
Quantum Mechanics Class Notes Week 5

1 The Postulates of QM

Postulate 1.

We call the state of a quantum mechanical system “pure” if we have the maximum possible information
about this system, meaning it is uniquely defined within the rules of quantum mechanics. (The state is
uniquely defined if we know the probability for each possible measurement result for all observables – see
below.)

Such a pure state (at time t) of a system in a Quantum Mechanical system is represented by a vector
|ψ〉 (t) in some appropriate Hilbert Space. The dimension of this Hilbert space is determined by the
degrees of freedom we need to both describe the outcome of any measurement we may be interested in and
to correctly predict the time evolution of the state.

Any multiple αψ with α from the set of complex numbers refers to the same physical state. In the
following, we will normally assume that this multiplicative freedom has been used to normalize the state
such that < ψ|ψ >= 1.

We mention in passing that we can also describe a system that is not pure in this sense, meaning there
are a number of possible states that it can be in. This will be done in the 2nd semester using the concept
of a density matrix.

Postulate 2.

The observables Ω of the system are Hermitian operators in the same HS. Only the eigenstates |ω〉 of
an operator will yield sharp, singular values ω of the observable upon measurement.

Applying the operator to the eigenstate gives a real number ω which can be used to label the basis
vectors |ω〉

Ω |ω〉 = ω |ω〉

The eigenvectors of any observable form a basis for the HS. In general, we may have more than one operator
with mutual eigenvectors

Ω, Λ, with eigenvectors |ω, λ〉

that can be labelled by the eigenvalues to form a complete orthonormal basis set.

Ω |ω, λ〉 = ω |ω, λ〉 ; Λ |ω, λ〉 = λ |ω, λ〉

Note: Two operators have a set of joint eigenvectors if they commute: if [Ω,Λ] = 0, then any eigenvector
|ωi, j〉 of Ω will be turned into a (possibly different) eigenvector with the same eigenvalue ωi if we apply Λ
(here, j is an additional label that may be needed if the eigenvalue is degenerate):

Ω(Λ |ωi, j〉) = ΛΩ |ωi, j〉 = ωiΛ |ωi, j〉 (1)

Therefore, Λ is an operator that acts only within a given subspace Vω of eigenvectors of Ω with fixed
eigenvalue (it can be written as a “block diagonal” matrix). Thus, there must be a basis of eigenvectors to
Λ within each subspace Vω . Combining all these basis vectors for all different “eigenspaces” of Ω yields
a basis of joint eigenvectors for both Ω and Λ that spans the whole HS.

If we can find a set of, say, two operators that have such a common basis uniquely defined by the
eigenvalues for both operators, we can write any state ψ as

|ψ〉 =
∑
ωi,λi

aωi,λi |ωi, λi〉 =
∑
i,j

〈ωi, λi| |ψ〉 |ωi, λi〉

(given that the eigenvectors must be orthogonal and can be normalized properly).



Postulate 3.a

The observables and their eigenvalues determine what can be measured for any given system. Measuring
the observable Ω on a (normalized) state ψ yields one of the eigenvalues ω with a probability P (ω) given
by |P|ψ > |2, where P is the projection operator on the sub-space Vω of all vectors in HS with the
same eigenvalue ω under Ω. If ω is a non-degenerate eigenvalue with only one eigen vector |ω >, then
P|ψ >= |ω >< ω|ψ > and P (ω) = | < ω|ψ > |2. In the more general case (several eigenvectors with the
same eigenvalue ω), the projection operator can be written as

Pω =
∑
j

|ω, j〉 〈ω, j| . (2)

To calculate the expectation value < Ω > of the observable for any wave function we can write

< Ω >ψ=
∑
ωi

ωiP (ωi) =
∑
ωi,j

ωi |〈ωi, j| ψ〉|2 =
∑
ωi,j

〈ψ| ωi, j〉ωi 〈ωi, j| ψ〉 =
∑
ωi,j

〈ψ|Ω |ωi, j〉 〈ωi, j| ψ〉 =

= 〈ψ|Ω |ψ〉

Note that while the expectation value might be any real number (within the range of eigenvalues of Ω), no
single experiment can yield anything but one of the eigenvalues of Ω.

The function itself, Ψ, may be completely specified (100% certain) but the outcome of a measurement
still cannot be predicted and could in principle yield any ωi.

Postulate 3.b
A measurement of Ω does not only yield an eigenvalue as result (with probability given above), but it also
changes the wave function (i.e., our knowledge - because of the new information). Instead of the initial ψ,
the new wave function after a measurement that yielded the result ω will be given by

|ψnew〉 =
Pω |ψ〉
|Pω |ψ〉 |

(3)

This is the famous “collapse of the wave function”. In reality, the only thing that “collapses” is the infor-
mation we have about the system and therefore our prediction for any future measurement on |ψ〉. The only
circumstance under which the wave function does not change upon measurement is when it is already in
an eigenstate of the observable being measured. In that case, the measurement will give the corresponding
eigenvalue with 100% probability and the state remains unchanged.

Example

Given HS basis vectors

|1 >=

(
1
0

)
, |2 >=

(
0
1

)
and the operator as

Ω =

(
a 0
0 b

)
the most general form of the wavefunction is |Ψ〉 =

(
c1

c2

)
normalised by c1

2 + c2
2 = 1 where c1, c2 are

complex numbers..
Any measurement of Ω on the state of Ψ can only give a or b (eigenvalues of Ω) and the state will then

collapse into the corresponding eigenstate with this eigenvalue:(
c1

c2

)
Ω−→
{
a; P = |c1|2 → |ψnew >= |1 >
b; P = |c2|2 → |ψnew >= |2 >



Second Example

Assume the operator Ω has several eigenvalues ω1, ω2, ω3, ....
For each eigenvalue, you can have several eigenvectors that span a subspace of the full HS. E.g., assume
ω3 has several eigenvectors, |ω3,j〉 (j = 1...n).

A measurement of Ω that yields the value ω3 “collapses” the initial state |ψ > by projecting it onto
the vector space Vω3 with Pω3 =

∑
j
|ω3,j〉 〈ω3,j |.

This means that the final state is not uniquely specified by the measurement alone - we also need to know
the a priori state. This can be avoided by doing a complete set of measurements with commuting observ-
ables.

Continuous set of eigenvalues

In this case, we cannot interpret | 〈ω| |ψ〉 |2 as a probability, but rather as a probability density. For
instance, if we measure the continuous observable X with a continuous set of eigenstates |x〉, X |x〉 = x |x〉,
then the probability of finding the particle at exactly the position x0 is infinitely small; instead, one
can define the probability for finding the particle at a position x within the interval x0 . . . x0 + ∆x as
P (x0 . . . x0 + ∆x) = |〈x0| Ψ〉|2 ∆x = ψ∗(x0)ψ(x0)∆x in the limit ∆x→ 0.

Further Points on QM measurements:

• In practice, it is not easy to devise a “perfect quantum measurement” that can give any possible value
of an observable. Instead, it is easier to make a ”projection measurement” that answers a simple
yes-no question, e.g., “is the particle within a box of length L?”. In that case, the final “collapsed”
wave function is an eigenfunction of the projection operator, or perhaps a statistical ensemble of such
eigenfunctions.

• Even if you know the initial state, you cannot predict the result of a measurement unless the initial
state is an eigenstate to the observable being measured.

• If you make the same measurements immediately following one another, you keep getting the same
answer and the system remains in the same eigen state. However, if you wait awhile, the system
evolves with time and may no longer be in an eigenstate of the observable you are measuring.

• You can “prepare” a system in a definite state of HS by making measurements of a complete set of
observables (mutually compatible operators). Quantum Mechanics then tells you what the probabil-
ity of any outcome for any measurement of any observable will be at any later time.

Postulate 4.

Given a generator g, the Poisson bracket of it with any observable ω gives the change δω of its value
under the infinitesimal coordinate transformation (by the small amount ε) generated by g:

x→ x+ {x, g}ε
p→ p+ {p, g}ε

δω = {ω, g}ε

As we showed, if the Hamiltonian H is invariant under this transformation,

δH = 0; {H, g} = 0



then the observable g is conserved.
In particular, recall that if the generator is the momentum, g = p, the infinitesimal transformation

described by g is a shift of x by the amount ε = δx: x→ x+ {x, p}δx = x+ δx and

δω = {ω, p}δx

is the change of ω due to this shift. We note that this shift can be interpreted as a passive transformation
moving the origin of the coordinate system to the left by an amount δx, thereby increasing all values of
x relative to this new origin. Similarly, taking the Hamiltonian H as the generator, we are describing a
(active) transformation by which we simply observe the change of the observable ω after some time ε = δt
has elapsed:

δω(δt) = {ω,H}δt.

The 4th postulate now stipulates the following: Replacing the Poisson brackets with commutators
and substituting in the operators representing the observables and the generator, Ω,G, the change in the
expectation value of Ω is given by

i~δ〈Ω〉 = 〈Ψ| [Ω,G] |Ψ〉 ε

where
〈Ω〉 = 〈Ψ|Ω |Ψ〉

Schrödinger’s Equation
With H as the generator acting on Ω :

i~δ〈Ω〉 = 〈Ψ| [Ω, H] |Ψ〉 δt

i~
∂ 〈Ψ|Ω |Ψ〉

∂t
= 〈Ψ| [Ω, H] |Ψ〉

Assuming |Ψ〉 → |Ψ〉 (t) (the state depends on time - this is the so-called “Schrödinger picture”):

i~
∂ 〈Ψ|Ω |Ψ〉

∂t
= i~

(〈
∂Ψ

∂t

∣∣∣∣Ω |Ψ〉+ 〈Ψ|Ω
∣∣∣∣∂Ψ

∂t

〉)
= 〈Ψ|ΩH |Ψ〉 − 〈Ψ|HΩ |Ψ〉

〈
−i~∂Ψ

∂t

∣∣∣∣Ω |Ψ〉+ 〈Ψ|Ω
∣∣∣∣i~∂Ψ

∂t

〉
= 〈Ψ|Ω |HΨ〉 − 〈HΨ|Ω |Ψ〉

This implies

i~
∂ |Ψ〉 (t)
∂t

= H |Ψ〉 (t)

|Ψ〉 is a vector in HS and describes the state of the system at any given time t. From the Schrödinger
Equation, the change in state over time can be predicted if the Hamiltonian H is known. A formal solution
of the equation, ignoring the HS and pretending H is “like a number” is given as

|Ψ〉 (t) = e
−iHt

~ |Ψ〉 (0)

For any observable, the expectation value after ∆t can be written

〈O〉(t+ ∆t) = 〈O〉(t) + 〈Ψ| [O,H] |Ψ〉 ∆t

i~

The Hamiltonian in V space depends on the representation of classical observables in the Hilbert space
and can be as simple as a 2x2 matrix or as complicated as a differential operator. In the most common case,
if the classical Hamiltonian is a function of positions xi and momenta pi, we have to find representations
of these operators in HS and then write the Hamiltonian as the same function of these operators.



Representation of X and P
If our HS should represent measurements of continuous position (either on an interval or on all real

numbers), we have to use the ℵ0 or ℵ-dimensional HS of complex-valued functions discussed earlier. In
that case, there is no “true” basis of the Hilbert space - instead, we use the “pseudo-basis” |x〉 which is
normalized as 〈x| x′〉 = δ(x − x′). In this basis, 〈x| ψ〉 = ψ(x) and the operator representing position
measurements is X =

∫∞
−∞ |x〉x 〈x| dx with X |x〉 = x |x〉. This agrees with Shankar’s version of Postulate

II:

〈x|X
∣∣x′〉 =

∫ ∞
−∞

〈
x
∣∣ x′′〉x′′ 〈x′′∣∣ x′〉 dx′′ = ∫ ∞

−∞
δ(x− x′′)x′′δ(x′′ − x′)dx′′ = δ(x− x′)x′ = xδ(x− x′) (4)

For the representation of momentum P , we return to the 4th postulate: Since P is the generator of a
shift of the coordinate system to the left by δx, we have

i~δ〈Ω〉 = 〈Ψ| [Ω, P ] |Ψ〉 δx⇒

i~δ〈Ψ|Ω |Ψ〉 = i~ 〈δΨ|Ω |Ψ〉+ i~ 〈Ψ|Ω |δΨ〉 = 〈Ψ|ΩP |Ψ〉 δx− 〈Ψ|PΩ |Ψ〉 δx

−〈i~δΨ|Ω |Ψ〉+ 〈Ψ|Ω |i~δΨ〉 = 〈Ψ|Ω |δxPΨ〉 − 〈δxPΨ|Ω |Ψ〉

from which we conclude that δxP |Ψ〉 = i~ |δΨ〉
Now we know that after shifting the coordinate system to the left by δx, the same physical state must

be represented by a new function ψ̄ of the new variable x′ with〈
x′
∣∣ ψ̄〉 = ψ̄(x′) = ψ(x) = ψ(x′ − δx) = ψ(x′) + (−δx) · ∂ψ

∂x
(x′) =

〈
x′
∣∣ ψ〉+

〈
x′
∣∣ δψ〉

since x′ = x+ δx. From this we conclude

(P |ψ〉)(x′) =
〈
x′
∣∣P |ψ〉 = i~

〈
x′
∣∣ δΨ〉 /δx = −i~∂ψ

∂x
(x′)

i.e. the action of the operator P on the function ψ(x) is to turn it into ~
i
∂ψ
∂x .

We already know (again, from our review of mathematics) what the eigenfunctions |p〉 of this operator
(with P |p〉 = p |p〉) look like:

〈x| p〉 =
1√
2π~

eipx/~

i.e. our “alternative basis” of the same Hilbert Space. In this basis, we can write

P =

∫ ∞
−∞
|p〉 p 〈p| dp

which allows us to verify the 2nd part of Shankar’s Postulate II:

〈x|P
∣∣x′〉 =

∫ ∞
−∞
〈x| p〉 p

〈
p
∣∣ x′〉 dp =

1

2π~

∫ ∞
−∞

peip(x−x
′)/~dp =

~
i

∂

∂x

1

2π~

∫ ∞
−∞

eip(x−x
′)/~dp =

~
i

∂δ(x− x′)
∂x


