
0.1 Symmetries

Free particle Given the Hamiltonian of the free particle

H =
~p2

2m
; (1)

we can see since it has no explictly dependence on the coordinates q that the
momentum is conserved. Indeed the equation of motion for ~p is:

d~p

dt
= −~∇H = 0. (2)

Cylindrical coordinates The earlier example for the Hamiltonian of a fly
moving on a rotating disk, in cylindrical coordinates, is :

H =
p2φ

2mr2
+

p2r
2m
− ωpφ. (3)

We can observe that:

dpφ
dt

=
∂H

∂φ
= 0, (4)

it implies that pφ is conserved. We note that in this case, pφ is not the ordinary
momentum, but the angular momentum Lz around the z-axis. So, invariance
under rotations around the z-axis (Hamiltonian doesn’t depend on φ) implies
conservation of angular momentum along that axis.

Energy If the Hamiltonian H is not explictly dependent on time we have:

dH

dt
=
∂H

∂t
= 0, (5)

so the value of H is conserved. If H represents the total energy of the system
(not necessarily always true), this means energy is conserved.

More general transformations What if we want to make a more general
transformation of coordinates that leaves the Hamiltonian unchanged but is not
directly related to a change of a single canonical coordinate q? Consider, as
an example, a system of two particles that interact only through a potential
V (~r1 − ~r2) that depends only on their relative positions (very important case).
The Hamiltonian for this case is

H =
~p 2
1

2m1
+

~p 2
2

2m2
+ V (~r1 − ~r2) (6)

This Hamiltonian is clearly unchanged if we add a constant offset ∆~R to both
~r1 and ~r2. However, ∆~R is no canonical variable and therefore it is not clear
a priori which momentum might be conserved because of this invariance. One
way to solve this is by a change of variables. Introduce

~R =
m1~r1 +m2~r2

M
; M = m1 +m2 (7)

~r = ~r1 − ~r2; ~P = ~p1 + ~p2

~p =
m2~p1 −m1~p2

M
; µ =

m1m2

M
.
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The Hamiltonian can now be written as

H =
~P 2

2M
+
~p 2

2µ
+ V (~r) (8)

as the reader can easily prove by substitution and by checking the Hamilton
equations of motion. In this form it is clear that every one of the three coor-
dinates of ~R are cyclical (i.e., the Hamiltonian doesn’t depend on them) and

therefore all three components of ~P are conserved: in a two-particle system with
only internal forces, total momentum is conserved. Note that this new form of
H is very useful, since one can now separately solve for the 6 coordinates de-
scribing the center-of-mass motion – ~P = const., ~R = ~R0 + ~P/M · t – and the
remaining coordinates ~p, ~r describe the motion of a single “pseudo particle” of
mass µ. The motion of the original two particles can then be easily deduced by
inverting the equations 7.

Active and Passive Transformations So far, we have looked at cases where
the Hamiltonian is invariant under a change of position of one or several coor-
dinates. This corresponds to an active transformation: I imagine that move
a system instantaneously from a position qi, pi in phase space to a new posi-
tion q̄i.p̄i. Plugging these new coordinates into the same Hamiltonian, I find
H(q̄i.p̄i) = H(qi, pi) + ∆H. If the Hamiltonian is unchanged under this trans-
formation, ∆H = 0, we call it a “symmetry operation”.

Alternatively, we can keep the positions and momenta of the system the
same, but transform from one set of variables to another (e.g., shift of coordinate
system, or rotation, or going from cartesian to spherical coordinates, etc.). In
general, we have new coordinates q̄i.p̄i that express the same physical state of the
system as the old ones, so that we can write qj = qj(q̄i.p̄i), pj = pj(q̄i.p̄i). In gen-
eral, we get than a new functional form for the dependence of the Hamiltonian
on these new coordinates: H̄(q̄i.p̄i) = H(qj(q̄i.p̄i), pj(q̄i.p̄i)) = H(q̄i.p̄i) + ∆H.
However, by comparison with the result above, it is clear that if the Hamilto-
nian is invariant under the active transformation qi, pi → q̄i.p̄i, it will also be
invariant under the corresponding passive one.

0.2 Poisson brackets

In the remainder, we want to discuss a specific class of coordinate transforma-
tions engendered by a generator. For this, we first introduce the concept of
the Poisson brackets between two dynamical variables ω(qi, pi), λ(qi, pi), both
of which are functions of the canonical coordinates and momenta:

{ω, λ}qi,pi =

N∑
i=1

(
∂ω

∂qi

∂Λ

∂pi
− ∂ω

∂pi

∂Λ

∂qi

)
.

Some important features of these: They are distributive, linear in both first
and second entry, and anticommutative. There are several more interesting
relationships one can prove, all of which (surprise!) are equivalent to analog
relationships for commutators of operators!

The Poisson brackets between canonical coordinates and momenta gives:

{qi, qj} = {pi, pj} = 0, {qi, pj} = δij . (9)
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These relationships are of extreme importance! In fact, it can be shown
that any transformation that keeps these relationships intact is a ”canonical”
one, in the sense that the new coordinates and momenta fulfill the Hamilton
Equations of motion. A few examples: Simply exchanging all momenta with all
coordinates and giving minus-signs to the new coordinates will give the same
result for the Poisson brackets. Also, the parity operation (changing the sign of
all coordinates and momenta) leads to the same commutators and is therefore
canonical.

In general, if g(qi, pi) is any dynamic variable, we can see that:

∂g

∂qi
= {g, pi}

∂g

∂pi
= −{g, qi} , (10)

Another very important relationship is

dg

dt
=
∂g

∂t
+

N∑
i=1

(
∂g

∂qi
q̇i +

∂g

∂pi
ṗi

)
(11)

=
∂g

∂t
+ {g,H}

We can now introduce the concept of a infinitesimal coordinate transforma-
tion generated by some dynamic function g(qi, pi) (the “generator”) which can
be written in this way:{

qi = qi + ε {qi, g} = qi + ε ∂g∂qi
pi = pi + ε {pi, g} = pi − ε ∂g∂pi

(12)

where ε is a small parameter.
The same equations describe the change of any kinematic variable ω(qi, pi)

under this transformation:

ω = ω(q̄i, p̄i) = ω + ε {ω, g} (13)

which follows directly from Eqs. 12 and the chain rule. In particular, the vari-
ation of the Hamiltonian is δH = ε {H, g}. If the Hamiltonian is invariant
under the transformation generated by g, this means that the Poisson bracket
{H, g} = 0. However, turning it around also means that dg

dt = 0 (assuming g
doesn’t depend explicitly on time) in which case g is a conserved quantity.

We conclude with a few examples:

1. If we choose g = pk for the generator, we can see that the only variable
changed by the transformation is qk → qk + ε {qk, pk} = qk + ε. In this
case, we can immediately interpret the transformation as a translation and
therefore the small parameter ε = δqk. All other kinematical variables get
changed by δω = {ω, pk} δqk. Momenta are generators of infinitesimal
translations! If the Hamiltonian is unchanged under this transformation,
then pk is conserved.

2. If we choose g = H, i.e., the Hamiltonian, we can see that any variable is
changed as ω → ω + ω̇ε which, by definition, is the value of ω after the
(infinitesimal) time ε has elapsed. So here ε = δt. The Hamiltonian is
therefore the generator of infinitesimal translations in time. If it doesn’t
depend on time, it is therefore conserved.
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3. Similarly, one can show that each component of the angular momentum
~L = ~r× ~p is the generator of infinitesimal rotations around its axis. (This
is left as an exercise for the reader). Therefore, if the Hamiltonian is
unchanged under rotations, the angular momentum is conserved.
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