Stars

PHYS323

Perfect Blackbody Spectrum

Quantum Mechanics in 20 min

- Many observables are quantized (i.e., cannot change by an arbitrarily small amount)
 - 1 Light waves: Energy for a specific frequency f can only be absorbed or emitted in chunks (photons) of E = hf
 - Possible energy for hydrogen atom can only assume values
 - $E_n = -Ry/n^2$ (see next slide)
 - 3 Angular momentum can only change by integer multiples of $\hbar = h/2\pi$
- (2) All other observables are intrinsically uncertain
 - 1 Position: $x...x+\Delta x$
 - 2 Momentum: $p...p+\Delta p$
 - 3 Heisenberg: $\Delta x \Delta p \ge \hbar/2$
- ③ Picture: particle motion described by waves ("wave function" ψ) that cannot be located precisely. Quantization ⇒ Standing Waves

Quantum Mechanics in 20 min

- Electron "motion" in hydrogen atom (nucleus = proton): standing wave described by wave function ψ(r)
- 2 Schrödinger: Wave function is solution of the equation $H\psi(\mathbf{r}) = E\psi(\mathbf{r})$, where *E* is a possible energy "eigenvalue" and **H** is a differential operator ("The Hamiltonian")
- (3) Hydrogen atom: Only possible energies are $E_n = -Ry/n^2$ with Ry = 13.6 eV and n = integer. In general all atoms have a fixed series of possible energies E_n

Light can only be emitted with frequencies given by $hf = E_n - E_m$

Quantum Mechanics and Line Spectra

Measuring Temperature

Spectral Type

Hertzsprung-Russel Diagram

Hertzsprung-Russel Diagram

Question: How do we deduce interior structure of stars from these observations?

Interior Structure

What Powers the Sun?

- Gravitational energy (potential plus kinetic, according to virial theorem) as function of radius: $E_{tot} = -\frac{3}{10} \frac{GM^2}{R}$
- Therefore, maximum amount of energy "generated" by Sun through contraction to present radius:

$$E_{tot} = -\frac{3}{10} \frac{6.674 \cdot 10^{-11} (1.989 \cdot 10^{30})^2}{6.955 \cdot 10^8} \text{ J} = 1.14 \cdot 10^{41} \text{ J}$$

Energy actually radiated by Sun over last 4.5 B yrs
 $E_{rad} = L_{sm} \cdot T = 3.84 \cdot 10^{26} \text{ W} \cdot 1.42 \cdot 10^{17} \text{ s} = 5.45 \cdot 10^{43} \text{ J}$

= 500 times more! (Or Sun must be less than 9 M yrs old!)

• Solution: Must be something else \rightarrow nuclear fusion

•

The Structure of Matter

- What is the Universe made off?
- What are the most fundamental objects in Nature?
- What particles where there in the beginning (right after the big bang)?
- How do they interact?
- How do they form composite objects?

Matter Particles

10115 Make up visible matter Pointlike (< 10^{-18} m), Fundamental *) 3 "colors" = 3different charges: Have mass (from < ½ eV to 178,000,000,000 eV = 178 GeV) ν_τ red, green, blue V ν_e τ_{I} μ_{I} Distinct from their antiparticles *) • Fermions (Spin $\frac{1}{2}$) \Rightarrow they "defend" their space (Pauli Principle) and can only be U created in particle-antiparticle S pairs Varks Can be "virtual", but make up matter being (nearly) "real" "stable" (against strong decays; lifetimes from ∞ to 10^{-24} s) x2 for R, x2 for antiparticles

*) Until further notice

Forces and Force Carriers

- Mediate Interactions (Forces) - form "Waves"
- Pointlike, Fundamental
- Massless *)
- Some are their own antiparticles (photon, Z⁰, graviton)
- Spin 1, 2 -> Bosons (tend to cluster together, can be produced in arbitrary numbers)
- Can be real, but carry forces as virtual particles
- Some are absolutely stable (γ, gluons, gravitons)
- *) See next slide

BOSONS force carriers spin = 0, 1, 2,												
Unified Ele	ctroweak	spin = 1		Strong (color) spin = 1								
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge						
γ photon	0	0		g gluon	0	0						
W ⁻	80.4	-1		Gravitati	on spi	n = 2						
W+ Z ⁰	80.4 91.187	+1 0		Name	Mass GeV/c ²	Electric charge						
				g graviton	0	0						

Note: gluons come in 8 possible combinations of color/anticolor (9th is "sterile" – doesn't exist)

G G G G G G G G

The Structure of Matter

1/10

Atom

1/10

10⁻¹⁵m Proton

Quark

Periodic Table

hydrogen 1											boron		65					helium 2
H 1.0079											5	<u>ا</u>						He
lithium 3	beryllium 4										D		boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	neon 10
Li	Be										В		В	С	Ν	0	F	Ne
6.941 sodium	9,0122 magnesium										10.811	4	10.811 aluminium	12.011 silicon	14.007 phosphorus	15.999 sulfur 16	18,998 chlorine	20.190 argon
Na	¹² Mg									-	10.011	-		¹⁴ Si	15 P	S		Ar
22,990	24.305												26.982	28.086	30.974	32.065	35.453	39.948
potassium 19	calcium 20	-	scandium 21	titanium 22	vanadium 23	chromium 24	manganese 25	26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51,996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58,693 palladium	63.546 silver	65.39 cadmium	69.723 Indium	72.61 tin	74.922 antimony	78,96 tellurium	79,904 lodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.468 caesium	87.62 barium	100000	88.906 lutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91	137.33		174.97	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	radium 88	89-102	lawrendum 103	rutherfordium 104	dubnium 105	seaborgium 106	bohrium 107	hassium 108	meitnerium 109	ununnilium 110	unununium 111	ununbium 112		ununquadium 114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt		Uuu			Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				

*Lanthanide series		58	praseodymium 59	60	promethium 61	samarlum 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	fhullum 69	ytterbium 70
	La 138.91	Ce	Pr	Nd	Pm	Sm	Eu	Gd	158.93	Dy 162.50	Ho 164.93	Er	Tm 168.93	Yb
* * Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

Nuclear Binding energies

Nuclear Power Generation

The Life of Main Sequence Stars

Stars gradually exhaust their hydrogen fuel.

In this process of aging, they are gradually becoming brighter, evolving off the zero-age main sequence.

Helium Burning

- Requires temperatures above 10⁸ K (8.6 keV)
- ⁸Be is unstable -> αα! Only at high temperature are there a few ⁸Be in equilibrium with ⁴He (energy sink!)
- ⁸Be + α -> ¹²C would be too slow if not for ¹²C excited state
- Predicted by Hoyle!
- Some α get eaten by
 ¹²C -> ¹⁶O admixture

Expansion onto the Giant Branch

The Sun will expand beyond Earth's orbit!

Expansion and surface cooling during the phase of an inactive He core and a H- burning shell

Fusion into Heavier Elements

285 Fusion into heavier 26AI 25A 27AI elements than C, O: 24Mg .26Mg ²⁵Mg ²³Mg 23Na ²²Na ²⁴Na ²¹Na ²⁰Ne - ²¹Ne ²²Ne ¹⁸F requires very high 170 16₀ ¹⁸O temperatures; occurs only in very massive ¹³N ¹⁴N 15N stars (more than 8 4 / solar masses) ¹²C → ¹³C

Final Stages of Giants (≈M_☉)

- Final C core collapse
- Shock wave
- Outer layers ejected
- "Planetary" Nebulae

Ring Nebula

Spirograph Nebula

d Hourglass Nebula

White Dwarfs

 Reminder: Last stages of sun and similar-sized stars

Last stage: Helium burning stops, core collapses and significant fraction of mass gets ejected as planetary nebula

- What happens with the core after the final collapse? => White Dwarf! (Example: Sirius B)
 - Core contracts until "Fermi pressure" of electrons balances gravitational attraction
 - Final size typically <1% of present solar radius => Density 10⁶ times larger than that of the sun! Temperature 10⁷ K at center

SuperGiant; $M=20M_{\odot}$, $R = 1200R_{\odot} = 5.5 \text{ AU(!)}$, 10^{-8} g/cm^3

Super Giant Stars

- Last stage of superheavy (>10 M_☉) stars after completing Main Sequence existence
- Initially: Very hot, UV radiation
- Move mostly horizontally on H-R diagram (decreasing temperature, constant luminosity
 - Heaviest (100M_☉)
 never go beyond blue
 SG stage
 - Others: red SGs

© 2010 Pearson Education, Inc.

Fusion for Supergiants

- Onion (25 M_{\odot}):
 - H burning: 5 Mio yr
 - ⁴He burning: 500,000 yr
 - ¹²C burning: 500 yr
 - Ne burning: 1 yr
 - Si burning: 1 day
 - Final state: inert Iron/Nickel core -> no more energy available from nuclear fusion (nor from fission!)

Liquid drop model:

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z(Z-1)}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} + \delta(A,Z) + a_{Grav} \frac{A^2}{A^{1/3}} + \delta(A,Z) + a_{Grav} \frac{A^2}{A^{1/3}} + \delta(A,Z) +$$

=> Chandrasekhar Limit

- For less massive, larger white dwarfs:
 - $R \approx 5600 \text{ km} (M/M_{sun})^{-1/3} => V \propto 1/M; \rho \propto M^2$
 - $p_{\rm f} = 670 \text{ keV/c x} (n/n_{\rm SiriusB})^{1/3} = 670 \text{ keV/c x} (M/M_{\rm sun})^{2/3}$
- as mass increases, gas becomes more and more relativistic and radius becomes even smaller => runaway collapse (R ∝ M^{-∞})
- Mass limit M_{ch} = 1.4 M_{sun}

Type la Supernova

- White dwarf accumulates mass from (Giant) companion
- Exceeds Chandrasekar limit
- Goes supernova

Supernova remnant

- Neutron star:
 - nearly no p's, e-'s, just neutrons
 - Remember: $R_{white \ dwarf} \propto 1/m_e \ M^{-1/3}$
 - m_n = 1840 m_e => R 1840 times smaller (really, about 500 times because only 1 e- per 2 neutrons) => of order 10 km!
 - Density: few $10^{44}/m^3 = 1/fm^3 > nuclear density => nucleus with mass number A = <math>10^{57}$
 - Chandrasekar limit: 5 solar masses (2-3 in reality?)
 - Lots depends on nuclear equation of state *), general relativity

*) Repulsive core / Nuclear superfluid / quark-gluon plasma / strange matter / pasta ?

=> Black Holes

- Beyond a certain density, NOTHING can prevent gravitational collapse!
 - If there were a new source of pressure, that pressure would have energy $(P = 1/3 \dots 2/3 E/V)$, which causes more gravitation => gravity wins over
 - Singularity in space-time (infinitely dense mass point, infinite curvature; no classical treatment possible)
- For spherical mass at rest, Schwarzschild metric applies and we have an event horizon at $r = R_S = 2GM/c^2 = 3$ km M/M_{sun} (Schwarzschild radius)
 - as object approaches $r_{\rm S}$ from outside, clock appears to slow to a crawl and light emitted gets redshifted to ∞ long wavelength
 - − along light path, $ds = 0 \Rightarrow dr = \pm (1-r_S/r) dct \Rightarrow$ light becomes ∞ slow and never can cross from inside r_S to outside
 - From outside, it takes exponential time for star surface to reach $r_{\rm S}$
 - Rate of photon emission decreases exponentially (less than 1/s after 10 ms)
 - All material that falls in over time "appears" frozen on the surface of event horizon but doesn't emit any photons or any other information
 - Co-moving coordinate system: will cross event horizon in finite time => no return!

Gravitational Waves

Binary Black Hole Evolution: Caltech/Cornell Computer Simulation

> Top: 3D view of Black Holes and Orbital Trajectory

Middle: Spacetime curvature: Depth: Curvature of space Colors: Rate of flow of time Arrows: Velocity of flow of space

Bottom: Waveform (red line shows current time)

