Announcement

* This course is now open for Student Opinion
Survey submissions

* Please go to https://www.odu.edu/technology-
services/student-opinion-survey and fill out the
survey — | very much want to know your
(anonymous) opinion and suggestions.

 If at least 50% (3 people) participate, | will offer
an extra credit problem on the Final Exam
(Thursday 12/11 12:30 — 15:30 in the same room)
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Collective Phenomena

Giant resonances

Deformation, high spin
Squeezed nuclear matter
Relativistic Heavy lon Collisions



Giant Dipole Resonances

(from Povh et al.)

Fig. 19.7 (a) Quadrupole
vibrations; (b) Octupole
vibrations
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Fig. 19.3 Cross-section for y-induced emission of neutrons in neodymium isotopes [2]. The
curves have been shifted vertically for the sake of clarity. Neodymium isotopes progress from being
spherically symmetric to being deformed nuclei. The giant resonance of the spherically symmetric
142Nd nucleus is narrow, while that of the deformed '*°Nd nucleus shows a double peak
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Fig. 19.4 The giant dipole resonance as oscillations of the protons and neutrons against each other.
In deformed nuclei (below) two oscillation modes are available



Rotational States

(from Povh et al.)

Rotational energy in classical mechanics depends upon the angular momentum
J and the moment of inertia @:

o
Eo = . 19.42
=5 ( )
In quantum mechanics rotation is described by a Hamiltonian operator
J?
Hiot = — . 19.43
o= 05 ( )

In such a quantum mechanical system the rotation must be perpendicular to the
symmetry axis. The eigenstates of the angular momentum operator J are the
spherical harmonic functions Y}', which describe the angular distribution of the
wave function. The associated eigenvalues are:

hz

E;=JU+1)—. 19.44
1 =J0 + )2 o ( )
The gaps between successive states increase linearly because of ;41 —E; = 2(J +
1)42/26. This is typical of rotating states. Only even values of J are attainable, for
reasons of symmetry, for those nuclei which have J¥ = 07 in the ground state. The
moment of inertia @ can be found from the spins and excitation energies.
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Fig. 19.10 Photon spectrum of a Coulomb excited 2*>Th nucleus. Three series of matching lines
may be seen. The strongest lines correspond to transitions in the ground state rotational band
Jy = (J — 2)g. The other two bands are strongly suppressed and are the results of excited states
(cf. Fig. 19.12) [8]
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Fig. 19.11 Experimental apparatus for investigating Coulomb excitation in heavy ion collisions.
In the example shown a **Zr beam hits a 2>2Th target. The backwardly scattered Zr projectiles
are detected in a silicon detector. A germanium detector, with which the y cascades inside the
rotational bands can be finely resolved, gives a precise measurement of the y spectrum. These
photons are additionally measured by a crystal ball of Nal crystals with a poorer resolution. A
coincidence condition between the silicon detector and the Nal crystals can be used to single out

an energy window inside which one may study the nuclear rotational states with the germanium
detector (From [8])



The Structure of Matter

> What nuclei is the Universe made off?
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HISTORY OF THE UNIVERSE -

accelerated
expansion
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RHIC Physics: The Quark Gluon Plasma and
The Color Glass Condensate: 4 Lectures®

Larry McLerran

Physics Department PO Box 5000 Brookhaven National Laboratory Upton, NY 11973 USA

Quark-Gluon Plasma

—

Hadron Gas

Baryogenesis?
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Figure 2: The various forms of matter, and the types of physics which are
probed during the big bang.

Figure 1: As the energy density is decreased, the Quark Gluon Plasma con-
denses into a low density gas of hadrons. Quarks are red, green or blue and

gluons are yellow.
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Part I: Hot baryonic matter (HI collisions)
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“Standard Model” of HI Collisions

hadronic phase

QGP and and freeze-out

hydrodynamic expansion
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High-energy heavy-ion
accelerators :
AGS/RHIC at BNL
SPS/LHC at CERN
From few GeV to few TeV

PR AT o G e |

QNP2018, Quark and Nuclear Physics, 16/Nov/2018, Tsukuba, Japan Shinlchi Esumi, Univ. of Tsukuba, TCHoU



Event display of experimental data

Experiments at RHIC and LHC T
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J/4 suppression and regeneration at LHC

Color Screening
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Y (Upsilon) suppression at LHC

--- more likely from color screening (like J/1 at SPS/RHIC) ---
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Jet quenching (high p; suppression)

jet

--- partonic energy-loss ---
--- penetration of direct photon ---
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Figure 2.12: A single LHC heavy-ion collision with one high energy jet
(upper right) and no apparent partner jet—because it has been quenched
by the QGP produced in the collision.



A huge surprise at RHIC was the discovery that QGP

is a liquid, a result then confirmed at the LHC. And not
just any liquid: it flows with the lowest specific viscosity
(characterized in terms of the ratio of shear viscosity to
entropy density n/s) of any liquid known, for example,
more than ten times smaller than that of water. Over the
past five years nuclear physicists have begun to quantify
just how perfect the QGP liquid is by virtue of enormous
progress on two primary fronts.

the /s of QGP is very close to a fundamental quantum
limiting value deduced for the extreme hypothetical
case when the quarks and gluons have infinitely
strong interactions

6000

5000

I+ 1)C/2m (uk?)
N w B
o o o
o o o
o o o

1000

Our Universe

(o] 100 500 1000
Multipole Moment (Z)

Flow Coefficients

0.25

0.20

015

V:— RHIC
VTt ms=012

ALL




200 62.439 27 19.6 11.5 7.7 GeV

1807177
n Au+Au Collisions (a) 1 ="' .08 — >
170F = ! V>0 T A\~
B N 0.06— ®
] ] .
160" Tk & A®T I, = 004 09 e ALICE
> N ] B - v STAR
S 1s0f 7 0.0 & + PHOBOS
= - i : O ---g g ~---==--==--==--=== 0 PHENIX -
s - A - Y = NA49
f— 140F ‘ -0.02— f - CERES
1305 g gggg:ﬁ — Cleymans et al. | -0.04— ; EgS?
- A 60-800, ~Andronic etal. - _0.06 ¥, v,<0 A E895
- . . . . v FOPI
120—_.Gra?d. c;|all]olnl(|)all E|nnse|m|bl? (|Ylne|(|:j II:Itn) I |_— _008_ Lol Lol L1 rai
100 200 300 400 1 10 102 1 03_ 10
i, (MeV) \'Sn (GeV)

Phys. Rev. Lett. 118 (2017) 212301

Baryon density increases with

decreasing beam energy. v, evolution

with beam energy
and quark coalescence

\P2018, Quark and Nuclear Physics, 16/Nov/2018, Tsukuba, Japan



(@) pp Vs =7TeV,NI™> 110

Flow in small systems

—_— O—

pt+Au |

;‘
</ NN
;Jl\
=5
W™ Y

\
r——

g
/
I

f

0.2
«0.15

>

01

0.05

= i \‘
! 1Y
é “““‘\“\x\"‘“‘
N 0 “‘ ‘\“““h 4
[~
CMS = &
QM15 %
1<p,<3GeVie

(o8 s |
p+p (high mult.)

20«

(D) pPb sy =502 TeV, 220 < ™ < 260

1< pr< 3 GeV/c

PLB 724 (2013) 213

p+A ‘ A+A ‘

(C) PbPb 5y =276 TeV, 220 < N2™

=260

IS

1< p, <3 GCV/L/G
PLB 724 (2013) 213

[ p+Au at |s,,, =200 GeV 0-5%

[ —=— '+ Data
—— p+ﬁ Data

- = s p+P IEBE-VISHNU (no rescal
[ === n'+m IEBE-VISHNU

| === p+PIiEBE-VISHNU

p+Au

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

(a)

[ = = n*+m IEBE-VISHNU (no rescattering)

ring)

d+Au at |5, =200 GeV 0-5%

d+Au

llIllllllllllllllllllllllll

llIIII[IIIlllllllll]lllllllllllll

>
.IIIllllIlIIIIIlIIIllIIIIlIIIIII

(b ]

llll]llll|lll||llll|llll|llll|lll

*He+Au at s, = 200 GeV 0-5% (c)

SHe+Au

.
‘1I]llll|llll|IIlIIIllIIIIIlIIIl

fs
# PRC97 (2018) 064904

0.5 1 15 2 25

pT(GeV/c)

3

05 1
pT(GeV/c)

15 2 25 3

15 2 25 3
pT(GeV/c)

05 1



N 250
@ Jo = % Quark-Gluon Plasma
c o O 3
L] g _ o L :
c Ela) E 3 150|ge%e e
9 - - © -
= NG . > -
= = 2 100 Critical
o E £ . Point?
3 [3) -
. = -
50 =
- Nuclear \\\
RHIC Jet Probes 120 - Vacuum Matter \ \
LHCJet PrObes m O L ' L I L ' 1 l L L L l ' L ' l ' Ly ] L 1 L I 1 1 1 I 1 1 1

[ QGP Influech

(@]
N
(@]
(@]
N
(@]
(@]

600 800 1000 1200 1400 1600
Baryon Doping — ug (MeV)

Resolution [1/fm]

0.8

0.6

0.4

0.2

rrrprrrrrrrrrror1

1111 l 1111 I 1111 I 1111 I 111 11
e rinal Kg=aepstns %750 100 150 200 250 300 350
n

Figure 2.11: The projected sPHENIX mass separation of the three upsilon
states (in the inset) and the projected accuracy of measuring their nuclear
suppression in collisions with varying impact parameters. Three sets of
theory curves show the melting dependence on the degree of fluid perfection.
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Heavy-ion collisions and neutron star merger

November, 2018 Joachim Stroth | QNP2018 | Tsukuba, Japan
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Gravitantional wave signal can
probe the dense EOS during “ring
down” if frequencies in kHZ range
are detected.
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Current facilities for high ug physics
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Future facilities for high g physics
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Yet another potential phase of QCD
matter
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QCD Matter at Extreme Gluon Density

What happens to the gluon density in nuclei at high 10
energy? Does it saturate, giving rise to a gluonic
matter component of universal properties in all nuclei, e
even the proton? How does the nuclear environment %
affect quark and gluon distributions and interactions ) 1
inside nuclei? Do the abundant low-momentum gluons ‘6
remain confined within nucleons inside nuclei? c
)
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Bl model uncentainty Figure 2.18: The schematic QCD landscape in probe resolving power
[ parametrization uncertainty (increasing upward) vs. energy (increasing toward the right), as a functior
103 ! : ' of the atomic number of the nucleus probed. Electron collisions with heav)
104 108 1072 107! 1

x nuclei at the EIC will map the predicted saturation surface (colored surfac

FIGURE 2.8 A global fit to parton distribution functions of the proton based on deep inelastic scattering with the CGC region below that 5u7_’ﬁl€€- Spdtiﬂl distributions extracted
data obtained at the Hadron-Electron Ring Accelerator (HERA). Distribution of gluons, G, sea quarks, S, ﬁom exclusive reactions (see text) will he[p demarcate the CGC region ﬁo;
and valence up and down quarks, u, and d,, are shown as a function of Bjorken x. SOURCE: Adapted
from H. Abramowicz et al., 2015, Combination of measurements of inclusive deep inelastic €*p scattering
cross sections and QCD analysis of HERA data, Eur. Phys. J. C75:580.

the confinement regime.



Machine to study this Physics: Electron — heavy ion collider
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FIGURE 2.9 Left: Diffraction pattern in optics, showing the light intensity landing on a screen behind a
circular obstacle. Right: The expected differential cross section for coherent and incoherent diffractive
production of J/y particles on nuclei. The variable ¢ is related to the momentum carried by the virtual
photon, which is a measure of the scattering angle. The incoherent/breakup curve is explained in the text.
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Applications of Nuclear Physics

ACCELERATING
INNOVATION

How nuclear physics benefits us all

Radiation Detectors ->
Medicine, materials, climate,
security

Accelerators; gamma ray and
synchrotron sources, FELS
Radioactive elements for
medicine and industry
Nuclear Power

Isotope dating, Forensics
Radiation protection
Defense



Tools of fundamental research

Overview

Beamline ]




...that can be used for a wide variety of applications:

@\ \’:J A" lon Beam Analysis of Consumer Products

* Perfluorinated compounds (PFCs): fluorine-containing chemicals with
unique properties to make materials stain- and stick-resistant. Some PFCs
are incredibly resistant to breakdown and are turning up in unexpected

p|aCGS . 100 — Typical Spectrum: Fluorinated Dog Food Bag

 PFOAIis a likely human carcinogen. ]
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Look at PhysicsToday Article
“Medical Imaging with Antimatter”



Large Field of View Positron Emission
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Awake Animal SPECT Project

The Jefferson Lab Detector and Imaging Group in collaboration
with Oak Ridge National Laboratory (Dr. Justin Baba), Johns
Hopkins University (Dr. Martin Pomper) and the University of
Sydney (Dr. Steve Meikle) is developing an imaging methodology
that utilizes SPECT and X-ray CT for small animal research. The
primary challenging task of this project is to develop a SPECT
imaging system to allow molecular imaging of unrestrained and un-
anesthetized mice. Present methods of performing SPECT imaging
with mice require the animals to be anesthetized or physically
restrained during image acquisition. Both methods of restraint
have the potential to interfere with the physiological and
neurological processes being investigated. In the initial focus of the
project, tracking of the orientation and location of the mouse's
head during SPECT imaging is accomplished through a pair of
CMOS optical cameras that image IR retro-reflectors attached to
the mouse's head. The gamma-ray projection data is reconstructed
into a fixed small animal reference frame based on the time-
varying animal orientation data. The goal is to develop
instrumentation to acquire high-resolution volumetric SPECT
images of the head region of an unrestrained, un-anesthetized
mouse and to register these image volumes with microCT data sets
of the same mouse acquired before or after the SPECT scan. The
animal will be anesthetized during the microCT scan. Jefferson Lab
is coordinating the entire effort and is developing high spatial
resolution gamma cameras 10 cm x 20 cm in size for the SPECT
system. The system is installed in the animal research facility at
Johns Hopkins University where it is being tested with awake mice.

...and oil exploration, fluid dynamics,
material imaging, climate model
testing, nuclear reactor monitoring,
radioactive element detection, space
radiation mapping, CT, PET, ...

...ahd even NMRI!



n international team of scientists has discovered a large hidden cavity within
Egypt’s Great Pyramid of Giza, and they did it by looking for muons —
particles sent to Earth by cosmic rays from space.

The mysterious cavity, described Thursday in the journal Nature, is at least 30 meters
long. And though the researchers aren’t sure whether it’s straight or inclined, whether it’s
one large space or a series of smaller ones, the discovery has already triggered interest

among archaeologists as to the purpose of the void.

“What we are sure about is that this big void is there,” said Mehdi Tayoubi, president of
the nonprofit Heritage Innovation Preservation Institute in Paris, which led the effort.

”But we need to understand [it] better.”

...0r monitoring a ¢
(Vesuvius)...



Nuclear Science in Art and Archaeology

luminescence dating, and methods of archeometry.

Figure 1: A University of Missouri researcher characterizing an ancient
Roman artifact (photo credit Nic Brenner, University of Missouri).

Figure 2: Figurine found in Mesoamerican burial grounds and currently
housed at the University of Notre Dames Snite Museum of Art. The
figurine is mounted on the proton-induced X-ray emission (PIXE) beam
line at Notre Dames 11-MYV electrostatic accelerator to obtain quantitative
details of the pigment composition; in particular, PIXE reveals the iron and
manganese content of the paint.



Accelerators in Industry and Medicine
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...even more examples

PET scans reveal reduced brain activity in people Advances in accelerator physics have led to
with Alzheimer's disease (right) and cognitive more effective cancer-killing beams.
impairment (center).

The Cassini spacecraft gets power from plutonium, a nuclear isotope.

Techniques developed by nuclear physicists
eliminate potential pathogens in our food supply.

Developing innovative detectors s crucial to identifying ~ Nuclear pl
hazardous materials in shipping containers.

Next-generation nuclear reactors will operate with  PET scans reveal how plants respond to nsing CO,,  Archaeologists used accelerator-based studies to
increased safety and flexibility. more accurately date 12,000-year-old cave paintings.



