
Reminder: The Hamiltonian Eigenstate Equation in spherical coordinates for an 

electron in the Coulmb electric field of a proton is given by 

 
where ϕE(r,θ,φ) is the wave function in spherical coordinates that describes the 

eigenstate of the Hamiltonian with the eigenvalue E (=total energy).  

We are looking for wave function that can be written as product of separate 

functions of the three coordinates (“separation of variables”): 

 

Last time we learned that the last function, Φm(φ), can be chosen as an eigenstate 

to the operator Lz representing the z-component of the angular momentum: 

 
Furthermore, the second and third term in the Hamiltonian together represent the 

total angular momentum squared, L2/2mr2. So the product of the 2nd and 3rd term 

in ϕE(r,θ,φ) should combine to form eigenstates of that operator, with eigenvalues 

ℓ(ℓ+1) "2: 

 
Here is a short table of some of these eigenstates; more information can be found 

on our website: 



 

[Important Aside: In the lecture, I forgot to mention the “spectroscopic notation” 

for ℓ. Here it is:  

ℓ = 0 => “s-state” or “S” 

ℓ = 1 => “p-state” or “P” 

ℓ = 2 => “d-state” or “D” 

ℓ = 3 => “f-state” or “F”    and so on 

These make NO sense but were introduced by atomic physicists looking at spectra 

before they even knew about quantized angular momenta. 

Plugging everything in  gives the new version of the eigenstate equation for the 

Hamiltonian: 

 
Plugging in our Ansatz 

 
and dividing both sides by Yℓ,m  yields 



 
The solutions for R n,ℓ(r) exist only for certain values of E, given (for each positive 

integer) by En,ℓ  (see above). They are called “Laguerre Polynomials”  and “Associated 

Laguerre Polynomials” -> see Wikipedia for more on those; the lowest order one is  

 
 Note that E is actually independent of ℓ, while the wave function itself definitely 

is very different for different ℓ. So the full solution can be written by specifying 

three quantum numbers: 

 
With the requirement that  

n = 1, 2, 3,… (main quantum number),  

ℓ = 0, 1, …, n -1 (total angular momentum quantum number = s,p,d,f,…) 

m = 0, ±1,..,± ℓ 

 



Here is a pictorial representation of the possible energy levels and the transitions 

that produce the distinctive wave lengths (spectral lines) in hydrogen: 

 
Here is a summary on how to calculate the Rydberg constant and the Bohr 

radius:  

 
 



Note that the equation at the bottom left describes the energy levels not only 

for a Hydrogen atom, but really for ANY system of a bound positive nucleus 

and a negatively charged particle (like electron, muon, antiproton,…). Here 

Z is the total charge of the positively charged nucleus in units of +e (= total 

number of protons in the nucleus)  and m is the mass of the negatively 

charged object (with an assumed charge of –e).  

Strictly speaking this assumes that the negatively charged object has MUCH 

less mass than the positively charged nucleus, which is a good assumption 

for electrons but not so good for muons and clearly bad for antiprotons. For 

better precision, you must replace the mass m with the REDUCED MASS 

µ = m*M/(m + M), where m is the mass of the negative particle and M is the 

mass of the nucleus. 

Correspondingly, the Bohr radius also depends on the (reduced) mass, an it 

should have a 1/Z in front (i.e. it scales with the inverse of the positive 

charge). 

 

 


