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Poisson brackets with ICT 

Recall that infinitesimal canonical transformations (ICT) take the form 
𝜁 = 𝜂 + 𝑑𝜂, where 𝑑𝜂 = 𝜖 ∙  !!

!"
, where ε is used to dial the change in 𝜂.  

Also, recall that 𝐹! = 𝑞 ∙ 𝑃 is a generator used to get an identity 
transformation between generalized coordinates.  This makes it suitable for 
use as a generator that incorporates infinitesimal changes.  It can be 
expressed as 𝐹! = 𝑞 ∙ 𝑃 + 𝜖𝐺(𝑞, 𝑝), where G is an infinitesimal 
transformation generator. Thus, we can express the infinitesimal change 
with this infinitesimal generator as 𝑑𝜂 = 𝜖𝑱𝛻!𝐺. 

We will now see how Poisson brackets behave with ICT.  Recall that [u,v] is 
a number independent of the coordinates used to express u and v.  When 
we use canonical 𝜂, these could represent any space/coordinates.  
Previously, we had 

𝑢, 𝑣 = (𝛻!𝑢)!𝑱(𝛻!𝑣).  How can we express an infinitesimal change in u?  
We would have the expression 

𝜖 𝑢,𝐺 = 𝜖 𝛻!𝑢
!
𝑱 𝛻!𝐺 = 𝛻!𝑢 𝑑𝜂 = 𝑑𝑢(𝑑𝜂) 

From this, we see how much u will change when the coordinates 
themselves are changed by G and ε. 

 

Example:   G=H  The Hamiltonian as the infinitesimal generator. 

In this example, ε becomes dt to show the small increments in time for the 
system as it progresses with this Hamiltonian.  We can now change our 
previous equation 𝑑𝜂 = 𝜖𝑱𝛻!𝐺 by dividing by ε and substituting ε and G.  

Thus, we have !!
!"
= 𝑱𝛻!𝐻.  We can now express this has a Poisson bracket 



by again replacing ε and G: 𝑑𝑡 𝑢,𝐻 = 𝑑𝑢 𝑑𝑡 − !"
!"

 𝑑𝑡.  This leads to  
!"
!"
= 𝑢,𝐻 + !"

!"
. 

Now if  !"
!"
= 0 (meaning there is no explicit dependence on time) AND 

𝑢,𝐻 = 0, then u is a constant of the motion (meaning u is conserved).  
(Recall from quantum mechanics that any operator that commutes with the 
Hamiltonian is conserved.)  This also means that 𝐻,𝐻 = 0, which leads to 
!"
!"
= !"

!"
, will show that energy is conserved if  !"

!"
= !"

!"
= 0. 

 

We can also use the Poisson bracket with Hamiltonians to express the time 
dependence of a function u(t), since H describes an infinitesimal translation 
in time.  We first expand u(t) around t=0 using the Taylor series. 

𝑢 𝑡 = 𝑢 𝑡 = 0  + 𝑢 𝑡 = 0 𝑡 +
𝑢 𝑡 = 0 𝑡!

2!
+⋯ 

Now express the time derivatives as Poisson brackets, and we find that  

𝑢 𝑡 = 𝑢 0 + 𝑢,𝐻 + 𝑢,𝐻 +⋯ = 𝑢 0 + 𝑢,𝐻 + 𝑢,𝐻 ,𝐻 +⋯ 

This means that we can use Poisson brackets to solve for u(t). 

 

Example: a particle in free fall 

The familiar Hamiltonian for this system is 𝐻 = !!

!!
+𝑚𝑔𝑦.  We can solve 

for y(t) using Poisson brackets to demonstrate that this method will give a 
familiar result.  First, we note that 𝜂 = !

! , so 𝛻! =  !
!"
𝑦 + !

!"
𝑝.  

Referencing the Taylor expansion above, we must first calculate [y,H].   

𝑦 = 𝑦,𝐻 = 𝛻!  𝑦
!
𝑱 𝛻!  𝐻 = 1 0 0 1

−1 0
𝑚𝑔
𝑝
𝑚

= 1 0
𝑝
𝑚

−𝑚𝑔
=
𝑝
𝑚

 

Next we calculate 𝑦,𝐻 : 



𝑦 = 𝑦,𝐻 = 𝛻!  𝑦
!
𝑱 𝛻!  𝐻 = 0

1
𝑚

0 1
−1 0

𝑚𝑔
𝑝
𝑚

= 0
1
𝑚

𝑝
𝑚

−𝑚𝑔 = −𝑔 

Then inserting this into the Taylor expansion, we see that  

𝑦 𝑡 = 𝑦 𝑡 = 0  + ! !!!
!

𝑡 − !!!

!
.   We do not need to calculate higher terms 

in the series because 𝑦 = −𝑔 is constant.  All higher derivatives will just go 
to zero: 𝑦 = [𝑦,𝐻] = 0. 

 

Now that we have explored how a quantity u changes with G=H, how would 
u change if we used other generators?  Let us try 𝐺 = 𝑝!.  First, we should 
recall that another definition for the Poisson bracket is 

𝑢,𝐺 =
𝜕𝑢
𝜕𝑞!

𝜕𝐺
𝜕𝑝!

−
𝜕𝑢
𝜕𝑝!

𝜕𝐺
𝜕𝑞!!

 

Then we would have 

𝜖 𝑢,𝐺 = 𝜖 𝑢, 𝑝! = 𝜖
𝜕𝑢
𝜕𝑞!

𝜕𝑝!
𝜕𝑝!

−
𝜕𝑢
𝜕𝑝!

𝜕𝑝!
𝜕𝑞!

=
!

𝜖
𝜕𝑢
𝜕𝑞!

𝛿!,! = 𝜖
𝜕𝑢
𝜕𝑞!!

 

Thus, 𝜖 = 𝛿𝑞!, which gives us 𝜖 𝑢, 𝑝! = 𝛿𝑢(𝛿𝑞!).  This describes behavior 
for small changes in one coordinate 𝑞!, so p is a generator of displacement. 

Example: Cartesian system with 𝑟! and 𝑝! 

We could define our generator as 𝐺 = 𝑝!! , which is the center of mass 
momentum, the total momentum of the system.  Then 𝛿𝑟 𝑢,𝐺 = 𝛿𝑢(𝛿𝑟) 
describes the displacement of every point by the SAME vector.  This can 
be done actively, with the system itself moving, or passively as the 
coordinate frame moves around the system.   

 

Let us now try to describe angular momentum in a similar way.  Angular 
momentum is 𝐿 = 𝑟×𝑝.  This requires a 6 dimensional phase space with 
(𝑥, 𝑦, 𝑧, 𝑝! , 𝑝! , 𝑝!).  For an example, let us consider 𝐿 in the z direction as 
our generator G.  This gives 𝐺 = 𝐿! = 𝑥𝑝! − 𝑦𝑝!.  Then 𝜖[𝑢, 𝐿!] gives 



𝜖 𝑢, 𝐿! =  𝜖
𝜕𝑢
𝜕𝑞!

𝜕(𝑥𝑝! − 𝑦𝑝!)
𝜕𝑝!

−
𝜕𝑢
𝜕𝑝!

𝜕(𝑥𝑝! − 𝑦𝑝!)
𝜕𝑞!

=
!

 

= 𝜖(−
𝜕𝑢
𝜕𝑥
𝑦 +

𝜕𝑢
𝜕𝑦

𝑥 − 𝑝!
𝜕𝑢
𝜕𝑝!

+ 𝑝!
𝜕𝑢
𝜕𝑝!

) 

The Poisson bracket has now been separated into coordinate and 
momentum terms.  We can examine the purely coordinate terms to see 
how 𝐿! has changed them.  Expressing those first two terms as matrices, 
we find that 

𝑑𝑢 = 𝜖 𝛻!𝑢
! 0 −1 0
1 0 0
0 0 0

𝑥
𝑦
𝑧
= 𝛻!𝑢

! 𝑑𝑥′
𝑑𝑦′
𝑑𝑧′

 

That middle matrix is a familiar infinitesimal rotation matrix for 𝜖 = 𝑑𝛼, 
where 𝑑𝛼 is an infinitesimally small angle of rotation around the z-axis.  
Then dx’, dy’, and dz’ are infinitesimal changes caused by rotation.  From 
this we can conclude that  

𝑢! = 𝑢 + 𝑑𝑢 = 𝑢 + 𝛻!𝑢
𝑑𝑥′
𝑑𝑦′
𝑑𝑧′

= 𝑢!"# 

This means that 𝐿! is the generator of infinitesimal rotations around the z-
axis.  Similarly, the momentum terms from the Poisson bracket describe 
how 𝐿! can rotate momentum space if u depends only on p.  If u is a 
mixture of 𝑞! and 𝑝!, 𝐿!will rotate both phase space components of u. 

 

Noether’s Theorem 

If an ICT generated by G leaves the energy of the system unchanged, then 
G is conserved (assuming it does not depend on time explicitly). 

This means that if 𝑑𝐻 = 0, then [H,G]=0.  It follows that [G,H]=0.  This also 
means that !"

!"
= 0 for !"

!"
= 0. 

Example: G=p 



Noether’s theorem says that for G=p, a system where [H,p]=0 will have 
energy that does not change under displacement.   Thus energy is 
conserved and so is the momentum. 

Noether’s Theorem can also be used to show symmetry operations that 
keep the laws of physics invariant. 

Continuum Mechanics 

Suppose we have a system that has an infinite amount of coordinates.  It 
would be easiest to describe the behavior of this system using Lagrangian 
mechanics. 

Consider a string of length L0 that is pinned at the ends.  This string is 
given a slight elasticity so that it can slightly increase its length if needed.  
For example, we could imagine that a pulley is attached to one end of the 
string with a weight on it.  Lifting this mass would release some of the 
tension on the string, allowing the length to increase.  Alternatively, we 
could imagine a tuner screw from a violin at point x = L0 that has the rest of 
the string wound around it.  Turning the screw can decrease or increase 
the tension in the string. 

The string potential of this elastic string would now be  

𝑉!"#
!"#$%& = 𝐿 − 𝐿! 𝑇 

Where T is the tension in the string, L0 is the equilibrium length, and L is 
the stretched or compressed length.  This string would have infinite 
coordinates because every point on the string is independent.  When the 
string is no longer at equilibrium length, that extra length can allow the 
string to become two dimensional instead of a one-dimensional line in the 
x- direction.  This slight change in height allowed by the change in tension 
is labeled 𝛿𝑦(𝑥).   Every point along the string could experience a different 
change in height.  However, too much variation in 𝛿𝑦(𝑥) from point to point 
could cause the string to rip apart.  Therefore, we will impose continuity 
onto 𝛿𝑦(𝑥) to keep the string in one piece.  This will limit the number of 
dimensions in our system.  Instead of having 𝛿𝑦 𝑥  values over the whole 
real axis, it will now be limited to all real integers.  This is important 
because a finite sum over an infinite interval allows us to use the Fourier 
series to describe 𝛿𝑦(𝑥). 



Recall that the Fourier series is 
𝑓 𝑥 = !!

!
+ 𝑎!𝑠𝑖𝑛!

!!! 𝑛𝑥 + 𝑏!𝑐𝑜𝑠!
!!! (𝑛𝑥).  The boundary condition of 

fixed endpoints on the string says that 𝛿𝑦 0 = 𝛿𝑦 𝐿! = 0.  Applying this to 
the Fourier series will give us 

𝛿𝑦 𝑥 = 𝑎!(𝑡)𝑠𝑖𝑛
!

!!!

𝑛𝜋𝑥
𝐿!

 

We would like to express 𝑉!"#
!"#$%& in terms of 𝑎!, which are NEW 

generalized coordinates that explain how the string is deformed.  Recall 
that  𝑠𝑖𝑛 !"#

!!
 is orthogonal to 𝑠𝑖𝑛 !"#

!!
 when 𝑛 ≠ 𝑚.  Therefore, each 𝑎! 

describes a unique way that the string is deformed at x.  The string’s 
deformation at x might change with time, so 𝑎! will also be a function of 
time. 

To proceed with the Lagrangian mechanics, we need to express the 
potential and kinetic energies as functions of coordinates and velocities.  
Namely, 𝑉(𝑎!) and 𝑇(𝑎!).  This process is covered in the next lecture. 


