Core Collapse Supernovae

• Types Ib, Ic: no H lines due to shell loss (type Ia already discussed)
 Type II: Plenty of H left (standard end stage of SG)

• Onion (25 M_\odot):
 – H-He-C-O-Ne-Mg-Si shells
 – Final state: inert Iron/Nickel core
 -> no more energy available from nuclear fusion
 -> contraction, degeneracy pressure -> core collapse
 (1 M_\odot collapses from Earth size to 10’ s of km in < 1 sec!)

• Core heats up, contracts (Chandrasekhar limit!) =>
 – photo-dissociation (nucleus -> nucleons)
 – e- capture: $e^- + p \rightarrow n + \nu_e$, n decay => large energy loss (ν’ s)!
 – core collapse (seconds!), shockwave, neutrino death ray, sudden
 luminosity increase (3x109 L_\odot for weeks), blown off outer layer
 – Light fall-off controlled by nuclear decays
 – Huge number of n’ s -> r process
Final Stage of Super Giants:

Supernovae Remnants

SN1994D (NGC4526)

Crab Nebula

SN 1006
Supernova remnant

• Neutron star:
 – nearly no p’ s, e’ s, just neutrons
 – Remember: \(R_{\text{white dwarf}} \propto \frac{1}{m_e} \frac{M}{M_\odot}^{-1/3} \)
 – \(m_n = 1840 \ m_e \Rightarrow R \ \text{1840 times smaller (really, about 500 times because only 1 e- per 2 neutrons)} \Rightarrow \text{of order 10 km!} \)
 – Density: few \(10^{44}/m^3 = 1/fm^3 > \) nuclear density \(\Rightarrow \) nucleus with mass number \(A = 10^{57} \)
 – Chandrasekar limit: 5 solar masses (2-3 in reality?)
 – Lots depends on nuclear equation of state *, general relativity

*) Repulsive core / Nuclear superfluid / quark-gluon plasma / strange matter?
Supernova remnants

• Some new ideas:
 – Superfluid center
 – Partial deconfinement (cold plasma)
 – s quark matter (now ruled out?)
Pulsars

• Sources of periodic radio emission \((T = 0.001 - 1 \text{ s})\)
 – Example: Crab pulsar \(T = 33 \text{ ms}, \omega = 190/\text{s}\) (1/trillion precision!)
 – Frequency slowing down slowly over time
 – Rotation? Requires \(GM/R^2 > R \omega^2 \Rightarrow R < 3\sqrt[3]{\frac{GM}{\omega^2}} \approx 155 \text{ km}\)
 assuming 1 solar mass => neutron star!
 – Why so fast? Angular momentum conservation: \(5 \cdot 10^4\) times smaller radius -> \(25 \cdot 10^8\) times larger \(\omega\) => from months to ms
 – Source of radio waves: rotating magnetic dipole of order \(10^8\text{-}10^{10} \text{ T}\)
 – Why so huge? 2 arguments:
 • field@surface \(\propto\) magnetic moment/R\(^3\) \(\propto\) angular momentum (conserved)
 • \(-d\Phi/dt = \text{EMF}, \text{Lenz’ law},\) plenty of free charges (plasma) => \(\Phi\) remains constant during collapse => \(B\) increases like \(1/R^2\)
Introduction: Special Relativity

• Observation: The speed \(c \) (e.g., the speed of light) is the same in all coordinate systems (i.e. an object moving with \(c \) in \(S \) will be moving with \(c \) in \(S' \))

• Therefore: If \(|\Delta \vec{r}| = c \Delta t \Rightarrow (c \Delta t)^2 - (\Delta \vec{r})^2 = 0 \) is valid in one coordinate system, it should be valid in all coordinate systems!

• => Introduce 4-dimensional “space-time” coordinates:
 \(x^0 = ct; (x^1, x^2, x^3) = \vec{r} \)

• => Introduce “metric” \(g \) that defines the “distance” between any 2 space-time points (using Einstein’s summation convention) as
 \((\Delta s)^2 = g_{\mu \nu} \Delta x^\mu \Delta x^\nu \); \(g_{00} = 1, g_{11} = g_{22} = g_{33} = -1, \) all others = 0

• Postulate that all products between 2 vectors and the metric is invariant (the same in all coordinate systems)

• Meaning? If \(|\Delta ct| > \Delta r \), for a moving object, then there is one system \(S_0 \) where \(\Delta r = 0 \Rightarrow \) rest frame for that object. => \(\sqrt{(ds)^2} \) is the time elapsed in \(S_0 \) between the 2 points (“Eigentime”)

Examples

• Object moving (relative to S) with speed v along x. “Distance” between point $1 = (0,0,0,0)$ (origin) and point $2 = (ct, vt, 0, 0)$:

$$(\Delta s)^2 = g_{00}(ct)^2 + g_{11}(vt)^2 + g_{22}0^2 + g_{33}0^2 = (ct)^2 - (vt)^2 = (c\tau)^2$$

where τ is the “eigentime” (time elapsed between the two points in the frame S_0 where the object is at rest - i.e. the system moving with v along x-axis) => $\tau = t \cdot \sqrt{1 - v^2 / c^2} = \gamma^{-1}t$

• Consequence: As seen from S, the clock in S_0 is “going slow”!
 - From point of view of S_0, it is the clock in S that is going slow!
 - With similar arguments, one can prove “length contraction”, “relativity of synchronicity” and all the other “relativity weirdness”

• Argument can be extended to other quantities: All must come as 4-vectors or as invariant scalars (or tensors…), and the same metric applies to calculate the “invariant length” of each 4-vector

$$p^\mu = \left(\frac{E}{c}, \vec{p} \right); g_{\mu\nu} p^\mu p^\nu = \left(\frac{E}{c} \right)^2 - \vec{p}^2 = m^2 c^2$$

 - Example: 4-momentum
Now a bit more General…

- Equivalence Principle: Motion in a gravitational field is (locally) indistinguishable to force-free motion in accelerated coordinate system S': $y = -\frac{1}{2}gt^2$
 - Example: Free fall in elevator
 - 2nd example: Clock moving around circle with radius r, angular velocity ω, speed $v = r\omega$ => goes slow by factor
 \[
 \sqrt{1 - r^2\omega^2/c^2} = \sqrt{1 - r^*g^*/c^2}
 \]
 where "$g" = r\omega^2 is the centripetal acceleration. If we replace this with a gravitational force, we must choose $\Phi = U_{pot}/m$ such that $d\Phi/dr = -r\omega^2$ => $\Phi = -\frac{1}{2}r^2\omega^2$
 \[
 \Rightarrow \tau_{clock} = \sqrt{1 + 2\Phi(r)/c^2} t
 \]
- => New metric: $g_{00} = 1 + 2\Phi/c^2$
 - Example: clock at bottom of 50 m tower is slower by $5 \cdot 10^{-15}$ than clock at top. Can be measured using Mößbauer effect!
 - More general: Curved space-time!
General Relativity

- Einstein’s idea: Space-time is curved, with a metric determined by mass-energy density.
- Force-free objects move along geodetics: paths that maximize elapsed eigentime (as measured by metric).
 - Example: twin paradox – it is really the stay-at-home twin that ages more.
- Most general equations complicated (differential geometry), but special manageable case: spherically symmetric mass M at rest => Schwarzschild metric
 \[
 (ds)^2 = \left(1 - \frac{2GM}{rc^2}\right)(cdt)^2 - \left(1 - \frac{2GM}{rc^2}\right)^{-1} dr^2 - r^2 \left[(d\theta)^2 + \sin^2 \theta (d\phi)^2 \right].
 \]
- Examples: Falling, redshifting, bending, gravitational lensing, Event horizon (Schwarzschild radius).
Calculation: Falling

Radial motion Δr in 2 steps (each taking time Δt): $\Delta r_1, \Delta r_2 = \Delta r - \Delta r_1$

$$\Delta s \approx \left[\frac{2\Phi_1}{c^2} (\Delta ct)^2 - (\Delta r_1)^2 \right] + \left[\frac{2\Phi_2}{c^2} (\Delta ct)^2 - (\Delta r_2)^2 \right] = \Delta ct \left[\frac{2\Phi_1}{c^2} - \left(\frac{\Delta r_1}{\Delta ct} \right)^2 + \frac{1}{2} \left(\frac{1}{\Delta ct} \right)^2 \right]$$

$$= \Delta ct \left[1 + \frac{\Phi_1}{c^2} - \frac{1}{2} \left(\frac{\Delta r_1}{\Delta ct} \right)^2 + 1 + \frac{\Phi_2}{c^2} - \frac{1}{2} \left(\frac{\Delta r_2}{\Delta ct} \right)^2 \right] \approx \Delta ct \left[2 + \frac{\Phi_0 + \frac{d\Phi}{dr} \Delta r}{c^2} - \frac{1}{2} \left(\frac{\Delta r_1}{\Delta ct} \right)^2 + \frac{\Phi_0 + \frac{d\Phi}{dr} \Delta r + \Delta r_1}{c^2} - \frac{1}{2} \left(\frac{\Delta r_2}{\Delta ct} \right)^2 \right]$$

Find extremum of Δs w.r.t. Δr_1 (for which Δr_1 does Δs become max.?):

$$\frac{d\Delta s}{d\Delta r_1} = 0 \Rightarrow 0 = \frac{\frac{d\Phi}{dr}}{c^2} \frac{\Delta r_1}{(\Delta ct)^2} - \frac{\frac{d\Phi}{dr}}{c^2} \frac{\Delta r_2 (-1)}{(\Delta ct)^2} = \frac{1}{\Delta ct} \left[\frac{\Delta r_2}{\Delta ct} - \frac{\Delta r_1}{\Delta ct} \right] + \frac{1}{c^2} \frac{d\Phi}{dr}$$

$$= \frac{1}{c^2} \left[\frac{1}{\Delta t} (v_2 - v_1) + \frac{d\Phi}{dr} \right] \Rightarrow a = -\frac{d\Phi}{dr} \text{ q.e.d.}$$
= Black Holes

• Beyond a certain density, NOTHING can prevent gravitational collapse!
 – If there were a new source of pressure, that pressure would have energy (see HW), which causes more gravitation => gravity wins over
 – Singularity in space-time (infinitely dense mass point, infinite curvature; no classical treatment possible)
• For spherical mass at rest, Schwarzschild metric applies and we have an event horizon at \(r = r_S = 2GM/c^2 = 3\text{km} \ M/M_{\text{sun}} \) (Schwarzschild radius)
 – as object approaches \(r_S \) from outside, clock appears to slow to a crawl and light emitted gets redshifted to \(\infty \) long wavelength
 – along light path, \(ds = 0 \Rightarrow dr = \pm(1-r_S/r)\cdot dt \Rightarrow \) light becomes \(\infty \) slow and never can cross from inside \(r_S \) to outside
 – From outside, it takes exponential time for star surface to reach \(r_S \)
 – Rate of photon emission decreases exponentially (less than 1/s after 10 ms)
 – All material that falls in over time “appears” frozen on the surface of event horizon but doesn’t emit any photons or any other information
 – Co-moving coordinate system: will cross event horizon in finite time => no return!
Black holes in the Wild

- Smallest black holes likely > 3 \(M_{\text{sun}} \) (supernovae of 25 \(M_{\text{sun}} \) star followed by complete core collapse)
 - mostly detectable as invisible partner in binary system
 - some radiation from accretion disks (esp. X-ray)
 smallest radius about 3 \(r_S \);
 about 5-10% of gravitational pot. energy gets converted into luminosity (much more than fusion in stars in case of ns/bh)
 - White dwarf: \(L \approx L_{\text{sun}} \) (UV); ns/bh 1000’s times more (X-ray, gamma-ray)

- Gigantonomorous black holes in center of galaxies (see later in semester)

- Primordial black holes?