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Elastic cross section (p’2 = m2)
Recoil factor Form factors

F1, F2: Dirac and Pauli form factors
GE, GM: Sachs form factors (electric and magnetic)
GE(Q2) = F1(Q2) - τκF2(Q2)
GM(Q2) = F1(Q2) + κF2(Q2)

RL, RT: Longitudinal and transverse response fn

τ = Q2/4M2

κ = anomalous magnetic moment

Mott cross section

Q4/E’2



Notes on form factors

• GE, GM, F1 and F2 refer to nucleons
– F1

p(0) = 1, F2
p(0) = κp = 1.79 

– F1
n(0) = 0, F2

n(0) = κn = -1.91
– GE

p(0) = 1, GM
p(0) = 1 + κp = 2.79

– GE
n(0) = 0, GM

n(0) = κn = -1.91

• κ is the anomalous magnetic moment
• RL and RT refer to nuclei
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Fig. 1. (Color online) Parameterization of G p
E /G D (left) and G p

M/µp G D (right) from the global fit of proton cross-section and polarization data (solid curves). The red shaded 
band indicates the total uncertainty, including the fit uncertainty from the error matrix and additional systematic uncertainties described in the text and shown in Fig. 3. 
The dashed curves are the parameterizations of the total uncertainty bands (provided in the Supplemental Material). The blue circles are taken from the 2007 global analysis 
of Ref. [27] to provide a comparison to direct LT separations from a previous global analysis and to indicate the kinematic coverage of the world data. The new fit yields 
systematically larger values for G p

M up to Q 2 ≈ 1 GeV2 because the Mainz data [36], not included in the fit of [27], yields larger values of G p
M below 1 GeV2, and so increases 

the normalization of the world data relative to the fit of [27].

Fig. 2. (Color online) Parameterization of µp G p
E /G p

M from the global fit of proton 
data. The error bands are the same as in Fig. 1 and the magenta squares are the 
direct extractions from polarization measurements.

increasing the number of parameters does not reduce the num-
ber of degrees of freedom, even though it does provide additional 
flexibility for the fit. Parameterizations of the fit central values and 
uncertainties for all form factors are provided in the Supplemental 
Material [102].

Fig. 1 shows the results of the fit for G p
E and G p

M normalized to 
the dipole form factor, G D = (1 + Q 2/!2)−2 with !2 = 0.71 GeV2. 
Points from a previous global analysis [27] of direct longitudinal-
transverse (LT) separations for G p

E and G p
M are also shown for 

comparison. Fig. 2 shows the fit and uncertainties for µp G p
E/G p

M
along with the direct extractions of µp G p

E/G p
M from polarization 

measurements.

5.1. Form factors

Fig. 3 shows the uncertainties for G p
E and G p

M coming from 
the covariance matrix of the fit, the systematic contributions ac-
counting for the tension between different data sets, and the un-
certainty associated with the TPE corrections at high Q 2. Since 
the systematic contributions come from comparing two different 

fits (e.g., with and without the additional high-Q 2 TPE correc-
tion), the estimated corrections vanish whenever the two fits cross. 
Such dips are artificial, and do not indicate a real reduction in 
the uncertainties. For the TPE uncertainty, these dips occur only 
in regions where other contributions dominate the uncertainties. 
For the original data tension uncertainty (green dotted line labeled 
“ORG”), these dips yield an underestimate of the uncertainty for 
Q 2 values near 1 GeV2, and it is necessary to provide a better es-
timate of the uncertainty in this region. At high Q 2, the Mainz 
data only impact the fit through small normalization effects, and 
the green dotted line is driven by statistical fluctuations. Because 
of these issues, we replace the dotted green line by a power law 
falloff after the first maximum (at around Q 2 ≈ 0.3 GeV2). This 
fills in the artificial dips in the direct comparison of the fits, and 
avoids letting the uncertainty grow at high Q 2 due to lack of data 
to constrain the fits. The blue dotted line shows our final data ten-
sion error using the ad hoc parameterization at higher Q 2.

The black dashed line is the combination of the various sources 
of uncertainty detailed above, and the solid green line is a param-
eterization of this uncertainty, providing a simple closed form that 
provides a good approximation at all Q 2 values. The parameteriza-
tions reproduce the complete uncertainty estimates with typical 
(RMS) deviations of ∼2% except for G p

E in the Q 2 region from 
roughly 0.3–3 GeV2. In this region, the total uncertainty is dom-
inated by our ad hoc extension of the data tension uncertainty to 
higher Q 2, and as this is the least rigorous part of the uncertainty 
extraction, we allow for larger deviations (typically a factor of 2–3) 
in this region.

Fig. 4 shows the fits to Gn
E and Gn

M , along with the data points 
used in the fitting procedure. In this case, the uncertainties come 
from the error matrix of the fit and represent the full uncertain-
ties on the form factors; tensions between different data sets have 
been accounted for in selecting the data for the fit (as discussed 
earlier in Sec. 3.2). Calculations of the TPE corrections for the neu-
tron [8,94] yield smaller corrections than in the case of the proton, 
and we assume that the radiative correction uncertainties already 
applied to the data are sufficient for the kinematics of existing 
data.
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Fig. 3. (Color online) Contributions to the proton fit uncertainties. The red dot-dashed curves are the uncertainties from the fit based on the statistical and systematic 
uncertainties of the data sets. The green dotted line (“ORG”) is the original data tension error, while the blue dotted line is the final data tension error used in the analysis, 
with uncertainty constrained to fall off at high Q 2 where the Mainz data do not contribute (see text for details). The purple dashed curves are the uncertainties associated 
with the TPE corrections to the cross-section data at high-Q 2. The dashed black curves are the combinations of these three sources of uncertainty, using the data tension 
error that is cut off at high Q 2 (blue dotted line). The solid green curves are the parameterization of the uncertainties provided in the Supplemental Material.

Fig. 4. (Color online) Parameterization of Gn
E/G D (left) (left) and Gn

M/µn G D (right) from the global fit of neutron form factor data (solid curves). The red shaded band is the 
fit uncertainty from the covariance matrix, and the dashed curves are the parameterization of the uncertainty provided in the Supplemental Material. The data points are the 
Gn

E and Gn
M/µn G D values included in the fit.

5.2. Elastic ep cross sections

The extracted form factors and uncertainties depicted in
Figs. 1–4 represent the current state of knowledge for the nucleon 
electromagnetic form factors, and are the primary result of this 
work. They can be applied to a range of precision observables. For 
certain applications, including in legacy codes and in experimen-
tal comparisons, it is useful to work directly with the elastic ep
cross sections instead of the form factors. These cross sections can 
be reconstructed from our representation of G p

E and G p
M , but care 

must be taken to reapply hard TPE effects in a fashion consistent 
with the TPE correction applied to isolate the form factors stud-
ied in this work: the hadronic calculations of Refs. [46,94], plus 
the additional high-Q 2 correction of Eq. (4), taken from Ref. [27]. 
A complete reconstruction of the cross section would also account 
for correlations in the errors of G p

E and G p
M .

A practical alternative is to parameterize the cross section be-
fore subtracting the estimated TPE corrections. We use the same 
fitting procedure as in our main analysis, excluding polarization 
data and neglecting hard TPE corrections. This provides a sim-
ple parameterization of the cross section that includes both the 
Born and TPE contributions in “effective” form factors. Note that 

we have not formally justified the z expansion representation of 
the effective form factors, which now account for both one- and 
two-photon exchange processes. The effective form factor approach 
also enforces linear dependence of the reduced cross section [i.e., 
the numerator in Eq. (1)] on ε. However, the TPE corrections are 
O(α) and small, and detailed analyses of world data [132] show 
that ε nonlinearities are also very small. We do not pursue these 
questions in more detail here.

The effective form factors are not displayed here, but their cen-
tral values are included in the Supplemental Material [102]. The 
uncertainty associated with the TPE contribution in Fig. 3 should 
not be included in the effective form factor analysis since no hard 
TPE subtraction is being performed. However, this is never a dom-
inant contribution to the cross section uncertainty. The ep cross-
section uncertainty is thus well approximated in the effective form 
factor approach by using the uncertainties from the main analysis, 
as displayed in Fig. 3.

6. Summary

We have performed global fits of electron scattering data to de-
termine the nucleon electromagnetic form factors and their uncer-
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consistent results. Fits by Alberico [32] and Qattan [33,34] include 
phenomenological TPE corrections extracted from the difference 
between Rosenbluth and polarization measurements, but these ex-
tractions require assumptions about ε and Q 2 dependence, and 
the data do not provide significant constraints on the corrections 
at low Q 2. Finally, several works [27,28,35,36] only provide fits to 
proton data while others [27,33,35,37–43] do not provide uncer-
tainties. References [25] and [44] provide relatively complete anal-
yses, but the former focused on the low-Q 2 region (below 1 GeV2) 
and the latter evaluates, but does not provide, a parameterization 
of the uncertainties. Many of these form factor parameterizations 
are sufficient for specific purposes or in limited kinematic regimes, 
but the experimental progress and improved understanding of TPE 
call for a more complete analysis.

The goal of this work is to provide a parameterization of proton 
and neutron electromagnetic form factors and uncertainties using 
the complete world data set for electron scattering, and applying 
our best knowledge of the TPE corrections. Additional systematic 
errors are included to account for estimated uncertainties in TPE 
and tensions between data sets. We aim to provide a reliable pa-
rameterization covering both low-Q 2 and high-Q 2 regions, with 
sufficiently conservative errors such that it is safe to use these 
form factors as input to calculations or analyses that need to repre-
sent the present state of uncertainties. Where significant ambigu-
ities exist, e.g., in the choice of external constraints on the proton 
charge radius, separate fits can be used to estimate the sensitiv-
ity of derived observables to data selections. In forthcoming work 
we will examine illustrative applications and a range of fits mak-
ing specific assumptions about the proton radius and the choice of 
data sets [45].

2. Definitions and notation

The cross section for electron–nucleon scattering in the single-
photon exchange approximation can be expressed in terms of the 
Sachs form factors G N

E and G N
M as

(
dσ

d#

)

0
=

(
dσ

d#

)

Mott

ϵ(G N
E )2 + τ (G N

M)2

ϵ(1 + τ )
, (1)

where N = p for a proton and N = n for a neutron, (dσ /d#)Mott is 
the recoil-corrected relativistic point-particle (Mott) cross section, 
and τ , ϵ are dimensionless kinematic variables:

τ = Q 2

4m2
N

, ϵ =
[

1 + 2(1 + τ ) tan2 θ

2

]−1

, (2)

with θ the angle of the final state electron with respect to the 
incident beam direction and Q 2 = −q2 the negative of the square 
of the four-momentum transfer q to the nucleon.

Radiative corrections modify the cross section:

dσ = dσ0(1 + δ) , (3)

where dσ0 is the Born cross section in Eq. (1).1 Radiative cor-
rections were already applied to the published cross sections we 
include in this fit, but we apply additional TPE corrections and 
modify the corrections applied for some experiments, as described 
in the following section.

1 The form factors are interpreted in the renormalization scheme defined in 
Ref. [46], which is a simplification of Ref. [47]. The ep cross sections presented in 
Sec. 5.2 are interpreted using the Maximon–Tjon convention [47] for soft photon 
subtraction. The relation of these conventions to a standard minimal subtraction 
(MS) factorization scheme is given in Ref. [48].

3. Data sets and corrections

This section provides an overview of our data selections and 
applied corrections. We discuss separately the proton and neutron 
data sets.

3.1. Proton data

For the proton, we fit directly to unpolarized cross section 
data [17,36,49–75] and to G p

E/G p
M ratios extracted from polariza-

tion data [76–88]. Note that the data taken from Refs. [80,87,88]
include updated extractions of G p

E/G p
M from Refs. [89–92], and 

we use these updated extractions in our analysis. Following the 
procedures described in Refs. [24,93], we apply updated radia-
tive corrections to several of the older measurements, exclude the 
small-angle data from Ref. [72], and split up data sets [57,61,73]
taken under different conditions into two or more subsets with 
separate normalization factors.

After examining the systematic uncertainties in each of these 
experiments, we implement some adjustments to make the as-
sumptions more consistent (e.g., uncertainties associated with TPE) 
or to ensure that the uncertainties were separated into uncorre-
lated and normalization factors in a consistent fashion. In Refs. [54,
59,61] and [57] (back-angle data), the common systematic un-
certainties were included in the point-to-point systematics. We 
remove these common systematics from the point-to-point contri-
butions and apply them instead as additional contributions to the 
normalization uncertainty. To make the uncertainties applied for 
radiative corrections more consistent across experiments, we in-
crease the normalization uncertainty in Refs. [67,68] from ∼0.5% to 
1.5% and add 0.5% in quadrature to the point-to-point uncertainty 
to account for the use of older radiative correction procedures 
and the neglect of uncertainty associated with TPE corrections. We 
add a 1% point-to-point uncertainty to the data from Ref. [64] to 
be more consistent in estimating the uncertainties from radiative 
corrections. In Ref. [75], uncertainties were separated into nor-
malization, point-to-point, and “slope” uncertainties, i.e., correlated 
systematics that varied linearly with ε, to maximize sensitivity to 
deviations from a linear ε dependence. To make this data set con-
sistent with other world data, we replace the slope uncertainty 
with an additional point-to-point systematic (0.32%, 0.28%, and 
0.22% for Q 2 = 2.64, 3.2, and 4.1 GeV2, respectively), such that 
the total uncertainty on µp G p

E/G p
M matches the original extraction 

including both point-to-point and slope uncertainties.
For the new data from the A1 collaboration [36], we use the 

rebinned data with additional systematic uncertainties as provided 
in the Supplemental Material of Ref. [46]. In addition, because 
Ref. [36] also quotes correlated systematic uncertainties modeled 
as cross-section corrections that vary linearly with the scattering 
angle, we use the procedure described in Ref. [46] and take the 
coefficients of the θ -dependent corrections as additional fit pa-
rameters (similar to the normalization uncertainties applied to the 
different data subsets), so that the full uncertainties from all data 
sets are included in the fit.2

For all cross-section measurements, TPE corrections are applied 
as described in Ref. [46] using the “SIFF Blunden” calculation fol-
lowing the prescription of Ref. [94].3 The uncertainties included 

2 The procedure is described in Section VI.C.3 of Ref. [46] and is represented by 
the line “Alternate approach” in Table XIV.

3 As discussed in Refs. [46,48], the hard TPE corrections depend on the scheme 
used to apply radiative corrections to the data, typically based on either Refs. [95] or 
[47]. These small differences, as well as differences in hadronic vacuum polarization 
corrections and in higher-order radiative corrections, are absorbed into the radiative 
correction uncertainty budget.
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consistent results. Fits by Alberico [32] and Qattan [33,34] include 
phenomenological TPE corrections extracted from the difference 
between Rosenbluth and polarization measurements, but these ex-
tractions require assumptions about ε and Q 2 dependence, and 
the data do not provide significant constraints on the corrections 
at low Q 2. Finally, several works [27,28,35,36] only provide fits to 
proton data while others [27,33,35,37–43] do not provide uncer-
tainties. References [25] and [44] provide relatively complete anal-
yses, but the former focused on the low-Q 2 region (below 1 GeV2) 
and the latter evaluates, but does not provide, a parameterization 
of the uncertainties. Many of these form factor parameterizations 
are sufficient for specific purposes or in limited kinematic regimes, 
but the experimental progress and improved understanding of TPE 
call for a more complete analysis.

The goal of this work is to provide a parameterization of proton 
and neutron electromagnetic form factors and uncertainties using 
the complete world data set for electron scattering, and applying 
our best knowledge of the TPE corrections. Additional systematic 
errors are included to account for estimated uncertainties in TPE 
and tensions between data sets. We aim to provide a reliable pa-
rameterization covering both low-Q 2 and high-Q 2 regions, with 
sufficiently conservative errors such that it is safe to use these 
form factors as input to calculations or analyses that need to repre-
sent the present state of uncertainties. Where significant ambigu-
ities exist, e.g., in the choice of external constraints on the proton 
charge radius, separate fits can be used to estimate the sensitiv-
ity of derived observables to data selections. In forthcoming work 
we will examine illustrative applications and a range of fits mak-
ing specific assumptions about the proton radius and the choice of 
data sets [45].

2. Definitions and notation

The cross section for electron–nucleon scattering in the single-
photon exchange approximation can be expressed in terms of the 
Sachs form factors G N
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with θ the angle of the final state electron with respect to the 
incident beam direction and Q 2 = −q2 the negative of the square 
of the four-momentum transfer q to the nucleon.

Radiative corrections modify the cross section:

dσ = dσ0(1 + δ) , (3)

where dσ0 is the Born cross section in Eq. (1).1 Radiative cor-
rections were already applied to the published cross sections we 
include in this fit, but we apply additional TPE corrections and 
modify the corrections applied for some experiments, as described 
in the following section.

1 The form factors are interpreted in the renormalization scheme defined in 
Ref. [46], which is a simplification of Ref. [47]. The ep cross sections presented in 
Sec. 5.2 are interpreted using the Maximon–Tjon convention [47] for soft photon 
subtraction. The relation of these conventions to a standard minimal subtraction 
(MS) factorization scheme is given in Ref. [48].

3. Data sets and corrections

This section provides an overview of our data selections and 
applied corrections. We discuss separately the proton and neutron 
data sets.

3.1. Proton data

For the proton, we fit directly to unpolarized cross section 
data [17,36,49–75] and to G p

E/G p
M ratios extracted from polariza-

tion data [76–88]. Note that the data taken from Refs. [80,87,88]
include updated extractions of G p

E/G p
M from Refs. [89–92], and 

we use these updated extractions in our analysis. Following the 
procedures described in Refs. [24,93], we apply updated radia-
tive corrections to several of the older measurements, exclude the 
small-angle data from Ref. [72], and split up data sets [57,61,73]
taken under different conditions into two or more subsets with 
separate normalization factors.

After examining the systematic uncertainties in each of these 
experiments, we implement some adjustments to make the as-
sumptions more consistent (e.g., uncertainties associated with TPE) 
or to ensure that the uncertainties were separated into uncorre-
lated and normalization factors in a consistent fashion. In Refs. [54,
59,61] and [57] (back-angle data), the common systematic un-
certainties were included in the point-to-point systematics. We 
remove these common systematics from the point-to-point contri-
butions and apply them instead as additional contributions to the 
normalization uncertainty. To make the uncertainties applied for 
radiative corrections more consistent across experiments, we in-
crease the normalization uncertainty in Refs. [67,68] from ∼0.5% to 
1.5% and add 0.5% in quadrature to the point-to-point uncertainty 
to account for the use of older radiative correction procedures 
and the neglect of uncertainty associated with TPE corrections. We 
add a 1% point-to-point uncertainty to the data from Ref. [64] to 
be more consistent in estimating the uncertainties from radiative 
corrections. In Ref. [75], uncertainties were separated into nor-
malization, point-to-point, and “slope” uncertainties, i.e., correlated 
systematics that varied linearly with ε, to maximize sensitivity to 
deviations from a linear ε dependence. To make this data set con-
sistent with other world data, we replace the slope uncertainty 
with an additional point-to-point systematic (0.32%, 0.28%, and 
0.22% for Q 2 = 2.64, 3.2, and 4.1 GeV2, respectively), such that 
the total uncertainty on µp G p

E/G p
M matches the original extraction 

including both point-to-point and slope uncertainties.
For the new data from the A1 collaboration [36], we use the 

rebinned data with additional systematic uncertainties as provided 
in the Supplemental Material of Ref. [46]. In addition, because 
Ref. [36] also quotes correlated systematic uncertainties modeled 
as cross-section corrections that vary linearly with the scattering 
angle, we use the procedure described in Ref. [46] and take the 
coefficients of the θ -dependent corrections as additional fit pa-
rameters (similar to the normalization uncertainties applied to the 
different data subsets), so that the full uncertainties from all data 
sets are included in the fit.2

For all cross-section measurements, TPE corrections are applied 
as described in Ref. [46] using the “SIFF Blunden” calculation fol-
lowing the prescription of Ref. [94].3 The uncertainties included 

2 The procedure is described in Section VI.C.3 of Ref. [46] and is represented by 
the line “Alternate approach” in Table XIV.

3 As discussed in Refs. [46,48], the hard TPE corrections depend on the scheme 
used to apply radiative corrections to the data, typically based on either Refs. [95] or 
[47]. These small differences, as well as differences in hadronic vacuum polarization 
corrections and in higher-order radiative corrections, are absorbed into the radiative 
correction uncertainty budget.
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consistent results. Fits by Alberico [32] and Qattan [33,34] include 
phenomenological TPE corrections extracted from the difference 
between Rosenbluth and polarization measurements, but these ex-
tractions require assumptions about ε and Q 2 dependence, and 
the data do not provide significant constraints on the corrections 
at low Q 2. Finally, several works [27,28,35,36] only provide fits to 
proton data while others [27,33,35,37–43] do not provide uncer-
tainties. References [25] and [44] provide relatively complete anal-
yses, but the former focused on the low-Q 2 region (below 1 GeV2) 
and the latter evaluates, but does not provide, a parameterization 
of the uncertainties. Many of these form factor parameterizations 
are sufficient for specific purposes or in limited kinematic regimes, 
but the experimental progress and improved understanding of TPE 
call for a more complete analysis.

The goal of this work is to provide a parameterization of proton 
and neutron electromagnetic form factors and uncertainties using 
the complete world data set for electron scattering, and applying 
our best knowledge of the TPE corrections. Additional systematic 
errors are included to account for estimated uncertainties in TPE 
and tensions between data sets. We aim to provide a reliable pa-
rameterization covering both low-Q 2 and high-Q 2 regions, with 
sufficiently conservative errors such that it is safe to use these 
form factors as input to calculations or analyses that need to repre-
sent the present state of uncertainties. Where significant ambigu-
ities exist, e.g., in the choice of external constraints on the proton 
charge radius, separate fits can be used to estimate the sensitiv-
ity of derived observables to data selections. In forthcoming work 
we will examine illustrative applications and a range of fits mak-
ing specific assumptions about the proton radius and the choice of 
data sets [45].
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with θ the angle of the final state electron with respect to the 
incident beam direction and Q 2 = −q2 the negative of the square 
of the four-momentum transfer q to the nucleon.

Radiative corrections modify the cross section:

dσ = dσ0(1 + δ) , (3)

where dσ0 is the Born cross section in Eq. (1).1 Radiative cor-
rections were already applied to the published cross sections we 
include in this fit, but we apply additional TPE corrections and 
modify the corrections applied for some experiments, as described 
in the following section.
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Ref. [46], which is a simplification of Ref. [47]. The ep cross sections presented in 
Sec. 5.2 are interpreted using the Maximon–Tjon convention [47] for soft photon 
subtraction. The relation of these conventions to a standard minimal subtraction 
(MS) factorization scheme is given in Ref. [48].
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data [17,36,49–75] and to G p
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M ratios extracted from polariza-

tion data [76–88]. Note that the data taken from Refs. [80,87,88]
include updated extractions of G p

E/G p
M from Refs. [89–92], and 

we use these updated extractions in our analysis. Following the 
procedures described in Refs. [24,93], we apply updated radia-
tive corrections to several of the older measurements, exclude the 
small-angle data from Ref. [72], and split up data sets [57,61,73]
taken under different conditions into two or more subsets with 
separate normalization factors.

After examining the systematic uncertainties in each of these 
experiments, we implement some adjustments to make the as-
sumptions more consistent (e.g., uncertainties associated with TPE) 
or to ensure that the uncertainties were separated into uncorre-
lated and normalization factors in a consistent fashion. In Refs. [54,
59,61] and [57] (back-angle data), the common systematic un-
certainties were included in the point-to-point systematics. We 
remove these common systematics from the point-to-point contri-
butions and apply them instead as additional contributions to the 
normalization uncertainty. To make the uncertainties applied for 
radiative corrections more consistent across experiments, we in-
crease the normalization uncertainty in Refs. [67,68] from ∼0.5% to 
1.5% and add 0.5% in quadrature to the point-to-point uncertainty 
to account for the use of older radiative correction procedures 
and the neglect of uncertainty associated with TPE corrections. We 
add a 1% point-to-point uncertainty to the data from Ref. [64] to 
be more consistent in estimating the uncertainties from radiative 
corrections. In Ref. [75], uncertainties were separated into nor-
malization, point-to-point, and “slope” uncertainties, i.e., correlated 
systematics that varied linearly with ε, to maximize sensitivity to 
deviations from a linear ε dependence. To make this data set con-
sistent with other world data, we replace the slope uncertainty 
with an additional point-to-point systematic (0.32%, 0.28%, and 
0.22% for Q 2 = 2.64, 3.2, and 4.1 GeV2, respectively), such that 
the total uncertainty on µp G p

E/G p
M matches the original extraction 

including both point-to-point and slope uncertainties.
For the new data from the A1 collaboration [36], we use the 

rebinned data with additional systematic uncertainties as provided 
in the Supplemental Material of Ref. [46]. In addition, because 
Ref. [36] also quotes correlated systematic uncertainties modeled 
as cross-section corrections that vary linearly with the scattering 
angle, we use the procedure described in Ref. [46] and take the 
coefficients of the θ -dependent corrections as additional fit pa-
rameters (similar to the normalization uncertainties applied to the 
different data subsets), so that the full uncertainties from all data 
sets are included in the fit.2

For all cross-section measurements, TPE corrections are applied 
as described in Ref. [46] using the “SIFF Blunden” calculation fol-
lowing the prescription of Ref. [94].3 The uncertainties included 

2 The procedure is described in Section VI.C.3 of Ref. [46] and is represented by 
the line “Alternate approach” in Table XIV.

3 As discussed in Refs. [46,48], the hard TPE corrections depend on the scheme 
used to apply radiative corrections to the data, typically based on either Refs. [95] or 
[47]. These small differences, as well as differences in hadronic vacuum polarization 
corrections and in higher-order radiative corrections, are absorbed into the radiative 
correction uncertainty budget.
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consistent results. Fits by Alberico [32] and Qattan [33,34] include 
phenomenological TPE corrections extracted from the difference 
between Rosenbluth and polarization measurements, but these ex-
tractions require assumptions about ε and Q 2 dependence, and 
the data do not provide significant constraints on the corrections 
at low Q 2. Finally, several works [27,28,35,36] only provide fits to 
proton data while others [27,33,35,37–43] do not provide uncer-
tainties. References [25] and [44] provide relatively complete anal-
yses, but the former focused on the low-Q 2 region (below 1 GeV2) 
and the latter evaluates, but does not provide, a parameterization 
of the uncertainties. Many of these form factor parameterizations 
are sufficient for specific purposes or in limited kinematic regimes, 
but the experimental progress and improved understanding of TPE 
call for a more complete analysis.

The goal of this work is to provide a parameterization of proton 
and neutron electromagnetic form factors and uncertainties using 
the complete world data set for electron scattering, and applying 
our best knowledge of the TPE corrections. Additional systematic 
errors are included to account for estimated uncertainties in TPE 
and tensions between data sets. We aim to provide a reliable pa-
rameterization covering both low-Q 2 and high-Q 2 regions, with 
sufficiently conservative errors such that it is safe to use these 
form factors as input to calculations or analyses that need to repre-
sent the present state of uncertainties. Where significant ambigu-
ities exist, e.g., in the choice of external constraints on the proton 
charge radius, separate fits can be used to estimate the sensitiv-
ity of derived observables to data selections. In forthcoming work 
we will examine illustrative applications and a range of fits mak-
ing specific assumptions about the proton radius and the choice of 
data sets [45].

2. Definitions and notation

The cross section for electron–nucleon scattering in the single-
photon exchange approximation can be expressed in terms of the 
Sachs form factors G N

E and G N
M as

(
dσ

d#

)
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=
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ϵ(G N
E )2 + τ (G N
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where N = p for a proton and N = n for a neutron, (dσ /d#)Mott is 
the recoil-corrected relativistic point-particle (Mott) cross section, 
and τ , ϵ are dimensionless kinematic variables:

τ = Q 2

4m2
N

, ϵ =
[

1 + 2(1 + τ ) tan2 θ

2

]−1
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with θ the angle of the final state electron with respect to the 
incident beam direction and Q 2 = −q2 the negative of the square 
of the four-momentum transfer q to the nucleon.

Radiative corrections modify the cross section:

dσ = dσ0(1 + δ) , (3)

where dσ0 is the Born cross section in Eq. (1).1 Radiative cor-
rections were already applied to the published cross sections we 
include in this fit, but we apply additional TPE corrections and 
modify the corrections applied for some experiments, as described 
in the following section.

1 The form factors are interpreted in the renormalization scheme defined in 
Ref. [46], which is a simplification of Ref. [47]. The ep cross sections presented in 
Sec. 5.2 are interpreted using the Maximon–Tjon convention [47] for soft photon 
subtraction. The relation of these conventions to a standard minimal subtraction 
(MS) factorization scheme is given in Ref. [48].

3. Data sets and corrections

This section provides an overview of our data selections and 
applied corrections. We discuss separately the proton and neutron 
data sets.

3.1. Proton data

For the proton, we fit directly to unpolarized cross section 
data [17,36,49–75] and to G p

E/G p
M ratios extracted from polariza-

tion data [76–88]. Note that the data taken from Refs. [80,87,88]
include updated extractions of G p

E/G p
M from Refs. [89–92], and 

we use these updated extractions in our analysis. Following the 
procedures described in Refs. [24,93], we apply updated radia-
tive corrections to several of the older measurements, exclude the 
small-angle data from Ref. [72], and split up data sets [57,61,73]
taken under different conditions into two or more subsets with 
separate normalization factors.

After examining the systematic uncertainties in each of these 
experiments, we implement some adjustments to make the as-
sumptions more consistent (e.g., uncertainties associated with TPE) 
or to ensure that the uncertainties were separated into uncorre-
lated and normalization factors in a consistent fashion. In Refs. [54,
59,61] and [57] (back-angle data), the common systematic un-
certainties were included in the point-to-point systematics. We 
remove these common systematics from the point-to-point contri-
butions and apply them instead as additional contributions to the 
normalization uncertainty. To make the uncertainties applied for 
radiative corrections more consistent across experiments, we in-
crease the normalization uncertainty in Refs. [67,68] from ∼0.5% to 
1.5% and add 0.5% in quadrature to the point-to-point uncertainty 
to account for the use of older radiative correction procedures 
and the neglect of uncertainty associated with TPE corrections. We 
add a 1% point-to-point uncertainty to the data from Ref. [64] to 
be more consistent in estimating the uncertainties from radiative 
corrections. In Ref. [75], uncertainties were separated into nor-
malization, point-to-point, and “slope” uncertainties, i.e., correlated 
systematics that varied linearly with ε, to maximize sensitivity to 
deviations from a linear ε dependence. To make this data set con-
sistent with other world data, we replace the slope uncertainty 
with an additional point-to-point systematic (0.32%, 0.28%, and 
0.22% for Q 2 = 2.64, 3.2, and 4.1 GeV2, respectively), such that 
the total uncertainty on µp G p

E/G p
M matches the original extraction 

including both point-to-point and slope uncertainties.
For the new data from the A1 collaboration [36], we use the 

rebinned data with additional systematic uncertainties as provided 
in the Supplemental Material of Ref. [46]. In addition, because 
Ref. [36] also quotes correlated systematic uncertainties modeled 
as cross-section corrections that vary linearly with the scattering 
angle, we use the procedure described in Ref. [46] and take the 
coefficients of the θ -dependent corrections as additional fit pa-
rameters (similar to the normalization uncertainties applied to the 
different data subsets), so that the full uncertainties from all data 
sets are included in the fit.2

For all cross-section measurements, TPE corrections are applied 
as described in Ref. [46] using the “SIFF Blunden” calculation fol-
lowing the prescription of Ref. [94].3 The uncertainties included 

2 The procedure is described in Section VI.C.3 of Ref. [46] and is represented by 
the line “Alternate approach” in Table XIV.

3 As discussed in Refs. [46,48], the hard TPE corrections depend on the scheme 
used to apply radiative corrections to the data, typically based on either Refs. [95] or 
[47]. These small differences, as well as differences in hadronic vacuum polarization 
corrections and in higher-order radiative corrections, are absorbed into the radiative 
correction uncertainty budget.
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consistent results. Fits by Alberico [32] and Qattan [33,34] include 
phenomenological TPE corrections extracted from the difference 
between Rosenbluth and polarization measurements, but these ex-
tractions require assumptions about ε and Q 2 dependence, and 
the data do not provide significant constraints on the corrections 
at low Q 2. Finally, several works [27,28,35,36] only provide fits to 
proton data while others [27,33,35,37–43] do not provide uncer-
tainties. References [25] and [44] provide relatively complete anal-
yses, but the former focused on the low-Q 2 region (below 1 GeV2) 
and the latter evaluates, but does not provide, a parameterization 
of the uncertainties. Many of these form factor parameterizations 
are sufficient for specific purposes or in limited kinematic regimes, 
but the experimental progress and improved understanding of TPE 
call for a more complete analysis.

The goal of this work is to provide a parameterization of proton 
and neutron electromagnetic form factors and uncertainties using 
the complete world data set for electron scattering, and applying 
our best knowledge of the TPE corrections. Additional systematic 
errors are included to account for estimated uncertainties in TPE 
and tensions between data sets. We aim to provide a reliable pa-
rameterization covering both low-Q 2 and high-Q 2 regions, with 
sufficiently conservative errors such that it is safe to use these 
form factors as input to calculations or analyses that need to repre-
sent the present state of uncertainties. Where significant ambigu-
ities exist, e.g., in the choice of external constraints on the proton 
charge radius, separate fits can be used to estimate the sensitiv-
ity of derived observables to data selections. In forthcoming work 
we will examine illustrative applications and a range of fits mak-
ing specific assumptions about the proton radius and the choice of 
data sets [45].

2. Definitions and notation

The cross section for electron–nucleon scattering in the single-
photon exchange approximation can be expressed in terms of the 
Sachs form factors G N

E and G N
M as

(
dσ

d#

)

0
=

(
dσ

d#

)

Mott

ϵ(G N
E )2 + τ (G N

M)2

ϵ(1 + τ )
, (1)
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the recoil-corrected relativistic point-particle (Mott) cross section, 
and τ , ϵ are dimensionless kinematic variables:
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with θ the angle of the final state electron with respect to the 
incident beam direction and Q 2 = −q2 the negative of the square 
of the four-momentum transfer q to the nucleon.

Radiative corrections modify the cross section:

dσ = dσ0(1 + δ) , (3)

where dσ0 is the Born cross section in Eq. (1).1 Radiative cor-
rections were already applied to the published cross sections we 
include in this fit, but we apply additional TPE corrections and 
modify the corrections applied for some experiments, as described 
in the following section.

1 The form factors are interpreted in the renormalization scheme defined in 
Ref. [46], which is a simplification of Ref. [47]. The ep cross sections presented in 
Sec. 5.2 are interpreted using the Maximon–Tjon convention [47] for soft photon 
subtraction. The relation of these conventions to a standard minimal subtraction 
(MS) factorization scheme is given in Ref. [48].

3. Data sets and corrections

This section provides an overview of our data selections and 
applied corrections. We discuss separately the proton and neutron 
data sets.

3.1. Proton data

For the proton, we fit directly to unpolarized cross section 
data [17,36,49–75] and to G p

E/G p
M ratios extracted from polariza-

tion data [76–88]. Note that the data taken from Refs. [80,87,88]
include updated extractions of G p

E/G p
M from Refs. [89–92], and 

we use these updated extractions in our analysis. Following the 
procedures described in Refs. [24,93], we apply updated radia-
tive corrections to several of the older measurements, exclude the 
small-angle data from Ref. [72], and split up data sets [57,61,73]
taken under different conditions into two or more subsets with 
separate normalization factors.

After examining the systematic uncertainties in each of these 
experiments, we implement some adjustments to make the as-
sumptions more consistent (e.g., uncertainties associated with TPE) 
or to ensure that the uncertainties were separated into uncorre-
lated and normalization factors in a consistent fashion. In Refs. [54,
59,61] and [57] (back-angle data), the common systematic un-
certainties were included in the point-to-point systematics. We 
remove these common systematics from the point-to-point contri-
butions and apply them instead as additional contributions to the 
normalization uncertainty. To make the uncertainties applied for 
radiative corrections more consistent across experiments, we in-
crease the normalization uncertainty in Refs. [67,68] from ∼0.5% to 
1.5% and add 0.5% in quadrature to the point-to-point uncertainty 
to account for the use of older radiative correction procedures 
and the neglect of uncertainty associated with TPE corrections. We 
add a 1% point-to-point uncertainty to the data from Ref. [64] to 
be more consistent in estimating the uncertainties from radiative 
corrections. In Ref. [75], uncertainties were separated into nor-
malization, point-to-point, and “slope” uncertainties, i.e., correlated 
systematics that varied linearly with ε, to maximize sensitivity to 
deviations from a linear ε dependence. To make this data set con-
sistent with other world data, we replace the slope uncertainty 
with an additional point-to-point systematic (0.32%, 0.28%, and 
0.22% for Q 2 = 2.64, 3.2, and 4.1 GeV2, respectively), such that 
the total uncertainty on µp G p

E/G p
M matches the original extraction 

including both point-to-point and slope uncertainties.
For the new data from the A1 collaboration [36], we use the 

rebinned data with additional systematic uncertainties as provided 
in the Supplemental Material of Ref. [46]. In addition, because 
Ref. [36] also quotes correlated systematic uncertainties modeled 
as cross-section corrections that vary linearly with the scattering 
angle, we use the procedure described in Ref. [46] and take the 
coefficients of the θ -dependent corrections as additional fit pa-
rameters (similar to the normalization uncertainties applied to the 
different data subsets), so that the full uncertainties from all data 
sets are included in the fit.2

For all cross-section measurements, TPE corrections are applied 
as described in Ref. [46] using the “SIFF Blunden” calculation fol-
lowing the prescription of Ref. [94].3 The uncertainties included 

2 The procedure is described in Section VI.C.3 of Ref. [46] and is represented by 
the line “Alternate approach” in Table XIV.

3 As discussed in Refs. [46,48], the hard TPE corrections depend on the scheme 
used to apply radiative corrections to the data, typically based on either Refs. [95] or 
[47]. These small differences, as well as differences in hadronic vacuum polarization 
corrections and in higher-order radiative corrections, are absorbed into the radiative 
correction uncertainty budget.
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consistent results. Fits by Alberico [32] and Qattan [33,34] include 
phenomenological TPE corrections extracted from the difference 
between Rosenbluth and polarization measurements, but these ex-
tractions require assumptions about ε and Q 2 dependence, and 
the data do not provide significant constraints on the corrections 
at low Q 2. Finally, several works [27,28,35,36] only provide fits to 
proton data while others [27,33,35,37–43] do not provide uncer-
tainties. References [25] and [44] provide relatively complete anal-
yses, but the former focused on the low-Q 2 region (below 1 GeV2) 
and the latter evaluates, but does not provide, a parameterization 
of the uncertainties. Many of these form factor parameterizations 
are sufficient for specific purposes or in limited kinematic regimes, 
but the experimental progress and improved understanding of TPE 
call for a more complete analysis.

The goal of this work is to provide a parameterization of proton 
and neutron electromagnetic form factors and uncertainties using 
the complete world data set for electron scattering, and applying 
our best knowledge of the TPE corrections. Additional systematic 
errors are included to account for estimated uncertainties in TPE 
and tensions between data sets. We aim to provide a reliable pa-
rameterization covering both low-Q 2 and high-Q 2 regions, with 
sufficiently conservative errors such that it is safe to use these 
form factors as input to calculations or analyses that need to repre-
sent the present state of uncertainties. Where significant ambigu-
ities exist, e.g., in the choice of external constraints on the proton 
charge radius, separate fits can be used to estimate the sensitiv-
ity of derived observables to data selections. In forthcoming work 
we will examine illustrative applications and a range of fits mak-
ing specific assumptions about the proton radius and the choice of 
data sets [45].

2. Definitions and notation

The cross section for electron–nucleon scattering in the single-
photon exchange approximation can be expressed in terms of the 
Sachs form factors G N
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and τ , ϵ are dimensionless kinematic variables:

τ = Q 2

4m2
N

, ϵ =
[

1 + 2(1 + τ ) tan2 θ

2

]−1

, (2)

with θ the angle of the final state electron with respect to the 
incident beam direction and Q 2 = −q2 the negative of the square 
of the four-momentum transfer q to the nucleon.

Radiative corrections modify the cross section:

dσ = dσ0(1 + δ) , (3)

where dσ0 is the Born cross section in Eq. (1).1 Radiative cor-
rections were already applied to the published cross sections we 
include in this fit, but we apply additional TPE corrections and 
modify the corrections applied for some experiments, as described 
in the following section.

1 The form factors are interpreted in the renormalization scheme defined in 
Ref. [46], which is a simplification of Ref. [47]. The ep cross sections presented in 
Sec. 5.2 are interpreted using the Maximon–Tjon convention [47] for soft photon 
subtraction. The relation of these conventions to a standard minimal subtraction 
(MS) factorization scheme is given in Ref. [48].

3. Data sets and corrections

This section provides an overview of our data selections and 
applied corrections. We discuss separately the proton and neutron 
data sets.

3.1. Proton data

For the proton, we fit directly to unpolarized cross section 
data [17,36,49–75] and to G p

E/G p
M ratios extracted from polariza-

tion data [76–88]. Note that the data taken from Refs. [80,87,88]
include updated extractions of G p

E/G p
M from Refs. [89–92], and 

we use these updated extractions in our analysis. Following the 
procedures described in Refs. [24,93], we apply updated radia-
tive corrections to several of the older measurements, exclude the 
small-angle data from Ref. [72], and split up data sets [57,61,73]
taken under different conditions into two or more subsets with 
separate normalization factors.

After examining the systematic uncertainties in each of these 
experiments, we implement some adjustments to make the as-
sumptions more consistent (e.g., uncertainties associated with TPE) 
or to ensure that the uncertainties were separated into uncorre-
lated and normalization factors in a consistent fashion. In Refs. [54,
59,61] and [57] (back-angle data), the common systematic un-
certainties were included in the point-to-point systematics. We 
remove these common systematics from the point-to-point contri-
butions and apply them instead as additional contributions to the 
normalization uncertainty. To make the uncertainties applied for 
radiative corrections more consistent across experiments, we in-
crease the normalization uncertainty in Refs. [67,68] from ∼0.5% to 
1.5% and add 0.5% in quadrature to the point-to-point uncertainty 
to account for the use of older radiative correction procedures 
and the neglect of uncertainty associated with TPE corrections. We 
add a 1% point-to-point uncertainty to the data from Ref. [64] to 
be more consistent in estimating the uncertainties from radiative 
corrections. In Ref. [75], uncertainties were separated into nor-
malization, point-to-point, and “slope” uncertainties, i.e., correlated 
systematics that varied linearly with ε, to maximize sensitivity to 
deviations from a linear ε dependence. To make this data set con-
sistent with other world data, we replace the slope uncertainty 
with an additional point-to-point systematic (0.32%, 0.28%, and 
0.22% for Q 2 = 2.64, 3.2, and 4.1 GeV2, respectively), such that 
the total uncertainty on µp G p

E/G p
M matches the original extraction 

including both point-to-point and slope uncertainties.
For the new data from the A1 collaboration [36], we use the 

rebinned data with additional systematic uncertainties as provided 
in the Supplemental Material of Ref. [46]. In addition, because 
Ref. [36] also quotes correlated systematic uncertainties modeled 
as cross-section corrections that vary linearly with the scattering 
angle, we use the procedure described in Ref. [46] and take the 
coefficients of the θ -dependent corrections as additional fit pa-
rameters (similar to the normalization uncertainties applied to the 
different data subsets), so that the full uncertainties from all data 
sets are included in the fit.2

For all cross-section measurements, TPE corrections are applied 
as described in Ref. [46] using the “SIFF Blunden” calculation fol-
lowing the prescription of Ref. [94].3 The uncertainties included 

2 The procedure is described in Section VI.C.3 of Ref. [46] and is represented by 
the line “Alternate approach” in Table XIV.

3 As discussed in Refs. [46,48], the hard TPE corrections depend on the scheme 
used to apply radiative corrections to the data, typically based on either Refs. [95] or 
[47]. These small differences, as well as differences in hadronic vacuum polarization 
corrections and in higher-order radiative corrections, are absorbed into the radiative 
correction uncertainty budget.
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GMp results (June 2018)

 Significant improvement in precision for Q2 > 6. 
 Systematic uncertainties on Fall 2016 data  ~1.6-2.0% (pt-pt), 1.5% (norm)

→ Expected to complete all kinematics and reduce uncertainties to final values by the end of summer 2018 

spring16

do not understand the composition of the spin of the nucleon. With polarized DIS results suggesting that
only 20-30% of the spin of the nucleon is due to the spin of the quarks, it is certainly possible that some of
the remaining spin is due to quark OAM. The fraction of the nucleon spin due to quark OAM is sometimes
designated as �Lq. While recent observations of the dynamical importance of quark OAM do not yet yield
definite values for �Lq, they may be suggesting that this quantity is quite substantial.

In Fig. 1 we show existing data for Gp

E
/Gp

M
, the projected errors for GEp(5), and the results of several

theoretical calculations 1. The figure makes it clear that the only way to achieve clarity in discriminat-
ing between theoretical explanations of the Gp

E
/Gp

M
data is to measure the proton form factor ratio with

considerable precision to high values of Q2.
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Figure 1: Shown are existing data for the ratio Gp

E
/Gp

M
together with the projected errors of GEp(5). Included

are the published results of GEp(1) [26] and GEp(2) [27], preliminary results from GEp(3) [2], and the
projected results of GEp(5) during a 60-day run. The various theoretical curves are discussed in the text.

For example, three of the predictions shown, the relativistic constituent quark model (RCQM, Miller
2002) [22], the DSE/Faddeev calculation [14], and the refined pQCD calculation (F2/F1 / ln

2
(Q

2
/⇤

2
)/Q

2) [23],
all predict Gp

E
/Gp

M
to cross zero somewhere in the neighborhood of Q2⇡ 7 GeV

2. At the same time, the two
vector-meson dominance (VMD) models show Gp

E
/Gp

M
approaching zero much more gradually [24, 25].

GEp(1) and GEp(2) agree reasonably well with all of these predictions. In contrast, the preliminary GEp(3)
data appear to favor the VMD models. A definitive resolution to this issue has profound physical implica-
tions, and cannot occur without high-precision data at high Q

2. We note in passing that the new (near-final)
results from GEn(1) tend to favor the DSE/Fadeev and RCQM calculations over the VMD models. Indeed,
it appears that form-factor measurements are at the cusp of obtaining crisp answers to the host of questions
that were first opened by the work of Jones et al. in Ref. [1].

There are, of course, many additional motivations for measuring the ground-state proton form factors
that are not illustrated in Fig. 1. For instance, the ground-state elastic form factors provide stringent model-
independent constraints on Generalized Parton Distributions, GPDs. Thus, if we want to know the GPDs
over a wide kinematic range, we need to study the elastic form factors over a similar range. We note
that GPDs provide a powerful opportunity to determine quark angular momentum in a model-independent
fashion. Also, the elastic form factors also provide a powerful check of lattice QCD. As mentioned above, ab

1The projected points of the GEp(4) experiment are not shown because they will be re-formulated later as explained in the letter
placed in an appendix to this document.
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FIG. 1. Comparison of Rosenbluth extractions (solid red
squares) from the global analysis of Ref. [28] and polarization ex-
tractions [14–16] (hollow black squares) of µpGE p/GM p at the time
experiment E01-001 ran.

perpendicular to the proton momentum. In the Born approxi-
mation, the ratio GE p/GM p can be extracted from the ratio of
Pt and Pl :

GE p

GM p
= −Pt

Pl

(E + E ′)
2Mp

tan
(

θe

2

)
. (7)

In the JLab recoil polarization measurements [14–26], a fo-
cal plane polarimeter [26,27] is used to measure both the
transverse and longitudinal polarization components Pt and
Pl , yielding an extraction of GE p/GM p that is independent
of beam polarization and analyzing power. Because the po-
larization measurements are only sensitive to the ratio, these
measurements can be combined with cross-section data to
allow for a precise extraction of both GE p and GM p, even for
kinematics where the cross section is dominated by one of the
form factors.

Figure 1 shows a comparison of a global Rosenbluth
[28] extraction and world polarization [14–16] extractions
of µpGE p/GM p, based on data available in 2002. The
Rosenbluth results are consistent with form factor scaling, but
the polarization results decrease approximately linearly with
increasing Q2, and deviate significantly from the Rosenbluth
data for Q2 > 1 GeV2.

The data from recoil polarization measurements are more
precise at high Q2 and should be less sensitive to system-
atic uncertainties than the Rosenbluth data [7,29,30]. This,
combined with the scatter between different Rosenbluth sep-
arations, led people to believe that there were experimental
issues with the previous Rosenbluth extractions. A detailed
examination [31] suggested that the Rosenbluth data were
consistent and that only a large, common systematic effect
could resolve the discrepancy. Because the polarization mea-
surements yield only the ratio GE p/GM p, it was important to
understand the nature of any error in the cross-section data to
properly combine the results from the two techniques to sep-
arate GE p and GM p. More importantly, assuming a significant
error in the cross-section measurements would have signifi-
cant consequences for a large number of other experiments
[28], which normalize their results to elastic e-p scattering or
require the use of the elastic cross sections [32] or form factors

[33] as input to the analysis. Thus, identifying the source of
the inconsistency is important because it will help us to under-
stand whether there is an error in our cross-section extraction
procedures and how this might impact a range of precision
measurements.

C. Possible sources of the discrepancy and early two-photon
exchange calculations

It was noted that the discrepancy between the
Rosenbluth and polarization data could be resolved if there
were a common systematic error in the cross-section measure-
ments yielding a 5%–8% ε-dependent correction [28,31,34].
Several attempts were made to understand the nature of the
discrepancy, with many focusing on the potential impact of
missing two-photon exchange (TPE) contributions.

Guichon and Vanderhaeghen [34] expressed the hadronic
vertex function in terms of three independent complex ampli-
tudes or generalized form factors that depend on both Q2 and
ε. The reduced cross section σR and the recoil-polarization
observables were expressed in terms of these generalized form
factors, with TPE contributions assumed to yield corrections
at the few-percent level. For the polarization observables, this
translates into few-percent corrections to the extracted values
of µpGE p/GM p. Rosenbluth separations are much more sensi-
tive to small corrections to the cross section, in particular if
they modify the small ε dependence coming from GE p. For
Q2 ! 3 GeV2, the cross-section contribution from GE p is at
most a few percent, and even small TPE corrections could
yield a comparable contribution.

A low-energy hadronic model which accounts for the pro-
ton intermediate state but neglects excited intermediate states
was proposed in Ref. [35]. In this model, TPE corrections
from elastic contributions (box and crossed-box diagrams)
were included. Their results showed a ≈2% ε dependence
with small nonlinearities at small ε and insignificant Q2 de-
pendence.

If TPE corrections are responsible for the discrepancy, then
they must increase the ε dependence of σR, yielding an appar-
ent increase in GE p. They may also modify the extrapolation
of σR to ε = 0, modifying the extracted value of GM p. From
symmetry constraints [7], we know that the TPE contribution
must vanish at ε = 1, and thus any ε-dependent TPE cor-
rection is likely to modify GM p as well as GE p. Therefore,
it is crucial to know the ε dependence of the TPE correc-
tion, in particular any nonlinearity as ε → 0, to accurately
extract GM p.

We have focused so far on the understanding of the form
factor discrepancy and TPE corrections in the mid-2000s,
at the time that Jefferson Lab (JLab) experiment E01-001
made improved Rosenbluth measurements to confirm the
discrepancy and to constrain TPE contributions. Since then,
significant theoretical and experimental studies have been car-
ried out in order to understand the impact of TPE corrections
on electron-proton scattering observables, as summarized in
Secs. VIII B 1 and IX. In addition, there are extensive reviews
of the role of the TPE effect in electron scattering [7,29,
36–38] and on their impact on the extraction of the form
factors and other observables [7,28,36,39–51].
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FIG. 18. Linear fit to σR vs ε for Q2 = 2.64 (top), 3.20 (middle),
and 4.20 GeV2 (bottom). The uncertainties shown are the combined
statistical and random systematic uncertainties. The dashed black
line is the fit to the E01-001 data, and the solid blue line is the slope
from a fit to earlier polarization measurements [10].

polarization measurements and provide an improved quantita-
tive measure of this discrepancy. This supports the hypothesis
that the discrepancy is not simply an experimental error in the
Rosenbluth measurements or technique, as our measurement
has different and significantly smaller experimental system-
atics as well as very different radiative corrections. This is
consistent with the hypothesis that TPE corrections explain
the discrepancy, as TPE corrections modify the e-p cross
section without modifying the kinematics, and so yield iden-
tical corrections for electron-detection and proton-detection
measurements.

FIG. 19. Extractions of µpGE p/GM p from Rosenbluth separa-
tions [10,28,98] (solid red squares) and polarization measurements
[15,17–19,21,23,25,26,99] (hollow black squares) at large Q2 com-
pared to the updated E01-001 extraction (solid blue circles).

The following sections examine the size of TPE contribu-
tions needed to resolve this discrepancy, assuming that TPE
explains the entire discrepancy, use the data to set limits on
the component of TPE that is nonlinear in ε, and examine the
consistency of electron and proton detection measurements
as a test of the conventional radiative correction procedures
applied.

B. Two-photon exchange (TPE) and possible sources
for the discrepancy

The results of the E01-001 experiment confirmed the
discrepancy between the Rosenbluth separations and recoil
polarization results and provided a much improved precision
in the comparison of the two techniques. Important questions
to address are why the two techniques disagree, and which
form factors are correct? As mentioned previously, the signif-
icantly reduced ε-dependent corrections of this measurement
allow us to rule out several possible experimental errors as
the source of the discrepancy. We find that our high precision
super-Rosenbluth extractions are consistent with conventional
electron detection measurements, and an earlier reanalysis of
form factor data [31] confirmed that previous Rosenbluth sep-
arations were consistent when excluding results that combined
data from multiple experiments. That reanalysis, combined
with the results from E01-001, strongly argues against the
hypothesis that the discrepancy is associated with one or two
bad data sets or incorrect normalization factors in the com-
bined Rosenbluth analyses. Similarly, the recoil polarization
measurements have small systematic uncertainties, and dif-
ferent measurements taken under different conditions yield
consistent results. This suggests that the explanation for the
discrepancy is most likely a common correction, such as TPE
contributions.

If TPE contributions are small (of order α), then they would
be expected to impact the observables at the few percent level.
This would have a small impact on the polarization extractions
of GE p/GM p, as well as a small impact on the extraction
of GM p from cross-section measurements. But a few percent
correction with a linear ε dependence could modify the slope
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target, GE(Q2) = GM (Q2) ⌘ z. In the case of a finite size target, the electric
form factor GE(Q2) converges to z for Q2

! 0, since the wavelength of the ex-
changed photon becomes too large to resolve the inner structure of the target.
However, GM (Q2) does not necessarily have the same limit; if the target has
an anomalous magnetic moment (µ 6= µN ), GM (Q2) converges towards µ/µN
instead. The complete elastic cross section for targets with internal structure
becomes

��

�⌦
=

4↵2(h̄c)2E02cos2 ✓
2

Q4

E0

E

✓
G2
E(Q2) + ⌧G2

M (Q2)
1 + ⌧

+ 2⌧ tan2 ✓

2
G2
M (Q2)

◆
,

(9)
where ⌧ = ⌫2/Q2.

As an example, both the magnetic and electric form factor of the proton
have been found to follow approximately a so-called dipole form: GE(Q2) =
GM (Q2)/(µ/µN ) = (1 + Q2/0.71 GeV2)�2 which can be interpreted as the
Fourier transform of an exponentially falling charge distribution.

In the following, we want to discuss how the cross section Eq. 9 changes
in the case of inelastic scattering. For this purpose, it is useful to introduce
some more kinematic variables. Of great importance is the invariant mass of
the unobserved final state (the sum of all energies of the target fragments in
their center-of-mass system), W . Since in the target rest system, the final
state has four momentum P 0µ = (M + ⌫,q), we can calculate W 2 = P 0µP 0

µ =
M2+2M⌫+⌫2

�q2 = M2+2M⌫�Q2. In the case of elastic scattering, we must
have W 2 = M2 and therefore 2M⌫ = Q2, or x ⌘ 1 where x ⌘ xBj = Q2/2M⌫.
If we transfer more energy to the target, we can excite higher mass resonant
states, with W = Mres. At even higher energy transfer (deep inelastic region),
we can create a continuous spectrum of multi-particle final states. In these
cases, the cross section becomes a function of ✓ and E0. Figure 1 shows an
example for the cross section for electron scattering o↵ protons. The marks
indicate the positions of some well-known nucleon resonances, some of which
can be clearly seen as peaks in the cross section (these correspond to the �+,
S11 and D13, and F15 resonances discussed in Section 1.)

Clearly, we have to replace the form factors in Eq. 9 with functions of both
Q2 and ⌫ to describe the inelastic cross section. Specifically, the expression
G2
E(Q2)+⌧G2

M (Q2)
1+⌧ is replaced by the structure function W2(Q2, ⌫) and ⌧G2

M (Q2)
is replaced by a second structure function, W1(Q2, ⌫). From this substitution,
it is clear that W1(Q2, ⌫) parameterizes the transverse part of the electro-
magnetic transition matrix element |Mfi|

2, now taken between the target ini-
tial ground state i and an unbound (continuum) final state f . The structure
function W2, on the other hand, contains both transverse and longitudinal
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Figure 1: Cross section d�/d⌦dE0 in nb/sr/GeV for electron-proton scattering at 9.71 GeV
electron energy and 7 degree scattering angle. The large peak below W 2 = 1 GeV2 is the
elastic peak, which is smeared out due to resolution and radiative e↵ects included in this
calculation.

(“charge”) transition matrix elements. Alternatively, one often introduces a
longitudinal structure function WL(Q2, ⌫) in analogy with GE(Q2), so that
W2(Q2, ⌫) = WL(Q2,⌫)+W1(Q

2,⌫)
1+⌧ . The ratio R = WL(Q2, ⌫)/W1(Q2, ⌫) indi-

cates the relative importance of longitudinal and transverse transition strength.
Using these newly defined structure functions, one can write the inelastic

inclusive cross section as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(W2(Q2, ⌫) + 2 tan2(✓/2)W1(Q2, ⌫)), (10)

where we have replaced the kinematic bin �⌦�E0 with the kinematic bin
�Q2�⌫ = (EE0/⇡)�⌦�E0. Using our alternative set of structure functions,
Eq. 10 can also be written (after some lengthy but elementary algebra) as
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�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

W1(Q2, ⌫)
✏(1 + ⌧)

(1 + ✏R(Q2, ⌫)), (11)

with ✏ = (1 + 2(1 + ⌧)tan2(✓/2))�1.
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call the probability to find a quark with momentum fraction x q(x), we can
incorporate this probability function in Eq. 8 to get the partial cross section
for deep inelastic scattering:

�� =
4⇡z2

q↵
2(h̄c)2E0cos2(✓/2)

Q4E
(q(x)�x+ 2⌫2/Q2tan2(✓/2)q(x)�x)�Q2.

(12)
We can use the relation �x = �Q2/(2M⌫2)�⌫ = �x�⌫/⌫ to rewrite this as
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Q4E

(
x
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z2
qq(x) +

1
M
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qq(x)). (13)

Finally, we have to include contributions from all di↵erent quark flavors
f , each with its own probability distribution f(x) and charge zf . If we define
new structure functions F1(x) = 1

2

P
f z

2
ff(x) and F2(x) = x

P
f z

2
ff(x), we

can write down the final form for the deep inelastic cross section as
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�Q2�⌫
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Q4E
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1
⌫
F2(x) + 2 tan2(✓/2)

1
M

F1(x)). (14)

Comparison with Eq. 10 immediately shows that F1(x) = MW1(Q2, ⌫) and
F2(x) = ⌫W2(Q2, ⌫). This means that in this kinematic region, the structure
functions become functions of one variable alone (x), while the dependence on
Q2 vanishes — they “scale”. Furthermore, we expect the relationship F2(x) =
2xF1(x) to hold, which follows directly from our expressions for F1 and F2

above in terms of the quark distribution functions f(x).

4 Unpolarized Structure Functions F1 and F2

From our result in the previous section, it is clear that one can learn a lot
about the internal (quark-) structure of the nucleon by studying the structure
functions F1 and F2. The value of F1(x) at a given x can be directly interpreted
as (one–half of) the likelihood of finding a quark with longitudinal momentum
fraction x, summed over all quark flavors weighted with the corresponding
quark charges squared. While this interpretation is, strictly speaking, frame
dependent (the way we introduced it, it refers to the Breit frame), one can
see that in the limit Q2

! 1 but x fixed the Breit frame coincides with the
infinite momentum frame (IMF) in which the third component of the nucleon
momentum, P 3

Breit = �M⌫/Q = �Q/2x, approaches infinity, P 3
! �1. In

this (scaling) limit, x measures the momentum fraction of the quarks in the
IMF, which is independent of the other kinematic variables of the reaction.
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= W2/Q2 +1

Only “mildly” dependent on Q2

Note: Q2 = 2EE’(1-cosq) => DQ2 = 2EE’sinqDq, DW = 2π sinqDq = π/EE’ DQ2 => Ds/DQ2 = π/EE’ Ds/DW  
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FIG. 30. Inclusive electron scattering cross sections determined from CLAS12 RG-A data. The statistical uncertainties on the CLAS12
data are shown but they are smaller than the data point size for the majority of the data points. The bin-by-bin systematic uncertainty is shown
by the filled area at the bottom of each plot.

contributions. The second resonance region maximum is cre-
ated by the N (1440)1/2+, N (1520)3/2−, and N (1535)1/2−.
The third resonance region maximum comprises several nu-
cleon excited states as shown in Fig. 32, with the biggest
contribution from the new N ′(1720)3/2+ baryon state that
was discovered from the combined studies of π+π− p photo-
and electroproduction data measured in the experiments of
6-GeV era with CLAS [68]. The resonant cross sections show
a pronounced evolution with Q2 in the first, second, and third
resonance regions, although they show a stronger Q2 fall-off
in the third resonance regions compared to the second. This
suggests that the different excited nucleon states display dis-
tinctively different structural features in the Q2 evolution of

FIG. 31. Inclusive electron scattering cross sections from
CLAS12 data at a beam energy of 10.6 GeV as a function of W
for selected bins in Q2 as shown. The blue points represent the
computed resonant contributions from the experimental results on the
resonance electrocouplings from the studies of πN , ηN , and π+π− p
electroproduction off protons with CLAS [26,27]. The shaded areas
at the bottom of each plot show the systematic uncertainties for the
evaluation of the resonant contributions.

their electrocouplings. This underscores the necessary efforts
on the extraction of the N∗ electrocouplings of all prominent
resonances for Q2 > 4 GeV2 from the upcoming data from
CLAS12, bridging the efforts between analyses in the N∗ and
deep inelastic physics regimes [69,70].

Combined studies of the experimental results on the inclu-
sive cross sections and the evaluated resonant contributions
open new opportunities for gaining insight into the portion
of the inclusive cross sections that is defined by the PDFs
in the ground state of the nucleon. Methods to access this
component of the inclusive cross sections are currently under
development. The measured (e, e′X ) cross sections, together
with the evaluated resonant contributions, provide the critical
experimental input needed to extend our knowledge of PDFs
at larger x values within the resonance excitation region.

Our data on the inclusive p(e, e′)X cross section allow for
extraction of the inclusive F2 structure function in any given
bin of Q2 within the coverage over W from the pion threshold
up to 2.5 GeV. Consequently, the truncated moments of the
F2 structure function can be obtained by direct integration of
the data at each given Q2. The information on the evolution
of the truncated F2 structure function moments within the
resonance region over the broad range of Q2 covered in our
measurements will allow us for the first time to explore the
evolution of the partonic structure of the ground state of the
nucleon for large values of x within the resonance excitation
region in the range of distances where the transition from
strongly coupled to perturbative QCD regimes is expected
[25,69,71].

IX. SUMMARY AND CONCLUSIONS

In this paper we present results from the first absolute
cross-section measurements with the new large-acceptance
CLAS12 spectrometer in Hall B at Jefferson Lab. Inclusive
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