Reminder: Need to understand vectors and operators

Vector

- Coordinates = Basis (orthonormal)
 - Components (x, y, z) ($n=3$)
 - n dimensional
 - Even ∞ dimensions: countable
 - Continuous $n = \mathbb{R}$

- Can be added
- Can multiply with scalar

Vector Space: Vectors (basis) + Scalar Field

- QM: $n = 2$ (coin), ... ∞ (continuous: particle x-axis)
- Basis: "fundamental states"
 - $n=2$: (heads; tails)
 - $n=\infty$: $\{ | x > | x \in \mathbb{R} \}$

- Scalar Field = C

Scalar Product: $\langle \psi_1 | \psi_2 \rangle$

= $\psi_1^* \psi_1 + \psi_2^* \psi_2 + \ldots$

- $\langle \psi | \psi \rangle$ describe same physical state for any state $| \psi >$ and
Example: infinite-dimensional vectors = functions f(x). Superposition, normalization,…