Central Force Problem

Consider two bodies of masses, say earth and moon, mg and mj; moving under the influence of mutual
gravitational force of potential V(r). Now Langangian of the system is
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(always possible by orientation of the x,y, z coordinate system). The Euler-Lagrange Equation for 6 is
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Since all other terms are zero due to our choice, it must be true that also

This can be expanded for higher derivatives, ultimately showing that 8 must be constant at 90 degrees.
This is of course due to the fact that both the magnitude and the direction of the angular momentum
vector L is conserved, and the radius vector is always perpendicular to it. So if we choose the z-direction
in the direction of L, the equations of motion for r(¢) and ¢(t), are restricted to the x-y plane. We have
now reduced our analysis to that of a system with 2 degrees of freedom, namely (r, ©).

From now on, we assume that the force is pointing along the direction of the relative position r
between the two objects. We can say that for such a central force the potential depends only on the
distance |r| between the two objects.
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Figure 1: Motion of two body system of reduced mass p in the central force field

Then the Langrangian for this system
1
L= 5,ub(vﬁ +72p%) = V(r)

From Euler-Langrange equation (ELE)

d(oLy oL
dt \ 0p dp

We get
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Then, the angular momentum [ is constant
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let a function h given by
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where "V (r)” =

+ V(r) is pseudo-potential and E is the total energy. From Eq. (10),
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where the sign + depends on r(t) is increasing or decreasing at time t. It doesn’t alter the trajec-
tory.Taking '+’ sign, we get
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Kepler’s Second Law
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From Eq. (7)

The differential area swept out in time dt is

Figure 2: Area swept out by the radius vector r in time dt
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Thus, the particle sweeps away equal area in equal interval of time, which is Kepler’s second law.
Again
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from Eq. (12) and Eq. (14), we get
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Again using Eq. (7), we can write
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Using Eq.(15) and Eq.(17), we get, taking + sign ,
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Using Eq.(16) in Eq.(9),
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Considering the power law function of r for the potential such that

V(r) =kt (21)
V(u) =k u~ (Y (22)
Eq. (18) becomes
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At r = rmin, T = Tmaz, and r = 1p, equilibrium position 7 =0
For equilibrium position r = rg,
77V b2
% =0 and E =FE, (24)
For a mass p on a spring with spring constant ks, V = %rz, so k = ks/2 and n = 1. For Kepler’s
problem , n = =2, k= GMp, and V(u) = —ku:
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[Note: Alternative way to find maximum and minimum values of r ( From Goldstein Text)

For maximum and minimum values of r ,
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This equation is quadratic in r, so we will have two roots given by:
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with,
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We get From Eq. (19)
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Without loss of generality, let us assume that ¢y = 0 at ¢ = 0, so the above Eq. (30) becomes
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where C' = ‘;—2’“ and e = % is the eccentricity of the orbit of the particle.
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The nature of the orbit depends upon the magnitude of e according to the following scheme:

k2
e=0, FE= —'l;? : circle
e=1, E=0: parabola
e>1, E>0: hyperbola
e<l, FE<O0: ellipse



Figure 3: Trajectory of the body with varying eccentricity in the central force field

For e < 1, case of ellipse,
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The major half axis, a is defined by the relation
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So, Choose g such that r(pg) = rmin
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From Fig.(3),
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Then, we get,
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The equation
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is actually an equation of an ellipse with shifted co-ordinates z’ and ¢’ (or z and y, original co-ordinate
system)
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This can be proven by using ¢y’ = y = r(¢) sin(¢) and 2’ = ae + r(p) cos(¢) and plugging in.
Kepler’s Third Law
Now area of ellipse A = wab

The period of elliptical motion T is the ratio of the total area of the ellipse (A) to the areal velocity (A)
and is given as :
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The Eq.(38) shows that the square of the periods of the object in central force is proportional to the cube
of the major half axis i. e T?  a?, which is Kepler’s third law.

[Note: If a planetory object of mass m is in the motion under the potential of central force, we should
replace the reduced mass p by mass m of the planet]



