Rutherford (classical)

$$\left(\frac{d\sigma}{d\Omega}\right)_{R} = \frac{\alpha^{2}}{4E^{2}\sin^{4}(\theta/2)}$$

$$m_{fi} = e j_{\mu} \left(-\frac{q^{\mu}q_{\mu}}{q^{\mu}q_{\mu}} \right) z j_{\mu}$$
 $Q = -1$

Based on
$$\Box^2 A_{\mu} = j_{\mu} \Rightarrow A_{\mu} = (\frac{1}{12})^2 j_{\mu}$$

and
$$H_{int} = A_{\nu}j^{\nu} = V_g - A_{ij}$$

$$\Rightarrow \Delta \sigma = \frac{4z^2 \alpha^2 (hc)^2 (1-\beta^2 \sin^2 \frac{\theta}{2}) (1+2\frac{\gamma^2}{Q^2} + an^2 \frac{\theta}{2})}{Q^2}.$$

$$\int d^3\vec{k}' \, \delta(\vec{E} - \vec{E}_{el}) \left(= \vec{E}' \cdot \Delta \Omega \right)$$

Magnetic interaction House to election spin

*) due to farget spin

Form Factors

Elastic (ross section - final form $\Delta G = \frac{4z^2\alpha^2 (hc)^2}{Q^4} \cos^2 \frac{Q}{2} \left[\frac{G_E^2 + T G_M^2}{1 + T} + 2T \tan^2 \frac{Q}{2} G_M^2 \right]$ $\cdot E^{(2)} \Delta \Omega E \quad \text{Longitudinal Transverse (magnetic)}$ $T = \frac{y^2}{Q^2}, G_E(Q^2), G_M(Q^2):$ Form Factors

Dirac Particle: GE=GM= 1 (count.)

Anomalous magnetic moment : Gmac(+1)GE

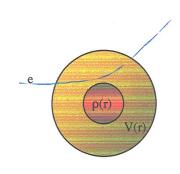
Extended Charge distribution:

C Dipole Form). p: a2 = 0.71 GeV2

Elastic Scattering - Feynman diagram Rutherford (classical) Based on [An = jn = An = (ig) jn

Form Factors

Low-medium energy: Distribution of charge and magnetism inside the hadron



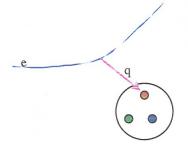
$$\vec{\nabla}^{2}V(\mathbf{r}) = -4\pi\rho(\mathbf{r}) \implies$$

$$q^{2}V \propto \int e^{i\mathbf{q}\mathbf{r}}\rho(\mathbf{r})d^{3}\mathbf{r} = F(q)$$

$$\mathcal{H} \approx -eV \propto \frac{F(q)}{q^{2}}$$

$$\frac{d\sigma}{d\Omega} \propto \left| \langle f | \mathcal{H} | i \rangle \right|^{2} \propto \frac{F^{2}(q)}{q^{4}}$$

High energy: "Stability" of internal structure against hard "blows"



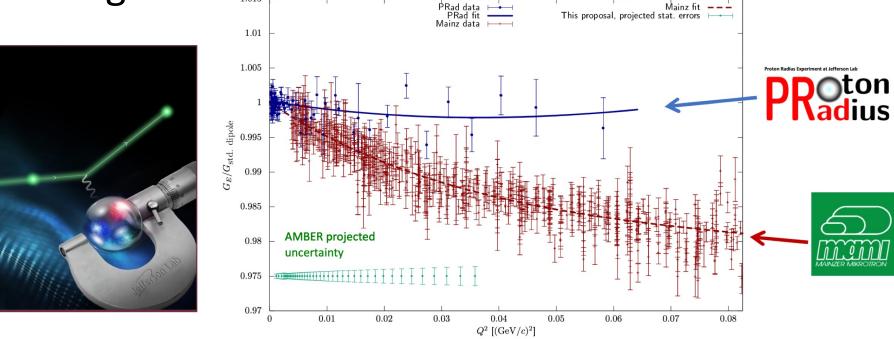
Can the hadron absorb a high momentum virtual photon without breaking apart?

Proton Puzzle 1:

Different ways of measuring proton radius

disagree

1.015



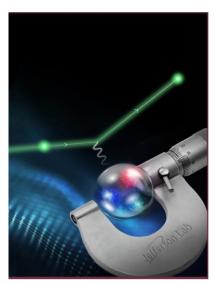
Proton Radius Measurements

 Possible Explanation? Maybe people made mistaken assumptions in the past?

Proton Puzzle 1:

Different ways of measuring proton radius

disagree



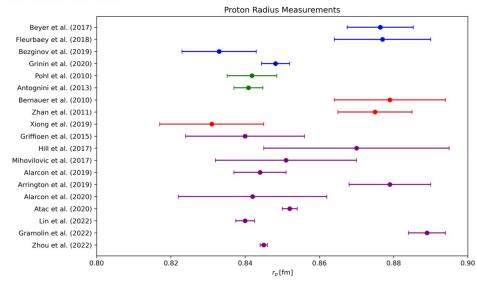


Figure 8: Proton radius measurements categorized by technique. The blue points represent results from Hydrogen Spectroscopy, the green points are from μ -Hydrogen Spectroscopy, the red points are from Ep Scattering, and the purple points are from Reanalysis of data.

 Possible Explanation? Maybe people made mistaken assumptions in the past?

Elastic cross section ($p'^2 = m^2$)

Recoil factor

Form factors

$$\frac{d\sigma}{d\Omega} = \sigma_{M} \frac{E'}{E} \left\{ \left[F_{1}^{2}(Q^{2}) + \frac{Q^{2}}{4M^{2}} \kappa^{2} F_{2}^{2}(Q^{2}) \right] + \frac{Q^{2}}{2M^{2}} [F_{1}(Q^{2}) + \kappa F_{2}(Q^{2})]^{2} \tan^{2} \frac{\theta}{2} \right\}$$

$$= \sigma_{M} \frac{E'}{E} \left[\frac{G_{E}^{2}(Q^{2}) + \tau G_{M}^{2}(Q^{2})}{1 + \tau} + 2\tau \tan^{2} \frac{\theta}{2} G_{M}^{2}(Q^{2}) \right]$$

$$= \sigma_{M} \frac{E'}{E} \left[\frac{Q^{4}}{\vec{q}^{4}} R_{L}(Q^{2}) + \left(\frac{Q^{2}}{2\vec{q}^{2}} + \tan^{2} \frac{\theta}{2} \right) R_{T}(Q^{2}) \right]$$

Mott cross section

$$\sigma_{M} = \frac{\alpha^{2} \cos^{2}\left(\frac{\theta_{e}}{2}\right)}{4E^{2} \sin^{4}\left(\frac{\theta_{e}}{2}\right)} Q^{4}/E^{2}$$

 F_1, F_2 : Dirac and Pauli form factors

 G_E , G_M : Sachs form factors (electric and magnetic)

$$G_{\rm E}(Q^2)=F_1(Q^2) - \tau \kappa F_2(Q^2) \qquad \qquad \tau=Q^2/4M^2 \\ G_{\rm M}(Q^2)=F_1(Q^2) + \kappa F_2(Q^2) \qquad \qquad \kappa = \text{anomalous magnetic moment}$$

 $R_{\rm L}$, $R_{\rm T}$: Longitudinal and transverse response fn

Notes on form factors

G_E, G_M, F₁ and F₂ refer to nucleons

$$-F_1^{p}(0) = 1, F_2^{p}(0) = \kappa_p = 1.79$$

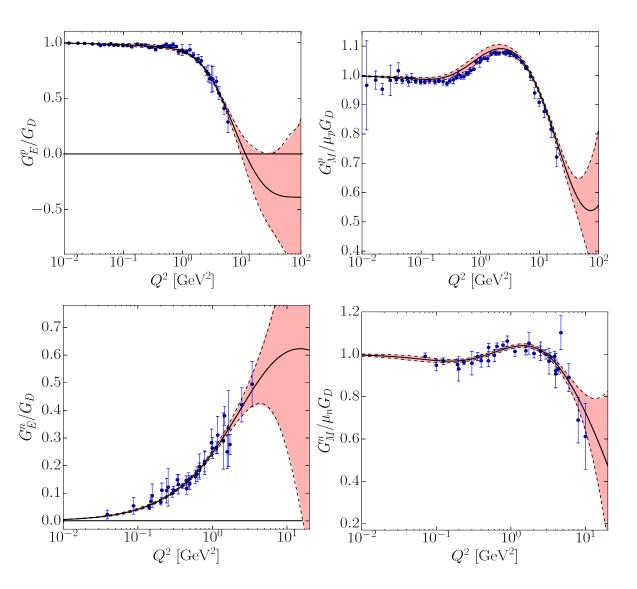
$$-F_1^{n}(0) = 0, F_2^{n}(0) = \kappa_n = -1.91$$

$$-G_E^{p}(0) = 1, G_M^{p}(0) = 1 + \kappa_p = 2.79$$

$$-G_F^{n}(0) = 0, G_M^{n}(0) = \kappa_n = -1.91$$

- κ is the anomalous magnetic moment
- R_L and R_T refer to nuclei

Electromagnetic Form Factors

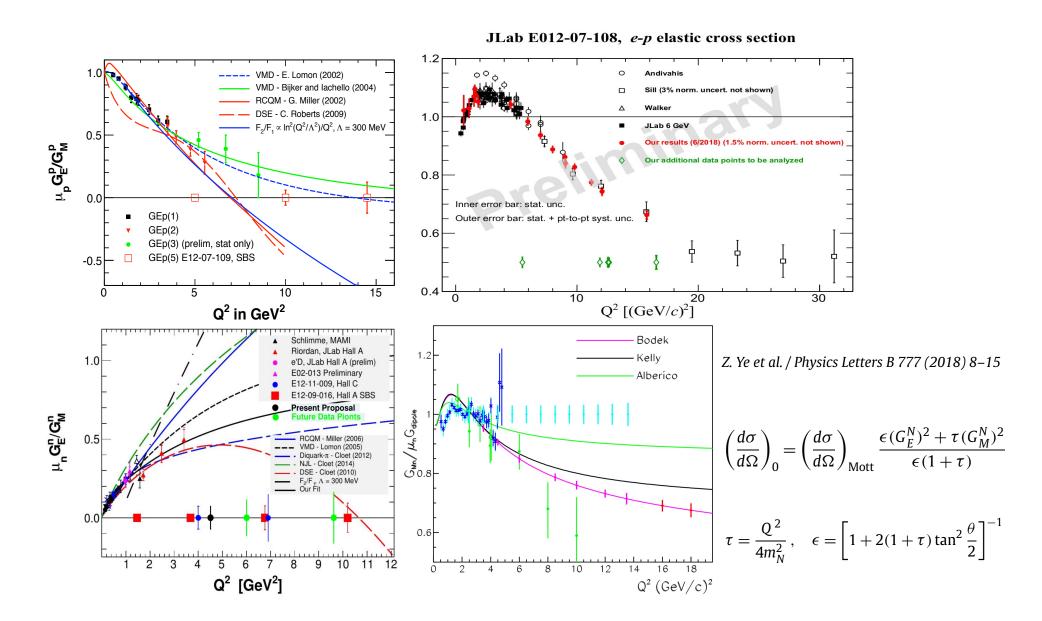


Z. Ye et al. / Physics Letters B 777 (2018) 8–15

$$\left(\frac{d\sigma}{d\Omega}\right)_{0} = \left(\frac{d\sigma}{d\Omega}\right)_{\text{Mott}} \frac{\epsilon (G_{E}^{N})^{2} + \tau (G_{M}^{N})^{2}}{\epsilon (1+\tau)}$$

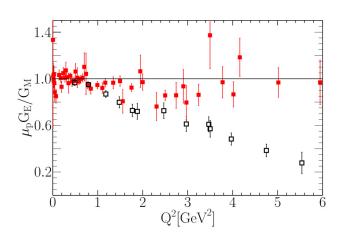
$$\tau = \frac{Q^2}{4m_N^2}, \quad \epsilon = \left[1 + 2(1+\tau)\tan^2\frac{\theta}{2}\right]^{-1}$$

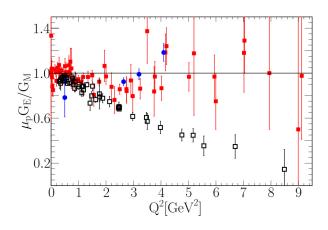
Electromagnetic Form Factors



Proton Puzzle 2:

Different ways of measuring G_E disagree

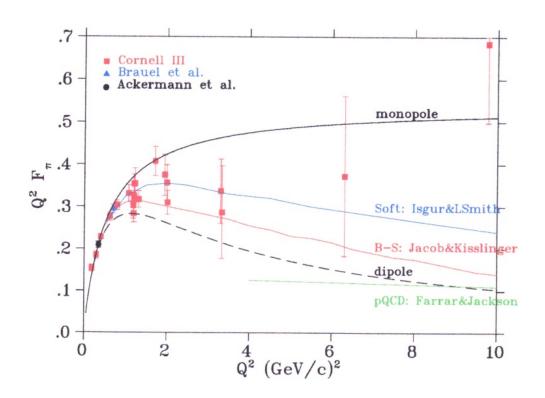




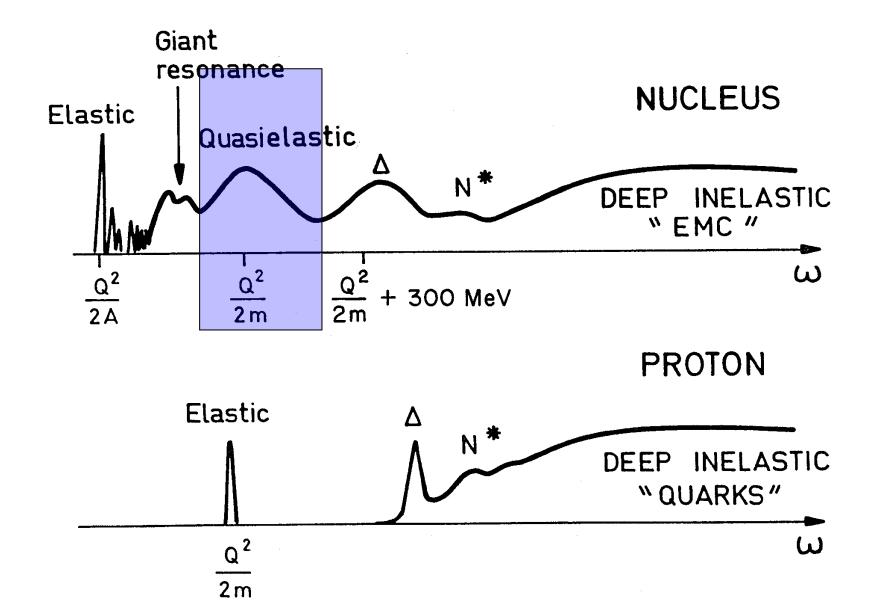
Possible Explanation: 2-photon exchange

Elastic Form Factors of Hadrons

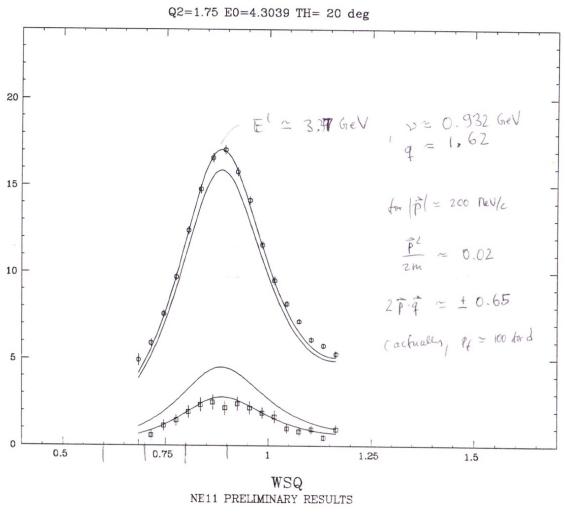
• Example: Pion



II. Quasielastic scattering



Quasi-elastic Scattering off Nuclei



-> scattering of single nucleons bound in the nucleus; momentum distribution, energy of residual system

Quasi-elastic Scattering off Nuclei with coincindent detection of proton

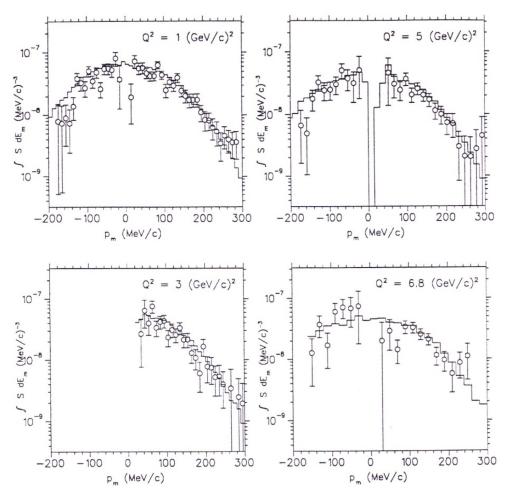


Figure 5-12: Extracted $\rho(p_m)$ for the 1s shell of ¹²C. The spectral function has been integrated over $30 < E_m < 80$ MeV. The solid line represents the result of the PWIA calculation, normalized to the measured transparency; the data points are shown with statistical errors only.

-> momentum and energy distribution of bound proton; "Spectroscopic Factor"

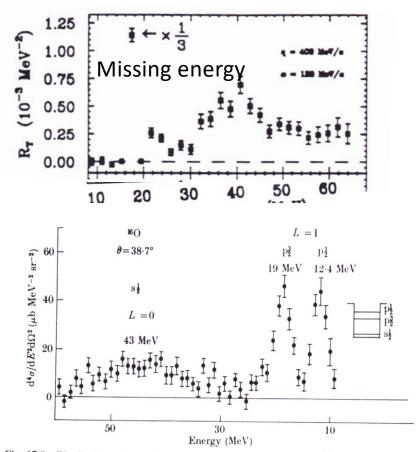
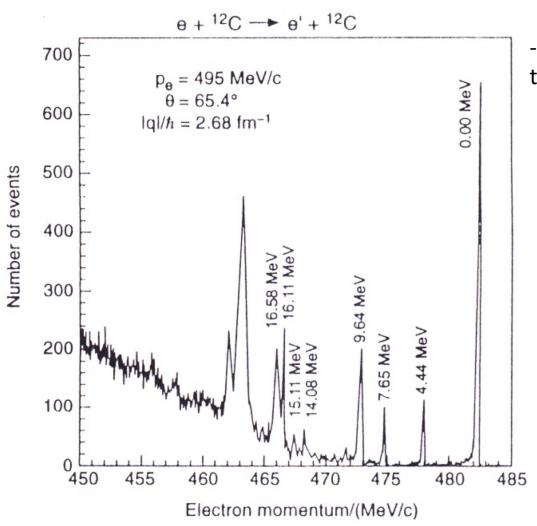


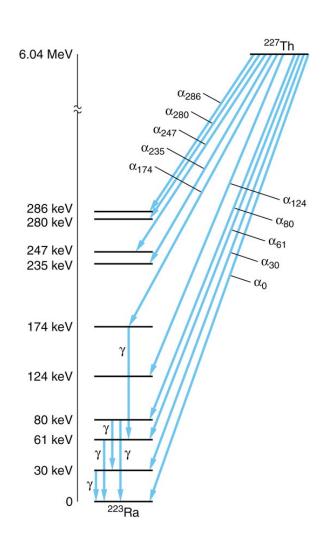
Fig. 17.8 Distribution of energies required to remove a proton from ¹⁶O by the (p,2p) reaction, showing the single-particle states (Tyrén *et al.* 1958).

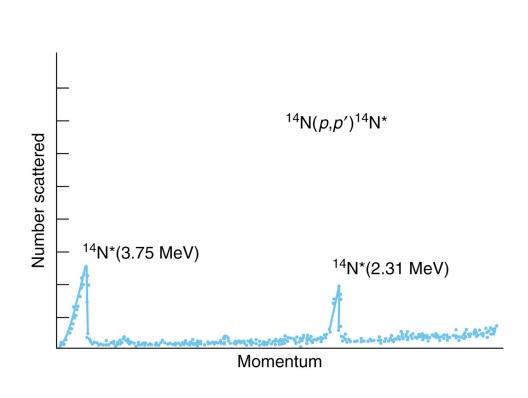
Inelastic Scattering off Nuclei



-> Excited states of nuclei, transition matrix elements

Evidence for excited states





Elastic scattering

$$\frac{\Delta\sigma}{\Delta\Omega} = \frac{4\alpha^2(\hbar c)^2 E'^2 \cos^2\frac{\theta}{2}}{Q^4} \frac{E'}{E} \left(\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau \tan^2\frac{\theta}{2} G_M^2(Q^2) \right)_{Q^2}$$

where $\tau = \nu^2/Q^2$.

Inelastic Scattering

Note: $Q^2 = 2EE'(1-\cos\theta) \Rightarrow \Delta Q^2 = 2EE'\sin\theta\Delta\theta$, $\Delta\Omega = 2\pi\sin\theta\Delta\theta = \pi/EE'\Delta Q^2 \Rightarrow \Delta\sigma/\Delta Q^2 = \pi/EE'\Delta\sigma/\Delta\Omega$

$$x = \frac{p}{P}$$

W: γ^* -p invariant mass

$$\frac{\Delta\sigma}{\Delta Q^2 \Delta \nu} = \frac{4\pi\alpha^2 (\hbar c)^2 E' \cos^2(\theta/2)}{Q^4 E} (W_2(Q^2, \nu) + 2 \tan^2(\theta/2) W_1(Q^2, \nu))$$

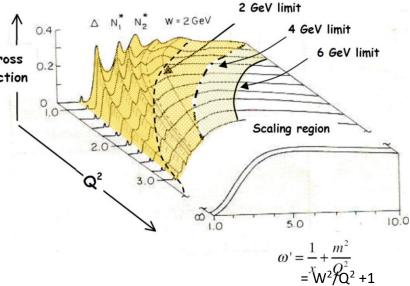
$$\frac{\Delta\sigma}{\Delta Q^2\Delta\nu} = \frac{4\pi\alpha^2(\hbar c)^2E'cos^2(\theta/2)}{Q^4E} \frac{W_1(Q^2,\nu)}{\epsilon(1+\tau)} (1+\epsilon R(Q^2,\nu)) \ \ \frac{\text{Cross}}{\text{section}} \ \ \frac{Q^2}{Q^2} \left(\frac{1}{2} + \frac{1}{2} +$$

with
$$\epsilon = (1 + 2(1 + \tau)tan^2(\theta/2))^{-1}$$

$$\frac{\Delta \sigma}{\Delta Q^2 \Delta \nu} = \frac{4\pi \alpha^2 (\hbar c)^2 E' cos^2(\theta/2)}{Q^4 E} (\frac{1}{\nu} F_2(x) + 2 \tan^2(\theta/2) \frac{1}{M} F_1(x))$$

$$F_1(x) = MW_1(Q^2, \nu)$$
 $F_2(x) = \nu W_2(Q^2, \nu)$

Only "mildly" dependent on Q²



Picture from F. Gross, «Making the case for Jefferson Lab» The first decade of Science at Jefferson Lab JoP, Conf. Series 299 (2011) 012001

Inelastic Cross Section - What's differen Phase space factor $d^3k' = k'^2 d\Omega_k, dk'$ (& -function drops since E' can have any value k'd Ωdk' = E'2π sinθdθ dE' =-2E12dws& rdE' $= \frac{\pi E}{E} \left(-2EE' d\omega \theta \right) dE'$ +dQ2 ldy/ since y=E-E' Replace GE+TGM with W2 (Q, V) *) and t Gm with W, (Q2, V) => $\Delta \sigma = \frac{4\pi \alpha^2 (\pi c)^2 E' \omega^2 g_2 \left[W_2 + 2 \tan^2 \frac{Q}{2} W_1 \right] \Delta Q^2 \Delta \nu$ *) => W. (Q?) = GE+TGH. S(N-Yel) W, et (0, v) = T Gm. S(v-vel)

Elastic Cross section - final form $\Delta G = \frac{4z^2\alpha^2 (hc)^2}{Q^4} \cos^2 \frac{Q}{2} \left[\frac{G_E^2 + E G_M^2}{I + E} + 2E \tan^2 \frac{Q}{2} G_M^2 \right]$ $\cdot E^{(2)} \Delta \Omega E \qquad \text{Longitudinal (magnetic)}$ $C = \frac{y^2}{Q^2}, G_E(Q^2), G_M(Q^2);$ Form Factors Dirac Particle: GE=GM= 1 (count.) Anomalous magnetic moment : Gm = (1+1)/GE Extended Charge distribution: GE(Q2) = Fourier transform
of g(T) Ex: 9(1) = = = GE(Q3)= (1+ Q3) C Dipole Form). p: a2 = 0.71 GeV2

Inelastic Cross Section - What's different Phase space factor $d^3k' = k'^2 d \Omega_k, dk'$ (& -function drops since E' can have - conversion $k^2 d \Omega dk' = E'^2 2\pi \sin\theta d\theta dE'$ =-2E12dws& rdE' $= \frac{\pi E'}{E} \left(-2EE'd\omega \theta \right) dE'$ $+ dQ^{2} |dy| since <math>y = E - E'$ Replace G=+ TGM with W2 (Q, y) *) and t Gm with W, (Q2, V) => $\Delta \sigma = \frac{4\pi \alpha^2 (\pi c)^2 E' \cos^2 \theta_2 \left[W_2 + 2 \tan^2 \theta W_2 \right] \Delta Q^2 \Delta \nu}{Q^4 E' \cos^2 \theta_2 \left[W_2 + 2 \tan^2 \theta W_2 \right] \Delta Q^2 \Delta \nu}$ *)=> Woll(Q? N) = G=+TGM. S(N-Nel) W, d(Q,v) = T Gm. S(V-Vel)

Interpretation of W, (Q, v)

(transverse) electromagnetic transition probability to final state characterized by v , with resolution ~ 1

Transition to discrete final states (resonances):

W, (Q, v) ~ T Gm (transition). S(V-VR)

VR is given by MRes = WRES M2 = M2+2MVR-Q

In reality: Resonances have fruit

width $\Gamma \sim \frac{1}{\text{Trife}} = 7$ (except clastic transition) S-hundren

Threshold: $W_{\min}^2 = (M + m_{\pi})^2 = (1.08 \text{ GeV})^2$

