1-D Translations

Consider the operator

T(Az)|z) = |z + Ax)

Obviously this operator represents a translation in the x direction by some
distance Aw.

For an infinitesimal shift, ¢ — 0, we would have T(€) |z) = |z + €). Applying
this translation operator to an arbitrary state vector, |¢) yields

T(e) [v) = [¥')
In order for this operator to be useful, the following properties must be true:
o If [¢|* =1, then |[¢/|* = 1
e T(Az - 0)—1
o T(Az)T(Axy) = T(Axy + Axy)
From the first requirement we have
W) = (THOT(O) = 1

Since this must be valid for ANY arbitrary state vector, it must be the case
that T is unitary, or TT(e)T(e) = T(e)TT(e) = 1.

Let’s assume that T can be represented as a linear combination of the unit
operator and some arbitrary operator G such that

1€
T(e) =1— —
(€) hG

and ,
Tie) =1+ %EGT

To find what G is, let’s calculate TT(¢)T(e). Dropping terms with order
higher than € (since it is infinitesimally small anyway), we see that

T (e)T(e) = (1 + %GT) (1 — %G)

1€ 1€
=14+ -G - —G
+_7"i -
:1+%(GT—G)

.. GG is Hermitian



Now that we know G is Hermitian, let’s examine the commutator between
T (e) and the X operator:

XT(e)|z) =Xz +€) =(x+€)|x+e)

T(e)X|z) = T(e)x |x) = x|z +€)

So, a translation following by a measurement of the position yields a different
result than first measuring the position followed by a translation (which
should be no great shock).

X, T(e)] = €T(e)

1€ 1€

Again, we drop terms with order higher than € and note that the unit operator
commutes with anything.

X,1] - 2[X.G] = ¢
— [X,G] = ik
—-G=P

Therefore, the generator for a translation is simply the momentum operator,
and we have T(e) =1 — ¥P.

All of these derivation was used on the assumption that the size of the trans-
lation, e, is infinitesimally small, but what if the desired shift is some finite
distance Axz? In that case we break the translation up into N small transla-
tions, apply the translation N times, and allow N to go to infinity.

A N A N —1AxP
v = (2(5)) = (1-557) =




2-D Rotations

We can derive the operator responsible for 2-D rotations in much the same
way that we derived the 1-D translation operator. First let’s note that, clas-
sically, a rotation through an angle y can be expressed using the following

matrix equation:

v x| |cospy —singg| |

y y]  [sinpe  coseo | [y
We define the operator U[R,(¢g)] (causes a rotation through an angle ¢,
around the z axis) where

U[R.(po)] [¥) = [¥r)

It would be very odd to have a rotation operator that didn’t rotate a position
vector in the same way as a classical system. So, we must require that

U[R.(po)] |2, y) = |x cos gy — ysin gg, zsin gy + y cos pg) = | RF)

Using the same arguments as with the 1-D translation operator, we let
U[R.(¢0)] = 1 — %2G. Now consider an infinitesimal rotation e:

U[R.(¢)]|z,y) = |z cose — ysine, xsin e + y cos €)
= |z — ey, y + ex)

= T,(—ey)Ty(ex) |z, y)

(o) o 5 o

1€X

_ Y e
= <1+ . P, - Py> |z, y)

Since [R;, Pj| = d;j, both x and y can be ”"promoted” to operators. We also
note that this relationship is true for any vector |x,y), which allows us to
relate the operators themselves. So we have

U[R.()] =1 — %(XPy ~YP,)=1- %LZ



Rotation by a finite angle g can be obtained in a similar way to translating
by a finite distance:
U[R.(po)] =e D

A very convenient coordinate system to use when working with this op-
erator is polar coordinates. In polar coordinates, a rotation will only cause
a change in the ¢ coordinate.

U[R.(¢0)] I, ¢). = |p, ¥ + ¢0).

Here, we introduce a new labeling for our basis vectors - note that they are
still the same position eigenstates as before, just labeled with (p, ¢) instead
of (z,y). In fact, we simply define

|p, ). = |z = pcosp,y = psinyp).

We can then introduce for any ket |¢) its representation in these new variables
as

Ve(p, ) == (p, 0|Y) = Y(pcosp, psing) = (x = pcosp,y = psinp|y).

Note that, by the laws of integration,

/ / pdpdp; (p, p)ve(p, / / drdyy™ (2, y)P(z,y) = 1

for proper normalization. This implies

//dpdwlp,@cpmwl = 1.

For reference, we note the normalization of the new way of writing our basis
vectors:

(0, ¢lp, ©). = (p'cos ', p'sin¢|pcos p, psin )
= 0(p cos ' — pcos)d(p siny’ — psin ).

Using 6(f(x) —b) = d(xz — f~1(b))/|f'(x)], we can evaluate this expression as

cos .
(' ¢'lp, o). = -0 (p' —p /> d(pcosptang’ — psingp)
CoS cos
1 cos ¢\ cos? ¢/ 1
= ) A 5} _ t 25(0 — 0)o(o — '
o (,0 pcow,) eos 0¥ — arctan(sing/ cos p)) = Z0(" = )0 = ¢)



To find a representation for L, in polar coordinates, consider an arbitrary
wave function that has been rotated by an infinitesimal amount in polar
coordinates:

Ve(p, o +€) = (p,p +e€l)

= (0, ¢|U[R-(e)][¥)

7€
= <p,90|1 - ngw>

1€

- {p, o|L.|¢)

= 77Z)c(pa 90) +
We also note that

belprp + ) = belp, 0) + e%zpc(p, o) +0()

So,
1

0
> (0, plL.[v) = —e(p, )

Oy

0
L. = —iho (.
— {0, ¢| e (p, ¢l

Now that we have a representation for L., it would be useful to know its re-
lated eigenvalues. If |,) is an eigenfunction of L, then the related eigenvalue
will be [,. Using the derivative form of L, will give

0
—ih%@% (p, ) =L (p, @)

il
— Ui (p, ) = AR(p)e h

To find [, we note that [, /A must be an integer (since we require 1 (p, 2m) =
¥(p,0)). So, L, is quantized. More specifically,

27l
7; = 2mn
— 1, = hn



