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Graduate Quantum Mechanics – Final Exam - Solution 

Problem 1) 

We know that the momentum operator in one dimension can be written in x-basis as follows: 

x P ψ =

i
∂ψ(x)
∂x

≡

i
∂
∂x

x ψ  . 

a) Show that, similarly, the position operator in momentum basis can be written as 

p X ψ = i∂
ψ(p)
∂p

≡ i ∂
∂p

p ψ , where 

ψ(p) ≡ p ψ = dx p x x ψ
−∞

∞

∫ ; p x =
1
2π

e−ipx/  

is the Fourier transform of ψ(x) ≡ x ψ . 

Hint: Plug in X = dx x x x
−∞

∞

∫  and show that both sides are indeed equal. 

Answer: To prove: p X ψ = i ∂
∂p

p ψ . Left hand side (using hint): 

p X ψ = dx p x x x ψ
−∞

∞

∫ =
1
2π

dx e−ipx/xψ(x)
−∞

∞

∫ . Right hand side: 

i ∂
∂p

p ψ = i ∂
∂p

dx p x x ψ
−∞

∞

∫ = i ∂
∂p

1
2π

dx e−ipx/ψ(x)
−∞

∞

∫

=
1

2π
dx i ∂

∂p
e−ipx/ψ(x)

−∞

∞

∫ =
1

2π
dx i −ix / ( )e−ipx/ψ(x)

−∞

∞

∫  q.e.d.
 

b) Find the eigenfunctions in momentum basis for the following 1-D Hamiltonian: 

H =
P2

2m
+mgX ! (Don’t worry about the overall normalization!) 

Answer: In momentum basis, the Schrödinger equation reads p
2

2m
ψ(p)+ igm ∂

ψ(p)
∂p

= E ψ(p) . 

Since the wave function depends only on p, the partial differential can be replaced by a full 
differential, and we can write this equation as follows: 

igm d ψ(p)
ψ(p)

= E − p2

2m
"

#
$

%

&
'dp⇒

d ψ(p ')
ψ(p ')ψ (0)

ψ ( p)

∫ =
1

igm
E − p '

2

2m
"

#
$

%

&
'dp '

0

p

∫ ⇒

ln
ψ(p)
ψ(0)

"

#
$

%

&
'=

−i
gm

Ep− p3

6m
"

#
$

%

&
'⇒ ψ(p) = ψ(0)exp −

i
gm

Ep− p3

6m
"

#
$

%

&
'

"

#
$

%

&
'
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Problem 2) 

Consider the two-dimensional harmonic oscillator with Hamiltonian 

H =
Px

2 +Py
2

2m
+
mω 2

2
X2 +Y2( ) = ω P̂x

2 + P̂y
2

2
+
X̂2 + Ŷ2

2

!

"
#
#

$

%
&
&

with X̂ = mω

X , P̂x =

1
mω

Px  etc.

. 

a) Show that for each pair of eigenstates nx , ny  of eigenstates of the 1-dimensional harmonic 

oscillator Hamiltonian, with ω P̂x
2

2
+
X̂22

2

!

"
#

$

%
& nx = nx + 1

2( )ω nx  , 
P̂y

2

2
+
Ŷ22

2

!

"
#
#

$

%
&
&
ny = ny + 1

2( ) ny ,  

the direct product nx ⊗ ny is an eigenstate of the 2-D hamiltonian H. What are the 
corresponding eigenvalues and what is the degree of degeneracy for each of these eigenvalues? 
Note: The operators Px and X act only on the first factor in this product while being represented 
by a unit matrix for the second factor – and vice versa.  
Answer:  

H nx ⊗ ny{ }= ω P̂x
2

2
+
X̂2

2

"

#
$

%

&
' nx

(
)
*

+*

,
-
*

.*
⊗1 ny +1 nx ⊗ ω

P̂y
2

2
+
Ŷ2

2

"

#
$
$

%

&
'
'
ny

(
)
*

+*

,
-
*

.*

= ω nx + 1
2( ) nx ⊗ ny + ny + 1

2( ) nx ⊗ ny{ }= ω nx + ny +1( ) nx ⊗ ny

 

so nx ⊗ ny  is an eigenvector with eigenvalue (N+1), where N = nx + ny . For a given 
eigenvalue (i.e., for a given N), the degree of degeneracy is simply equal to the number of 
possible combinations nx, ny with N = nx + ny . Since both nx, ny can be zero or larger, this is 
simply equal to N+1. This means that the ground state (N = 0) is unique, the first excited state is 
2-fold degenerate, etc. (This degeneracy corresponds to different allowed values of Lz.) 

b) The angular momentum operator for rotations around the z-axis is given by  
Lz =XPy −YPx =  X̂P̂y − ŶP̂x( ) ≡ L̂z . 

Show that it commutes with the Hamiltonian and therefore, that it must be possible to construct 
a basis of joint eigenstates to H and Lz.  

Answer: H,Lz[ ] = ω 2 P̂x
2 + P̂y

2

2
+
X̂2 + Ŷ2

2
, X̂P̂y − ŶP̂x

"

#
$
$

%

&
'
'
. Keeping only terms for which we know 

that the commutators are not zero, we find 
H,Lz[ ]
ω 2 =

P̂x
2

2
, X̂P̂y

!

"
#

$

%
&−

P̂y
2

2
, ŶP̂x

!

"
#
#

$

%
&
&
−
X̂2

2
, ŶP̂x

!

"
#

$

%
&+

Ŷ2

2
, X̂P̂y

!

"
#

$

%
&=

=
1
2
P̂x P̂x,X̂!
"

$
%P̂y + P̂x,X̂!

"
$
%P̂xP̂y − P̂y P̂y, Ŷ

!
"

$
%P̂x − P̂y, Ŷ

!
"

$
%P̂yP̂x −...+...{ }

=
1
2
−2iP̂xP̂y + 2iP̂yP̂x − 2iŶX̂+ 2iX̂Ŷ{ }= 0,  q.e.d.
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Problem 3) 

I A deuterium atom, consisting of a Spin-1 nucleus (d=p+n) and a Spin-1/2 electron (e), is in its spatial 
ground state (n = 1, l = 0). When immersed in a very large magnetic field B pointing in z-direction 
(many Tesla), both the nucleus spin and the electron spin will (anti-)align themselves with the z-axis: 
Ms(d) = +1, Ms(e) = -1/2; therefore, the 2-particle spin state will be 
Sd =1,Ms (d) = +1 ⊗ Se = 1

2 ,Ms (e) = − 1
2 . However, when the magnetic field gets turned off, the 

atom’s spin wave function will collapse into an eigenstate of the total spin Sd+e and projection along the 
z-axis Ms(d+e) (due to hyperfine interaction).  

a) What are the possible states | Sd+e , Ms(d+e)> the atom can collapse into? (List all possibilities). 
Answer: According to the rules of angular momentum addition, the total spin can be either 3/2 
or ½.  The total list of all possible states is 
S,M = 3 / 2,3 / 2 , 3 / 2,1 / 2 , 3 / 2,−1/ 2 , 3 / 2,−3 / 2 , 1 / 2,1 / 2 , 1 / 2,−1/ 2{ }  

However, because the initial state has Ms(d+e) = Ms(d) + Ms(e) = 1-1/2 = ½, only the 2nd and 5th 
entry in this list have non-zero overlap (probability) with the initial state. 
 

b) What are the probabilities to find it in each of these states? 
Answer: To find the probability for any one of these final states, we simply have to square the 
overlap with the initial state: 
Prob(S,M ) = S,M 1,1;1 / 2,−1/ 2

2
. These are just the Clebsch-Gordan coefficients squared. 

Therefore,  

Prob(3 / 2,1 / 2) = 3 / 2,1 / 2 1,1;1 / 2,−1/ 2
2
=
1
3

Prob(1/ 2,1 / 2) = 1/ 2,1 / 2 1,1;1 / 2,−1/ 2
2
=
2
3

 

and all others are zero. 

 

Problem 4) 

This problem consist of a set of “trivia questions” which you should answer with no more than a few 
sentences each: 

a) I measure observable O on some arbitrary state |ψ>, with the result of the measurement =o0. 
What do I measure if I repeat the measurement immediately? Do I get the same result if I first 
wait a while and then repeat the measurement? Under what circumstance is the answer to this 
question “yes”? 
Answer: After the first measurement, the wave function is in an eigenstate o0 of O with 
eigenvalue o0, so after immediate re-measurement, I find the same result. If I wait a while, the 
wave function will evolve according to ψ (t) = e−iHt/ o0  which may no longer be an eigenstate 
of O (or not with the same eigenvalue). However, if the hamiltonian and O commute, the wave 
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function will remain in the same eigenstate  of O and even after a while, the measurement will 
still yield o0. 

b) The Hamiltonian for a particle with spin S and magnetic moment µ=γS in a magnetic field B 
along the z-asxis is given by H = - γSzB . From what you know about generators of rotation, 
which components (Sx, Sy, Sz) of the spin operator have expectation values (for any wave 
function) that are conserved under this Hamiltonian? 
Answer: Since the three components of the spin operator do not commute with each others, only 
Sz commutes with the Hamiltonian. This means that Sz is conserved while Sx and Sy aren’t. 

c) A hydrogen atom is in the 2p (n=2, =1, k=0) eigenstate of the (spatial) Hamiltonian (in the 
following, ignore the electron and proton spin!). If we send it through a Stern-Gerlach apparatus 
(aligned with the z-axis), how many different paths (trajectories) can the atom take on its way 
out of that apparatus?  
Answer: Since =1 implies three different possible values for m (+1, 0 ,-1), there are three 
possible trajectories (corresponding to these three magnetic quantum numbers) that the outgoing 
atoms can take. 

d) For the case above, if we observe that the atom takes the top-most of all possible trajectories 
(meaning its magnetic moment must be aligned in the negative z-direction), by what fraction of 
its binding energy does its energy in a 5 Tesla magnetic field (pointing in positive z-direction) 
change from that of the same atom in a field-free region?  
Note: The Rydberg constant is Ry = 13.6 eV and the electron Bohr magneton is 

µB =
e

2mec
= 0.6 ⋅10−4  eV/Tesla , where µ = γ


L = −µB


L
  

Answer: The top-most trajectory corresponds to m = 1 (because of the negative value of the 
electron charge, this follows from the magnetic moment pointing down). Plugging in the 
numbers in the expression for the Hamiltonian, H = - γLzB, yields 3.10-4 eV. This is about 
0.01% of the binding energy, Ry/n2 = 3.4 eV. 
 

 

 

Problem 5) – Extra Credit 

a) According to Heisenberg’s uncertainty relationship, ΔOψΔQψ ≥
1
2
ψ O,Q[ ] ψ , what must be 

the minimum uncertainty product ΔLxΔLy for measurements of the angular momentum Lx,Ly if 
the wave function is in a (normalized) eigenstate |,m> to L2 and Lz with eigenvalues (+1)2, 
m? On the other hand, given that <Lx> = < Ly> = 0 in this state and that L2 = Lx

2 + Ly
2 + Lz

2 , 
what is the actual value of this product ΔLxΔLy (assuming ΔLx = ΔLy)? Does Heisenbergs 
relationship hold in this case? Under what circumstances (what values of l, m) is it fulfilled 
exactly? 
Answer: We know that Lx,Ly

!" #$= iLz and therefore 
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ΔLxΔLy ≥
1
2
,m Lx,Ly

#$ %& ,m =
1
2
,m iLz ,m =

2 m
2

 according to Heisenberg. 

On the other hand, we know that ΔLx( )2 = Lx
2 − Lx

2
= Lx

2  (and similar for ΔLy) so we can 
write 

 

2(+1) = L2 = Lx
2 + Ly

2 + Lz
2 = 2 ΔLx( )2

+ ,m Lz
2 ,m =

= 2 ΔLx( )2
+ Lz ,m

2
= 2 ΔLx( )2

+ m( )2  (Lz  is hermitian) ⇒

ΔLx = ΔLy = 2 (+1)−m2

2
 and ΔLxΔLy = 

2 (+1)−m2

2

 

which is clearly larger than the required by Heisenberg (m2 is bounded by 2). The lower limit 
and the exact answer are only equal if m = . 
 

b) A particle of mass µ is bound in a spherically symmetric potential V (r) =
−
2

µr2
, r ≤ a

∞, r > a

$

%
&

'
&

. What 

are the solutions to the Schrödinger Equation (= eigenstates to the Hamiltonian) for the total 
orbital angular momentum  =1? 
 
(Don’t worry about absolute normalizations) 
Answer: The Schrödinger equation for this situation reads as follows: 
d 2UE1

dr2
+ k2 − −2µ

2

2µr2
−
1(1+1)
r2

"

#
$

%

&
'UE1 =

d 2UE1

dr2
+ k2UE1 = 0  with k = 2µE


 for r ≤ a and  UE1 = 0  

for r > a. The solution (with the requirement that UE0 → 0 as r → 0) reads 

UE0 (r) =
Asinkr, r ≤ a
0, r > a

"
#
$

%$
 

The wave function must be continuous at r = a, which yields Asinka = 0  and therefore k = nπ
a

 

or En =
n2π 22

2µa2
 

 
 

 
Table of Clebsch-Gordan coefficients: 
The nomenclature is j1,m1, j2,m2 J,M : 
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1
2
, 1
2
, 1
2
, 1
2
1,1 =1

1
2
, 1
2
, 1
2
,− 1
2
1,0 =

1
2
,− 1
2
, 1
2
, 1
2
1, 0 =

1
2

1
2
, 1
2
, 1
2
,− 1
2
0,0 = −

1
2
,− 1
2
, 1
2
, 1
2
0, 0 =

1
2

1
2
,− 1
2
, 1
2
,− 1
2
1,−1 =1

1,1, 1
2
, 1
2
3
2
, 3
2

=1

1,1, 1
2
,− 1
2
3
2
, 1
2

=
1
3
; 1, 0, 1

2
, 1
2
3
2
, 1
2

=
2
3

1,1, 1
2
,− 1
2
1
2
, 1
2

=
2
3
; 1, 0, 1

2
, 1
2
1
2
, 1
2

= −
1
3

1,0, 1
2
,− 1
2
3
2
,− 1
2

=
2
3
; 1,−1, 1

2
, 1
2
3
2
,− 1
2

=
1
3

1,0, 1
2
,− 1
2
1
2
,− 1
2

=
1
3
; 1,−1, 1

2
, 1
2
1
2
,− 1
2

= −
2
3

1,−1, 1
2
,− 1
2
3
2
,− 3
2

=1

 

(all others not listed are zero) 


