - $E_\gamma \sim 0.1$ to 10 MeV
 - $\lambda \sim 10^4$ to 10^2 fm
• Discrete energies characteristic of
 – Specific nuclei
 – Differences in nuclear states
• Atom → e changes orbit → emits photon
• Nucleus → n, p change orbit → emits photon

1. 49

Graphic for previous slide

2. 50

• Done as DEMO, 2-3 minutes?
• α β γ interact differently with matter
 – α β charged, interact with atomic e-, xfer E
 – α MUCH heavier and slower, interacts more
 • Slowed and stopped by a sheet of paper
 – β slowed and stopped by a few mm plastic
 – γ does not slow: either interacts & stops ... OR keeps moving
 • Stopped by a few mm lead (energy dependent)
 Geiger counter demo with stopping power

3. 51

• You have 3 encapsulated sources α β γ and must swallow one, put the other in your pocket and the 3rd in your backpack. What do you do?
 – α shielded by pants cloth → pocket
 – β shielded by backpack material
 – γ not shielded by either. Swallow it.

4. 52

• Blocking α and β radiation from entering your body is not hard and makes a big difference.

5. 53

• Gamma radiation is always much harder to shield against. Either you have a barrier like lead, or the gamma’s gonna getcha.