\[x^\mu, (W^\mu) \]
\[x^\mu = g_{\mu\nu} x^\nu \]
\[\Delta^\nu = (\Delta^\mu)(\Delta^\nu) \rightarrow \left(\begin{array}{c} x^\mu' \\ x^\nu' \end{array} \right) \]
\[(ds^2) = dx^\mu dx^\nu = g_{\mu\nu} dx^\mu dx^\nu \]
\[dV = \frac{1}{V_c} \]
\[\vec{F}_V = \frac{V_c}{V} \]
\[V^0 = \frac{1}{V_c} \]
\[V^1 = -\beta_x V^0 \]
\[V^2 = -\beta_y V^0 \]
\[V^3 = -\beta_z V^0 \]
\[\gamma = \frac{1}{\sqrt{1-V^2}} \]
\[\gamma V^0 = x^0 - \frac{x^0 V^0}{V^2} \]
\[\gamma V^1 = x^1 - \frac{x^1 V^0}{V^2} \]
\[\gamma V^2 = x^2 - \frac{x^2 V^0}{V^2} \]
\[\gamma V^3 = x^3 - \frac{x^3 V^0}{V^2} \]
\[\frac{d\xi}{dt} = \frac{1}{\sqrt{1-V^2}} \]
\[\xi = \frac{1}{c} t \]
\[\frac{dx^\mu}{d\xi} = \frac{1}{c} \]
\[\frac{dx^\mu}{d\xi} = \frac{1}{c} \]
\[\gamma' = \gamma \]
\[\vec{a} \rightarrow \sum \rightarrow \vec{b} \rightarrow \vec{p}_{a,i} \rightarrow \vec{p}^N_{\text{tot},i} \rightarrow \vec{p}_{\text{tot},i}^N \rightarrow \vec{p}_{\text{tot},i}^N = \frac{m_{\text{tot}}^2 c^2}{E_{\text{tot}}} \]

\[\Rightarrow \text{c.o.m.:} \quad \vec{p}_{\text{tot},i}^N = (m_{\text{tot}}^2 c^2, 0, 0, 0) \]

\[P_{\text{tot},i}^o = \Gamma \left[(P_{\text{inv}})^c \right] \]

\[\vec{P}_{\text{tot},i}^o = \vec{\Gamma} \vec{P}_{\text{inv}} \left((P_{\text{inv}})^c \right) \]

\[P_{\text{tot}}^N = \sum_i P_{\text{tot},i}^N \quad \text{conserved (indep. of time)} \]

Invariant (indep. of coordinate system)

Center of mass frame