Graduate Quantum Mechanics - Problem Set 7 - Solution

Problem 1)
An atom of mass $4 \times 10^9 \text{ eV}/c^2$ has its position measured within 2 nm accuracy. Assume that it is in a Gaussian wave packet state afterwards. How much time will elapse before the uncertainty of our knowledge about its position has doubled? How about a 1 µg speck of matter that has been located to within 1 µm?

Answ.:
The momentum uncertainty will be $\Delta p = \hbar/2\Delta x = 50 \text{ eV}/c$. Given the mass, the velocity uncertainty is $\Delta p/m = 1.25 \times 10^{-8} c = 3.75 \times 10^9 \text{ nm}/s$ which means it will take about $\frac{1}{2}$ ns before the additional spread equals 2 nm. However, since widths have to be added in quadrature, it will be more like 1 ns before the position uncertainty has grown to 4 nm.

For the 2nd part, we need to express \hbar in SI units. Plugging in the numbers gives a velocity uncertainty of $5.27 \times 10^{-20} \text{ m/s} = 5.27 \times 10^{-14} \mu \text{m}/s$. This yields 3.3×10^{13} s for the uncertainty to grow to 2 µm, or about 1 million years.

Problem 2)
A point-like particle of mass m sits in a one-dimensional potential well. The potential is infinitely high for $x < -s$ and for $x > +s$, while it is at a constant value of $V_0 > 0$ for $-s \leq x < 0$ and zero for $0 \leq x \leq s$. The particle is in the ground state (lowest energy eigenstate of the Hamiltonian) with energy $E_0 > V_0$.

Question: What is the probability that the particle can be found in the left half ($x < 0$) of the potential well?

Outline how you would solve this problem step by step, without actually solving the (transcendental) equations that you encounter:
1. Write down the one-dimensional Schrödinger equation for this problem.
2. Find the generic stationary solutions in the left and right half of the potential well (you may assume $E > V_0$).
3. List all boundary conditions that must be fulfilled (there are 4 of them!)
4. Rewrite your two half-solutions from item 2. above to explicitly fulfill as many of the boundary conditions as possible.
5. Outline how you would find the lowest energy (ground state eigenvalue E) that solves the one-dimensional Schrödinger equation. No closed algebraic solution is possible or required for this part - just explain which equation needs to be solved.
6. Assuming you have E, how would you determine the normalization constants for the two half-solutions?
7. Once you have those in hand as well, how can you answer the original question?

Answ.:
I got tired typing all this up – sorry! – so the answer is handwritten (see next pages)
1.) \(-\frac{b^2}{2m} \frac{\partial^2}{\partial x^2} \psi = (E - V(x)) \psi = \begin{cases} E - V_0, & -s \leq x < 0 \quad \text{I} \\ E, & 0 \leq x \leq s \quad \text{II} \end{cases}\)

2.) \(k_1 = \frac{\sqrt{2m(E - V_0)}}{\hbar}, \quad k_2 = \frac{\sqrt{2mE}}{\hbar}; \quad \text{then}\)

\[\psi_{\text{I}}(x) = A \sin k_1 x + B \cos k_1 x \quad (-s \leq x < 0)\]

\[\psi_{\text{II}}(x) = C \sin k_2 x + D \cos k_2 x\]

3.) \(\psi(-s) = 0\) \((\text{continuity}) \Rightarrow \text{can rewrite as}\)

\[-4.) \quad \psi_{\text{I}}(x) = A \sin (k_1 (x+s))\); \quad \text{similarly} \quad \psi(s) = 0 \Rightarrow \]

\[\psi_{\text{I}}(x) = C \sin (k_2 (x-s))\]

\((\text{continuity at} \quad x = 0 \Rightarrow A = \frac{C \sin k_1 s}{\sin k_1 s} = -C \frac{\sin k_2 s}{\sin k_2 s} \)

1st derivation \(\psi'_{\text{I}} = AK_1 \cos (k_1 (x+s)) = -k_1 C \frac{\sin k_1 s}{\sin k_2 s} \cos (k_1 (x+s))\)

\[\psi'_{\text{II}}(x) = k_2 C \cos (k_2 (x-s)) \quad \text{continuity} \]

\(-k_1 \cot k_1 s = k_2 \cot k_2 s\)

5.) \(\text{The equation must be solved by finding the lowest possible value of } E \text{ for which both sides are equal.}\)

\(\text{Since } k_2 > k_1 \text{ and because of the - sign, the solution will likely be for } \frac{\pi}{2} < k_2 s < \pi \text{ (at } k_2 s < 0)\)

\((\text{in this, writing dimensionless variables } \phi_{1,2} = k_{1,2} s)\)

\[k_1 = k_2 \sqrt{\frac{E - V_0}{E}} \Rightarrow \phi_1 = \phi_2 \sqrt{1 - \frac{V_0}{E}} \quad V_0 = \frac{2mV_0 s^2}{\hbar^2}, \quad \tau = \frac{E}{V_0}\]

\[\Rightarrow \phi_2 = k_2 s = \frac{2mV_0 s}{\hbar} \sqrt{\frac{E}{V_0}} = \sqrt{V_0} \cdot \tau \Rightarrow \]

\[-\sqrt{V_0} \cdot \tau \left(\sqrt{V_0} \cdot \tau \right) = V_0 \cdot \tau \cos \left(\sqrt{V_0} \cdot \tau \right) \text{ can be solved numerically for } \tau, \text{ given } V_0\]

6. There is only one unknown constant C.

Determine by normalizing the wave function:

$$
\int_{-\infty}^{\infty} |\psi|^2(x) \, dx = |C|^2 \left(\int_{-\infty}^{0} \frac{\sin^2 k_1 s}{\sin^2 k_1 s} \sin^2 (k_1 (x+s)) \, dx + \int_{0}^{\infty} \sin^2 (k_2 (x-s)) \, dx \right)
$$

$$
= |C|^2 \left(\frac{\sin^2 k_1 s}{\sin^2 k_1 s} \left[\frac{S}{2} - \frac{1}{4k_1} \sin 2k_1 (x+s) \right]^{0}_{-S} + \frac{S}{2} - \frac{1}{4k_2} \sin 2k_2 (x-s) \right)
$$

$$
= |C|^2 \left(\frac{\sin^2 k_1 s}{\sin^2 k_1 s} \left[\frac{S}{2} - \frac{1}{4k_1} \sin 2k_1 s + \frac{S}{2} - \frac{1}{4k_2} \sin 2k_2 s \right) \right)
$$

\[\Rightarrow C = \left(\frac{\sin^2 k_1 s}{\sin^2 k_1 s} + 1 \right) \left(\frac{S}{2} - \frac{1}{2k_1} \sin^2 k_1 s \cot k_1 s \left(1 - \frac{k_1^2}{k_2^2} \right) \right) \]

7. $P(x<0) = \int_{-\infty}^{0} |\psi|^2 \, dx = |C|^2 \frac{\sin^2 k_1 s}{\sin^2 k_1 s} \left(\frac{S}{2} - \frac{\sin 2k_1 s}{4k_1} \right)

\[
= \frac{\sin^2 k_1 s}{\sin^2 k_1 s} \left[\frac{S}{2} - \frac{1}{2k_1} \sin^2 k_1 s \cot k_1 s \left(1 - \frac{k_1^2}{k_2^2} \right) \right)
\]

\[
= \frac{\sin^2 k_2 s}{\sin^2 k_2 s} \left(1 - \frac{\sin^2 k_2 s}{k_1 s} \cot k_1 s \left(1 - \frac{k_1^2}{k_2^2} \right) \right)
\]

\[
= \frac{\sin^2 k_2 s}{k_1 s} \cot k_1 s \left(1 - \frac{\sin^2 k_2 s}{k_1 s} \cot k_1 s \left(1 - \frac{k_1^2}{k_2^2} \right) \right)
\]
Problem 3)

Consider the “Gaussian wave packet” from the lecture or p. 154 in Shankar. Calculate the probability current j, for every point x at time $t = 0$. Using our result for the probability density, $\rho(x, t)$, show through explicit calculation (not by invoking general principles!!!) that the continuity equation for probability is fulfilled at time $t = 0$.

Answ.:

$$\psi(x, t = 0) = \frac{1}{\sqrt{2\pi \sigma}} e^{i\frac{p_0 x}{\hbar}} e^{-\left(x-x_0\right)^2/4\sigma^2}$$

$$j(x, t = 0) = \frac{\hbar}{2mi \sqrt{2\pi \sigma}} \left(e^{i\frac{p_0 x}{\hbar}} e^{-\left(x-x_0\right)^2/4\sigma^2} \left[i\frac{p_0}{\hbar} - \frac{x-x_0}{2\sigma^2} \right] e^{i\frac{p_0 x}{\hbar}} e^{-\left(x-x_0\right)^2/4\sigma^2} \right)$$

$$= \frac{i2p_0}{2mi \sqrt{2\pi \sigma}} e^{-\left(x-x_0\right)^2/2\sigma^2} = \frac{p_0}{m} \rho(x, t = 0); \frac{\partial j}{\partial x}(x, t = 0) = -\frac{x-x_0}{\sigma^2} \frac{p_0}{m} \rho(x, t = 0)$$

$$\rho(x, t) = \frac{1}{\sqrt{2\pi \left(\sigma^2 + \hbar^2 t^2 / 4m^2 \sigma^2\right)}} e^{-\left(x-x_0-p_0 t/m\right)^2 / 2(\sigma^2 + \hbar^2 t^2 / 4m^2 \sigma^2)}$$

$$\frac{\partial \rho(x, t)}{\partial t} = -\frac{1}{2\pi} \frac{2\hbar^2 t / 4m^2 \sigma^2}{\left(\sigma^2 + \hbar^2 t^2 / 4m^2 \sigma^2\right)^2} \rho(x, t) +$$

$$\left[-2\frac{x-x_0-p_0 t/m}{\sigma^2 + \hbar^2 t^2 / 4m^2 \sigma^2} (-\frac{p_0}{m}) + \frac{(x-x_0-p_0 t/m)^2 2\hbar^2 t / 4m^2 \sigma^2}{2\left(\sigma^2 + \hbar^2 t^2 / 4m^2 \sigma^2\right)^2} \right] \rho(x, t)$$

$$\frac{\partial \rho(x, t)}{\partial t} \bigg|_{t=0} = \left(0 + \frac{p_0}{m} \frac{x-x_0}{\sigma^2} + 0\right) \rho(x, t = 0) = -\frac{\partial j}{\partial x}(x, t = 0)$$

q.e.d.