$02 \cdot 14.06$
Classical Mechanics

$$
\begin{aligned}
& \vec{L}=\underline{I I} \cdot \vec{\omega}, \quad T=\frac{1}{2} \vec{w} \cdot \mathbb{I I} \cdot \vec{\omega}=\frac{1}{2} \vec{\omega} \cdot \vec{L} \\
& (\mathbb{I I})^{\prime}=\left(\begin{array}{ccc}
I_{1} & 0 & 0 \\
0 & I_{2} & 0 \\
0 & 0 & I_{3}
\end{array}\right) \quad(\text { II })^{\prime}=R(\mathbb{I I}) R^{\top}(t) \\
& \vec{\rho} \cdot \mathbb{I I} \cdot \vec{\rho}=1=\rho^{2}(\hat{\rho} \cdot \mathbb{I} \cdot \hat{\rho})=\rho^{2} I_{\rho}
\end{aligned}
$$

1-2-3 system;

$$
I_{1} \rho_{1}^{2}+I_{2} \rho_{2}^{2}+I_{3} \rho_{3}^{2}=1 \quad(\vec{l})^{\prime}=\left(\rho_{1}, \rho_{2}, \rho_{3}\right)
$$

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1 \quad \text { Ellipsoid }
$$

3halt-akes

$$
\frac{1}{\sqrt{I_{1}}}, \frac{1}{\sqrt{I_{2}}} \cdot \frac{1}{\sqrt{I_{3}}}
$$

Free rotation \rightarrow
T conserved, \vec{L} conserved

$$
\begin{aligned}
& 2 T=\vec{W} \cdot I \cdot \vec{\omega}=\operatorname{cons} \cdot \\
& \frac{w_{1}^{2} I_{1}}{2 T}+\frac{w_{2}^{2} I_{2}}{2 T}+\frac{w_{3}^{2} I_{3}}{2 T}=1
\end{aligned}
$$

halt-anes in w-space $\sqrt{\frac{2 T}{I_{1}}}, \sqrt{\frac{2 T}{I_{2}}} \sqrt{\frac{2 T}{I_{3}}}$

$$
\begin{aligned}
& \vec{W} \cdot \vec{L}=2 T=(\vec{W} \cdot \hat{L}) l \\
& \omega_{L}=\frac{2 T}{\ell} \\
& \bar{V}_{\vec{\omega}} \pm(\vec{W} \cdot I \cdot \vec{\omega})=\frac{1}{2 T} 2(I \cdot \vec{W})=\frac{\vec{L}}{T}
\end{aligned}
$$

normal on Lleipsoid surface

1-2-3 System:
 = constant $=$ normal on invariant

$$
w_{1}=\frac{L_{1}}{I_{1}}
$$

 An paricune plane

$$
z=(\stackrel{\rightharpoonup}{\omega} \cdot \hat{L})
$$

New ellipsoid

$$
\frac{I}{\partial T}\left(\frac{L_{1}}{I_{1}}\right)^{2}+\frac{I_{2}}{2 T}\left(\frac{L_{2}}{I_{2}}\right)^{2}+\frac{I_{3}}{2 T}\left(\frac{L_{3}}{I_{3}}\right)^{2}=1
$$

$$
L_{1}^{2}+L_{2}^{2}+L_{3}^{2}=\stackrel{L}{l}^{2}
$$

$$
\begin{aligned}
& \left.N_{1}=I_{1} w_{1}+I_{3}-I_{1}\right) \\
& N_{2}=I_{2} \dot{w}_{2}-w_{3} w_{1}\left(I_{3} I_{1}-I_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& N_{2}=I_{2} \dot{w}_{2}-w_{3} w_{1}\left(I_{1}-I_{2}\right) \\
& N_{3}=I_{3} \dot{w}_{3}-w_{1} w_{2}(
\end{aligned}
$$

$$
\vec{N}=0
$$

$$
\begin{aligned}
& N=0 \\
& I_{1}=I_{2}=I_{1}
\end{aligned}
$$

$$
\begin{aligned}
& L_{1}=-2 \\
& \rightarrow \omega_{3}=\operatorname{con} s .
\end{aligned}
$$

$$
\begin{aligned}
& \text { (Bine). } \\
& \text { half ames } \\
& \sqrt{2 I_{1}}, \sqrt{2 I_{2}}, \sqrt{2 I_{3}} \frac{L_{1}^{2}}{2 T I_{1}}+\frac{L_{2}^{2}}{2 T I_{2}}+\frac{L_{3}^{2}}{2 T I_{3}}=1
\end{aligned}
$$

$$
\begin{aligned}
& I_{1} \dot{W}_{1}=\omega_{2} \omega_{3}\left(I_{1}-I_{3}\right) \\
& I_{1} \dot{w}_{2}=\omega_{3} \omega_{1}\left(I_{3}-I_{1}\right) \\
& \ddot{w}_{1}=\dot{w}_{2}\left(1-\frac{I_{3}}{I_{1}}\right) w_{3} \quad \dot{w}_{2}=-w_{1}\left(1-\frac{I_{3}}{I_{1}}\right) w_{3} \\
& =-\omega_{1}\left(1-\frac{I_{3}}{I_{1}}\right)^{2} \omega_{3}^{2} \\
& \omega_{1}=A \cos \left(\Omega t+\phi_{0}\right) \quad \Omega= \pm\left(1-\frac{I_{3}}{I_{1}}\right) \omega_{3} \\
& w_{2}=-A \cos \left(\Omega t+\varphi_{0}\right)=-\omega_{1} \Omega \\
& \omega_{2}=-A \sin \left(\Omega t+\varphi_{0}\right) \\
& |\vec{\omega}|=\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}=\sqrt{A^{2}+\omega_{3}^{2}}=\text { cost. } \\
& \omega_{3}=\cos \theta|\vec{\omega}| \Rightarrow \cos \theta=\frac{\omega_{3}}{\sqrt{A^{2}+\omega_{3}^{2}}}=\operatorname{const} \text {. }
\end{aligned}
$$

$\vec{\omega}$ is preening on the body cone (opening angle θ) with constant precession frequency Ω.

$$
\begin{aligned}
& |\vec{L}|^{2}=I_{1}^{2} A^{2}+I_{3}^{2} \omega_{3}^{2} \\
& 2 T=I_{1}\left(\omega_{1}^{2}+\omega_{2}^{2}\right)+I_{3} \omega_{3}^{2}=I_{1} A^{2}+I_{3} \omega^{2}
\end{aligned}
$$

solve for A, ω_{3}^{2}.

