Problem Set 9 - Solution

1) The probability is \(\langle \Phi | \mathcal{H} | \Phi \rangle \), where \(\mathcal{H} = \frac{1}{2m} \left(\frac{p^2}{2m} + V_\gamma \right) \), with

\[
\langle \Phi | \mathcal{H} | \Phi \rangle = \langle \Phi | \mathcal{H} | \Phi \rangle = V_\gamma \Theta(t) \delta(p-p')
\]

we see that for all final states \(p \neq p' \)

this probability is zero, implying zero.

The interpretation in the "sudden approximation" is that due to the fact that initially \(\langle \Phi(0) | \mathcal{H} | \Phi(0) \rangle \) the wave function does not have any time to change. However, after \(t = 0 \) it would change (slowly) with time if it were no longer an eigenstate of \(\mathcal{H} = H_0 + V_\gamma \). But it is:

\[
\frac{-\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V_\gamma e^{ipx} = \left(\frac{p^2}{2m} + V_\gamma \right) e^{ipx}
\]

so it is an eigenstate with different energy eigenvalue, but an eigenstate nevertheless - it will remain unchanged.

2) The functional dependence on time does not change; the fact that \(\langle \Phi | \mathcal{H} | \Phi \rangle = 0 \) at all times, so once again the probability is ZERO!

The argument is only slightly different: in the adiabatic approximation, the wave function will have time to continuously adjust, remaining an eigenstate of \(\mathcal{H}(t) \). But as we showed already, it is an eigenstate of \(\mathcal{H}(t) \) for any value of \(V_\gamma(t) \), so it can remain unchanged indefinitely. (The classical analogy is a marble rolling on an elevator floor - as long as the floor is flat, its energy will increase as the elevator rises, but its motion will not change.)
\[d_{210} = \frac{eE}{\hbar} \int \left[e^{i \frac{T}{\hbar}} - e^{-i \frac{T}{\hbar}} \right] e^{i \frac{2\pi}{\hbar} \left(21w_c | z | 2\theta_0 \right)} e^{i \frac{2\pi}{\hbar} \left(21w_c | z | 2\theta_0 \right)} dt' \]

First we observe that \(Z \) is the \(T_z^0 \) component of a spinorial rank \(-1\) tensor and therefore \(\Delta m = m_\pm - m_\pm = 0 \). Therefore we only need to calculate for \(W_2 = 0 \); the other \(Z \) probabilities are 0.

From PS 8 we know that \(<210 | z | 200> = -3a_0 \).

Furthermore, \(W_1 = 0 \) since the \(2 \) states are degenerate under \(H_0 \) (Hydrogen atom, Hamiltonian). Therefore

\[d_{210} = \frac{-3eEa_0}{\hbar} \frac{T^2}{2\pi} \int_0^T 0 = -\frac{3eEa_0}{\hbar} \frac{T^2}{2\pi} \]

and the probability is \(\frac{9}{4} \left(\frac{Ea_0T}{\hbar} \right)^2 \).

The first order approximation breaks down if \(T \gg \frac{2\pi}{3eEa_0} \).

In fact, we know that the system will reach a new eigenstate if \(d_{210} = \frac{1}{\sqrt{2}} \).

\[| \psi > = \frac{1}{\sqrt{2}} \left(| 10 > - e^{i\theta} | 01 > \right) \]

\[= \frac{-i\hbar}{\hbar} <10| \psi > <10| 01 > e^{i\theta} \int \frac{e^{i(2\pi w_c \hbar)/\hbar} e^{-\frac{2\pi}{\hbar} t'}}{\hbar} dt' \]

where \(\omega_c = \frac{\gamma}{\hbar} \beta \).

As shown before, the integral is equal to \(\sqrt{\pi} e \left(\frac{\gamma^2}{\hbar} \right)^{1/2} \) e\left(-\frac{\gamma^2}{\hbar} \right)^{1/2} \).

The transition matrix element is \(\frac{\hbar}{2} \Rightarrow \)

\[d_{\psi} = \frac{-i\hbar}{\hbar} \left(\frac{\gamma^2}{\hbar} \right)^{1/2} e \left(\frac{\gamma^2}{\hbar} \right)^{1/2} \]

\[\theta(i \rightarrow A) = \frac{-i\hbar}{\hbar} \left(\frac{\gamma^2}{\hbar} \right)^{1/2} e \left(\frac{\gamma^2}{\hbar} \right)^{1/2} \]

This is (from Eq. 2) zero for very long \(T \) unless \(\omega_p = \gamma \beta \) (classical precession frequency).