Elastic scattering

$$\frac{\Delta\sigma}{\Delta\Omega} = \frac{4\alpha^2(\hbar c)^2 E'^2 \cos^2\frac{\theta}{2}}{Q^4} \frac{E'}{E} \left(\frac{G_E^2(Q^2) + \tau G_M^2(Q^2)}{1 + \tau} + 2\tau \tan^2\frac{\theta}{2} G_M^2(Q^2) \right)$$

where $\tau = \nu^2/Q^2$.

Inelastic Scattering

Note: $Q^2 = 2EE'(1-\cos\theta) \Rightarrow \Delta Q^2 = 2EE'\sin\theta\Delta\theta$, $\Delta\Omega = 2\pi\sin\theta\Delta\theta = \pi/EE'$ $\Delta Q^2 \Rightarrow \Delta\sigma/\Delta Q^2 = \pi/EE'$ $\Delta\sigma/\Delta\Omega$

$$\frac{\Delta \sigma}{\Delta Q^2 \Delta \nu} = \frac{4\pi \alpha^2 (\hbar c)^2 E' cos^2(\theta/2)}{Q^4 E} (W_2(Q^2, \nu) + 2 \tan^2(\theta/2) W_1(Q^2, \nu))$$

$$\frac{\Delta\sigma}{\Delta Q^2\Delta\nu} = \frac{4\pi\alpha^2(\hbar c)^2E'cos^2(\theta/2)}{Q^4E} \frac{W_1(Q^2,\nu)}{\epsilon(1+\tau)} (1+\epsilon R(Q^2,\nu)) \stackrel{\text{Cross}}{\underset{\text{section}}{\text{section}}} 0.2$$

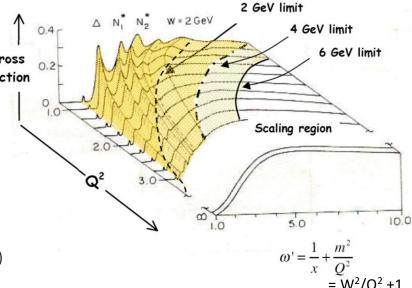
with
$$\epsilon = (1 + 2(1 + \tau)tan^2(\theta/2))^{-1}$$

Deep Inelastic Scattering (large Q^2 , large v)

$$\frac{\Delta \sigma}{\Delta Q^2 \Delta \nu} = \frac{4\pi \alpha^2 (\hbar c)^2 E' cos^2(\theta/2)}{Q^4 E} (\frac{1}{\nu} F_2(x) + 2 \tan^2(\theta/2) \frac{1}{M} F_1(x))$$

$$F_1(x) = MW_1(Q^2, \nu)$$
 $F_2(x) = \nu W_2(Q^2, \nu)$

Only "mildly" dependent on Q²



Picture from F. Gross,
«Making the case for Jefferson Lab»
The first decade of Science at Jefferson Lab
JoP, Conf. Series 299 (2011) 012001

Inclastic Cross Section - What's differen Phase space factor $d^3k' = k'^2 d\Omega_k, dk'$ (& -function drops since E' can have any value k'd Ωdk' = E'2π sinθdθdE' =-2E12dws& rdE' $= \frac{\pi E}{E} \left(-2EE'd\omega \theta \right) dE'$ +dQ2 ldy/ since N=E-E' Replace GE+TGM with W2 (Q, V) */ and t Gm with W, (Q2, V) => $\Delta \sigma = \frac{4\pi \alpha^2 (\pi c)^2 E' \omega^2 g_2 \left[W_2 + 2 \tan^2 \frac{Q}{2} W_1 \right] \Delta Q^2 \Delta \nu$ *) => W. (Q? N) = GE+TGH. S(N-New) W, et (0, v) = T Gm. S(v-vel)

Elastic Cross section - final form $\Delta G = \frac{4z^2\alpha^2 (hc)^2}{Q^4} \cos^2 \frac{G}{2} \left[\frac{G_E^2 + T G_M^2}{1 + T} + 2T \tan^2 \frac{G}{2} G_M^2 \right]$ $\cdot E^{12} \Delta \Omega E \quad \text{Longitudinal Transverse} \quad \text{(magnetic)}$ $T = \frac{y^2}{Q^2}, G_E(Q^2), G_M(Q^2):$ Form Factors Dirac Particle: GE=GM= 1 (count.) Anomalous magnetic moment : Gm = (1+1)/GE Extended Charge distribution: GE(Q2) = Fourier transform
of g(T) Ex: 9(1) = = = GE(Q3)= (1+ Q1) C Dipole Form). p: a2 = 0.71 GeV2

Inelastic Cross Section - What's different Phase space factor $d^3k' = k'^2 d \Omega_k, dk'$ (& -function drops since E' can have - conversion $k^2 d \Omega dk' = E'^2 2\pi \sin\theta d\theta dE'$ =-2E12dws & TdE' $= \frac{\pi E'}{E} \left(-2EE'd\omega \theta \right) dE'$ $+ dQ^2 |dy| since <math>y = E - E'$ Replace GE+TGM with W2 (Q, y) *) and t Gm with W, (Q2, V) => $\Delta \sigma = \frac{4\pi \alpha^2 (\pi c)^2 E' \cos^2 \theta_2 \left[W_2 + 2 \tan^2 \theta W_2 \right] \Delta Q^2 \Delta \nu}{Q^4 E' \cos^2 \theta_2 \left[W_2 + 2 \tan^2 \theta W_2 \right] \Delta Q^2 \Delta \nu}$ *)=> Woll(Q? N) = G=+TGM. S(N-Nel) W, or (Q, v) = T Gm. S(V-Vel)

Interpretation of W, (Q, v)

(transverse) electromagnetic transition probability to final state characterized by v , with resolution ~ 1

Transition to discrete final states (resonances):

W, (Q, v) & T Gm (transition). S(V-VR)

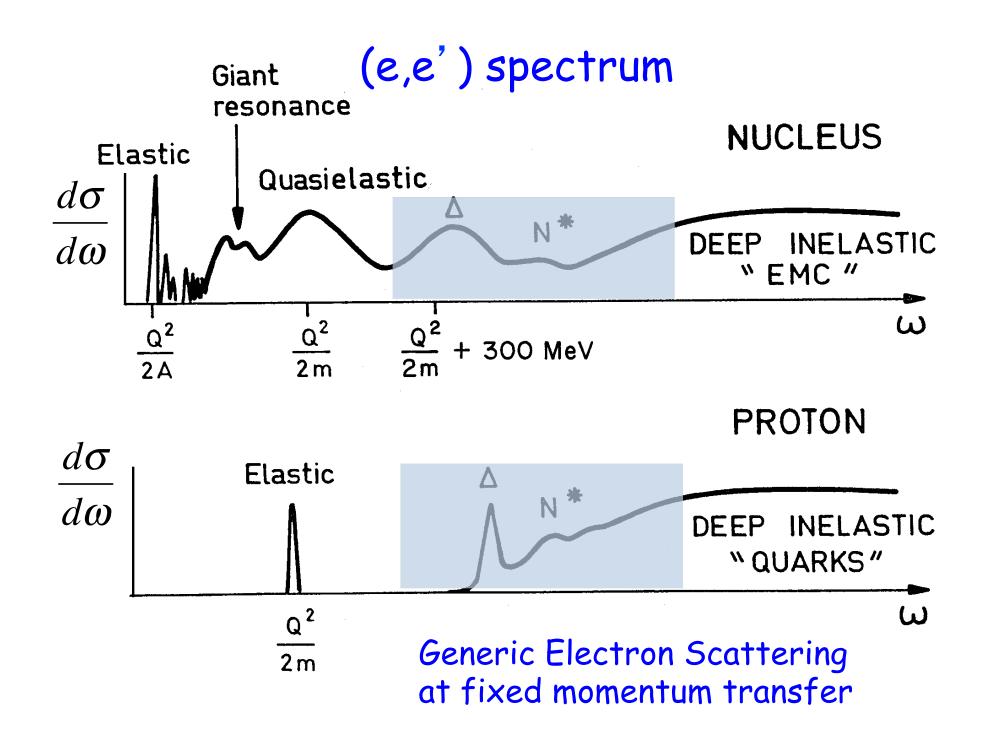
VR is given by MRes = WRES M2+2MVR-Q

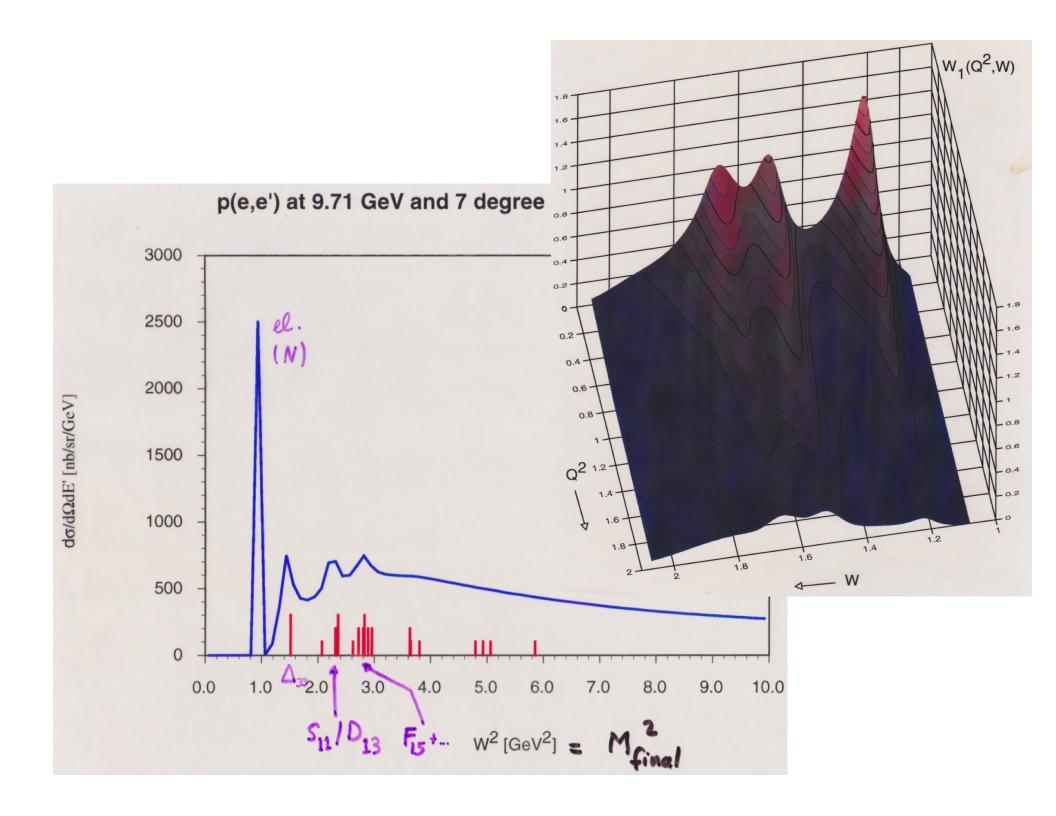
In reality: Resonances have fruit

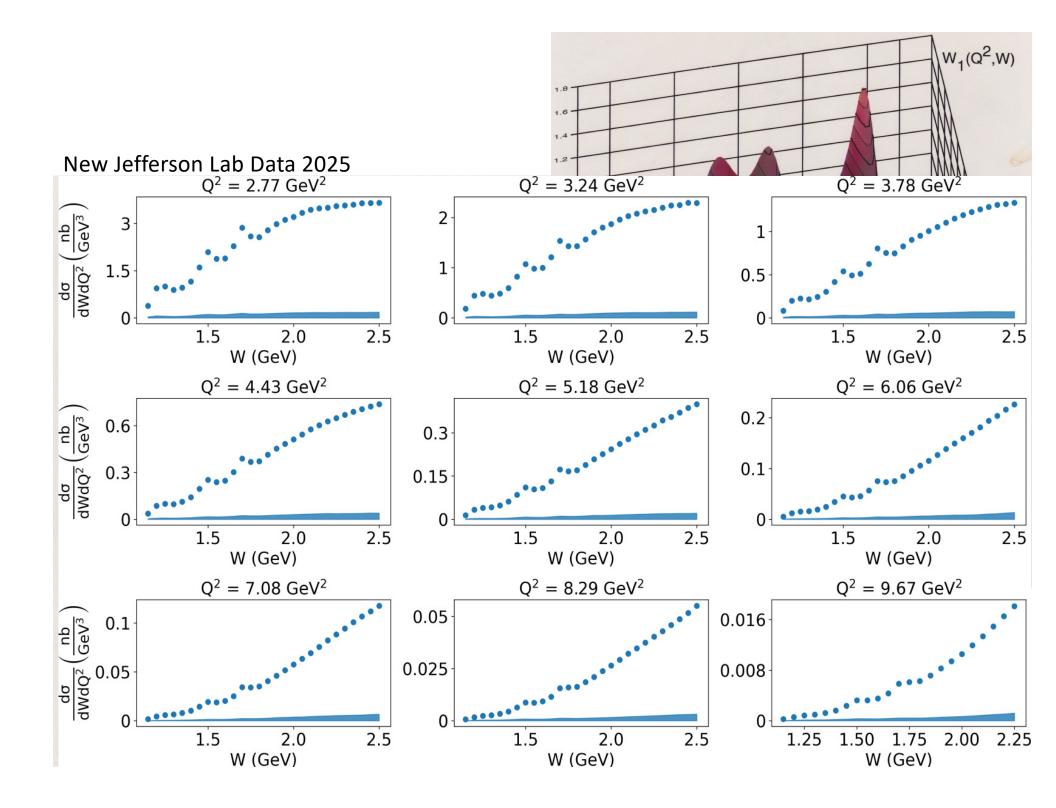
width In take => / -> / ->

(except clastic transition) S-hundren

Threshold: $W_{\min}^2 = (M + m_{\pi})^2 = (1.08 \text{ GeV})^2$







Deep Inelastic Scattering (DIS)

Breit ("Brickwall") Frame

$$\begin{pmatrix} \Gamma & 0 & 0 & \Gamma \beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \Gamma \beta & 0 & 0 & \Gamma \end{pmatrix} \begin{pmatrix} \nu \\ 0 \\ 0 \\ -q \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ q_{BF} \end{pmatrix} \Rightarrow$$

$$\Gamma = \frac{q}{\sqrt{Q^2}}, \Gamma \beta = \frac{v}{\sqrt{Q^2}}, q_{BF} = \sqrt{Q^2}$$

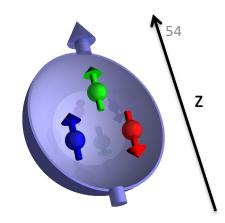
$$\begin{pmatrix} \Gamma & 0 & 0 & \Gamma \beta \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \Gamma \beta & 0 & 0 & \Gamma \end{pmatrix} \begin{pmatrix} M \\ 0 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \Gamma M \\ 0 \\ 0 \\ \Gamma \beta M \end{pmatrix} = \begin{pmatrix} \frac{qM}{\sqrt{Q^2}} \\ 0 \\ 0 \\ \frac{vM}{\sqrt{Q^2}} \end{pmatrix} \Rightarrow$$

$$x = \frac{p_i^{BF}}{P_i^{BF}} = \frac{\frac{\sqrt{Q^2}}{2}}{\frac{v_M}{\sqrt{Q^2}}} = \frac{Q^2}{2Mv}$$

$$Q^2 \rightarrow \infty, v \rightarrow \infty, x = \frac{Q^2}{2Mv}$$
 fixed: $q = v\sqrt{1 + \frac{Q^2}{v^2}} = v\sqrt{1 + \frac{4M^2x^2}{Q^2}} \approx v$

$$(0,0,0,q_{BF}) p_{f} p_{f} p_{f} p_{f} q_{BF} = \frac{\sqrt{Q^{2}}}{2}$$

Parton Distribution Functions



- The 1D world of nucleon/nuclear collinear structure:
 - Take a nucleon/nucleus
 - Move it real fast along z
 ⇒ momentum P_z (>>M)
 - Select a "parton" (quark, gluon) inside
 - Measure itsp_z (m≈0)
 - \Rightarrow Momentum Fraction $x = p_z/P_z$
 - In DIS *): p_z/P_z $\approx x_{Bj} = Q^2/2Mv$
 - Probability:

$$f_1^i(x), i = u, d, s, ..., G$$

In the following, will often write " $q_i(x)$ " for $f_1^i(x)$

⁽E',k') $\vec{q} = \vec{k} - \vec{k}'$ $Q^2 = -q^{\mu}q_{\mu}$ $= \vec{q}^2 - v^2$ (P_0,\vec{P}) p,n,A X

 $^{^{*)}}$ DIS = "Deep Inelastic (Lepton) Scattering" -> very large Q2, ν

Deep Inelastic Scattering (DIS)

Reminder: Elastic scattering

$$\frac{\Delta\sigma}{\Delta\Omega_{2}} = \frac{4\alpha^{2}(\hbar c)^{2}E'^{2}\cos^{2}\frac{\theta}{2}}{Q^{4}}\frac{E'}{E}\left(\frac{G_{E}^{2}(Q^{2}) + \tau G_{M}^{2}(Q^{2})}{1+\tau} + 2\tau \tan^{2}\frac{\theta}{2}G_{M}^{2}(Q^{2})\right)$$

Elastic scattering from quarks:

$$\Delta \sigma = \frac{4\pi z_q^2 \alpha^2 (\hbar c)^2 E' \cos^2(\theta/2)}{Q^4 E} (q(x) \Delta x + 2\nu^2 / Q^2 \tan^2(\theta/2) q(x) \Delta x) \Delta Q^2.$$
(12)

We can use the relation $\Delta x = -Q^2/(2M\nu^2)\Delta\nu = -x\Delta\nu/\nu$ to rewrite this as

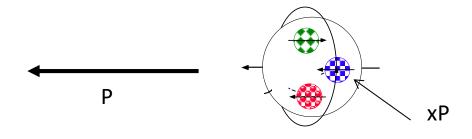
$$\frac{\Delta\sigma}{\Delta Q^2 \Delta \nu} = \frac{4\pi\alpha^2 (\hbar c)^2 E' \cos^2(\theta/2)}{Q^4 E} (\frac{x}{\nu} z_q^2 q(x) + \frac{1}{M} \tan^2(\theta/2) z_q^2 q(x)). \tag{13}$$

Reminder: IN-Elastic scattering

r: IN-Elastic scattering
$$\begin{array}{c} & & \\ \hline \Delta \sigma \\ \hline \Delta Q^2 \Delta \nu \end{array} = \frac{4\pi \alpha^2 (\hbar c)^2 E' cos^2(\theta/2)}{Q^4 E} (\frac{1}{\nu} F_2(x) + 2 \tan^2(\theta/2) \frac{1}{M} F_1(x)) & F_2 = 2 x F_1 \\ \hline \text{Callan-Gross} \end{array}$$

$$\Rightarrow \quad F_1(x) = \frac{1}{2} \left(\frac{4}{9} \left[u(x) + \bar{u}(x) \right] + \frac{1}{9} \left[d(x) + \bar{d}(x) + s(x) + \bar{s}(x) \right] + \dots \right) \quad \text{No Q^2!}$$

Quark-Parton Structure of the Proton – with spin



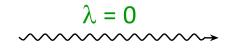
Similarly G(x) for gluons

Virtual Photon Asymmetries

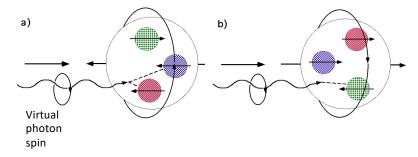
Virtual photon

$\lambda = -1$

$\lambda = +1$



Nucleon



$$\mathbf{A_1} = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_T} \qquad \mathbf{A_2} = \frac{\sigma_{LT}}{\sigma_T}$$

related to quark polarizations $\Delta q/q$

$$\Delta q(x) = q \uparrow \uparrow (x) - q \uparrow \downarrow (x) + \overline{q} \uparrow \uparrow (x) - \overline{q} \uparrow \downarrow (x) \sim \left\langle P, s \middle| \overline{q} \gamma^{\mu} \gamma^{5} q \middle| P, s \right\rangle$$

Structure Functions

$$\frac{\Delta\sigma}{\Delta Q^{2}\Delta\nu} = \frac{4\pi\alpha^{2}(\hbar c)^{2}E'\cos^{2}(\theta/2)}{Q^{4}E} \left(\frac{1}{\nu}F_{2}(x) + 2\tan^{2}(\theta/2)\frac{1}{M}F_{1}(x)\right)$$

$$\frac{\Delta\sigma}{\Delta Q^{2}\Delta\nu} \downarrow \uparrow -\frac{\Delta\sigma}{\Delta Q^{2}\Delta\nu} \uparrow \uparrow = \frac{4\pi\alpha^{2}}{M\nu Q^{2}E^{2}} \left[\left(E + E'\cos\theta\right)\mathbf{g_{1}} - 2xM\mathbf{g_{2}}\right]$$

Unpolarized: $F_1(x,Q^2)$ and $F_2(x,Q^2)$

Polarized: $g_1(x,Q^2)$ and $g_2(x,Q^2)$

Parton model:

$$F_1(x) = \frac{1}{2} \sum_i e_i^2 q_i(x) \text{ and } F_2(x) = 2xF_1(x)$$

$$g_1(x) = \frac{1}{2} \sum_i e_i^2 \Delta q_i(x) \text{ and } g_2(x) = 0$$

$$i = \text{quark flavor}$$

$$e_i = \text{quark charge}$$

the structure functions g_1 and g_2 are linear combinations of A_1 and A_2

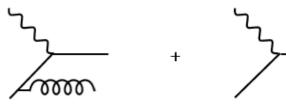
$$g_1(x,Q^2) = \frac{\tau}{1+\tau} (A_1 + \frac{1}{\sqrt{\tau}} A_2) F_1$$

$$g_2(x,Q^2) = \frac{\tau}{1+\tau} (\sqrt{\tau} A_2 - A_1) F_1$$

$$\tau = \frac{v^2}{Q^2}$$

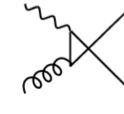
Parton Distribution Functions and NLO pQCD

Two effects modify simple parton picture:



1) (Gluon) radiative corrections change elementary cross section

elementary cross section
$$g_{1}(x,Q^{2})_{pQCD} = \frac{1}{2} \sum_{q}^{N_{f}} e_{q}^{2} [(\Delta q + \Delta q) \otimes (1 + \frac{\alpha_{s}(Q^{2})}{2\pi} \delta C_{q}) + \frac{\alpha_{s}(Q^{2})}{2\pi} \Delta G \otimes \frac{\delta C_{G}}{N_{f}}]$$

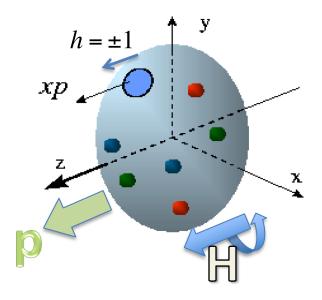


$$\delta C_q$$
, δC_G – Wilson coefficient functions

2) pQCD evolution makes PDFs Q²-dependent

Inclusive lepton scattering

Parton model: DIS can access



$$q(x;Q^2),\langle h\cdot H\rangle q(x;Q^2)$$

Traditional "1-D" Parton Distributions (PDFs) (integrated over many variables)

$$F_1(x) = \frac{1}{2} \sum_{i} e_i^2 q_i(x) \text{ (and } F_2(x) \approx 2x F_1(x) \text{)}$$
 Wandzura-Wilczek
$$g_1(x) = \frac{1}{2} \sum_{i} e_i^2 \Delta q_i(x) \text{ (and } g_2(x) \approx -g_1(x) + \int_x^1 \frac{g_1(y)}{y} dy \text{)}$$

At finite Q²: pQCD evolution $(q(x,Q^2), \Delta q(x,Q^2)) \Rightarrow$ DGLAP equations), and gluon radiation

$$g_1(x,Q^2)_{pQCD} = \frac{1}{2} \sum_{q}^{N_f} e_q^2 \left[(\Delta q + \Delta q) \otimes \left(1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q \right) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\delta C_G}{N_f} \right]$$

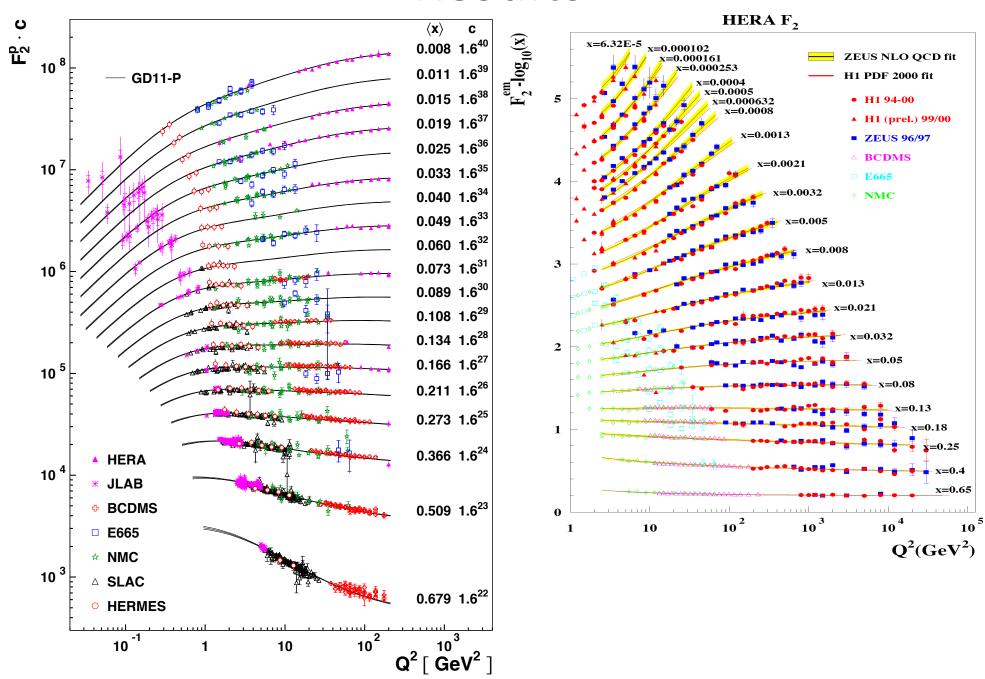
 \Rightarrow access to gluons. δC_a , δC_G – Wilson coefficient functions

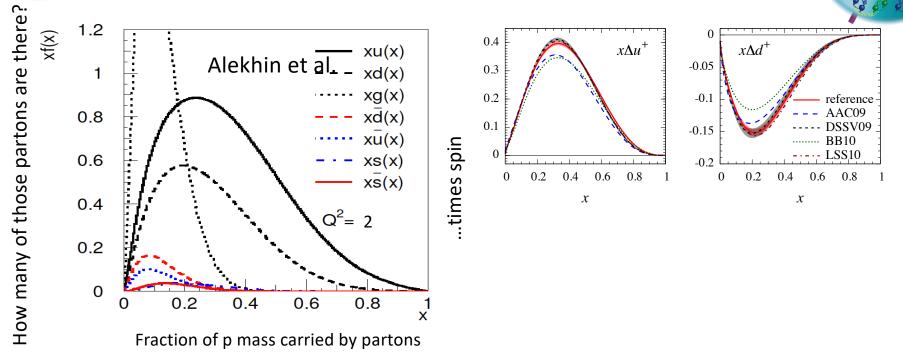
SIDIS: Tag the flavor of the struck guark with the leading FS hadron \Rightarrow separate $q_i(x, Q^2)$, $\Delta q_i(x, Q^2)$

Jefferson Lab kinematics: $Q^2 \approx M^2 \Rightarrow$ target mass effects, higher twist contributions and resonance excitations

Non-zero
$$R = \frac{F_2}{2xF_1} \left(\frac{4M^2x^2}{Q^2} + 1 \right) - 1$$
, $g_2^{HT}(x) = g_2(x) - g_2^{WW}(x)$
Further Q^2 -dependence (power series in $\frac{1}{Q^n}$)

Results

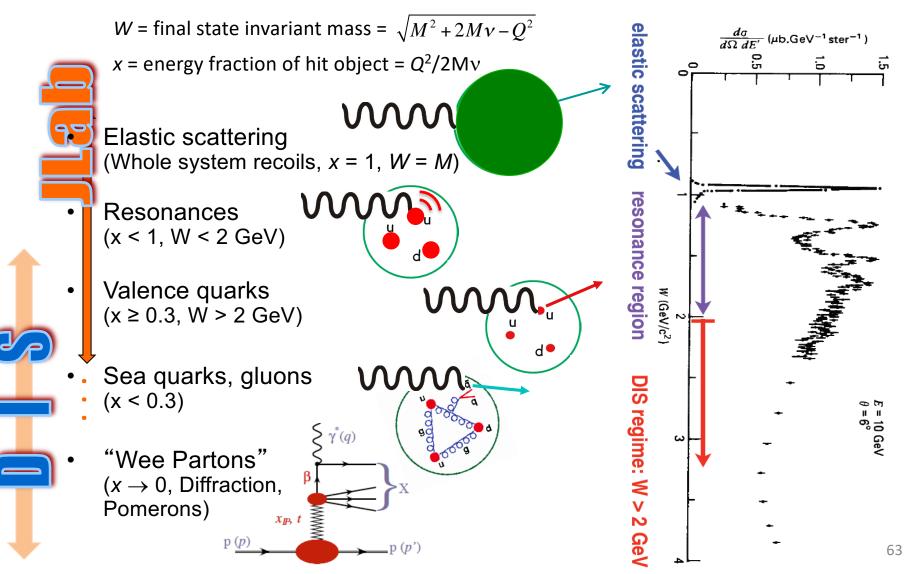




- Begun to map the 1D and even 3D motion of quarks and gluons inside nucleons
- Developed an approximate solution of QCD (Lattice QCD) that can predict masses, excited states etc.
- "Sorta" understand the size, magnetic moment and other properties of nucleons
- Begun to get a QCD-based picture of nuclei
- BUT: Much left to do will you join us?

⇒ Our 1D View of the Nucleon

(depends on energy v and wave length of the virtual photon $\sim 1/Q^2$)



Electron Scattering

Kinematic Variables

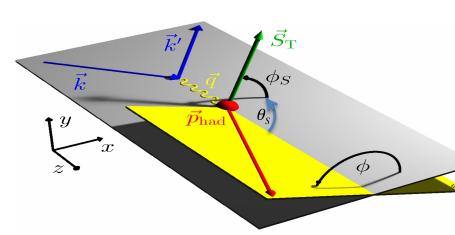
$$v = E - E' = |\vec{k}| - |\vec{k}'|$$

$$\vec{q} = \vec{k} - \vec{k}'; \quad q^{\mu} = (v, \vec{q}) = k^{\mu} - k'^{\mu}$$

$$Q^{2} = -(k - k')^{2} = \vec{q}^{2} - v^{2} \approx 4EE'\sin^{2}\frac{\theta_{e}}{2}$$

$$y = \frac{q^{\mu}P_{\mu}}{k^{\mu}P_{\mu}} = \frac{v}{E}; \quad x = \frac{Q^{2}}{2q^{\mu}P_{\mu}} = \frac{Q^{2}}{2Mv}$$

$$W = \sqrt{(P_{\mu} + q^{\mu})^2} = \sqrt{M^2 + (1/x - 1)Q^2}$$



Lepton variable

Inclusive

Semi-Inclusive

Hadron variables

$$P_{had}^{\mu} = \left(zv, \sqrt{z^2v^2 - m_h^2 - P_{hT}^2}, \vec{P}_{hT}\right)$$

$$z = E_h / v$$

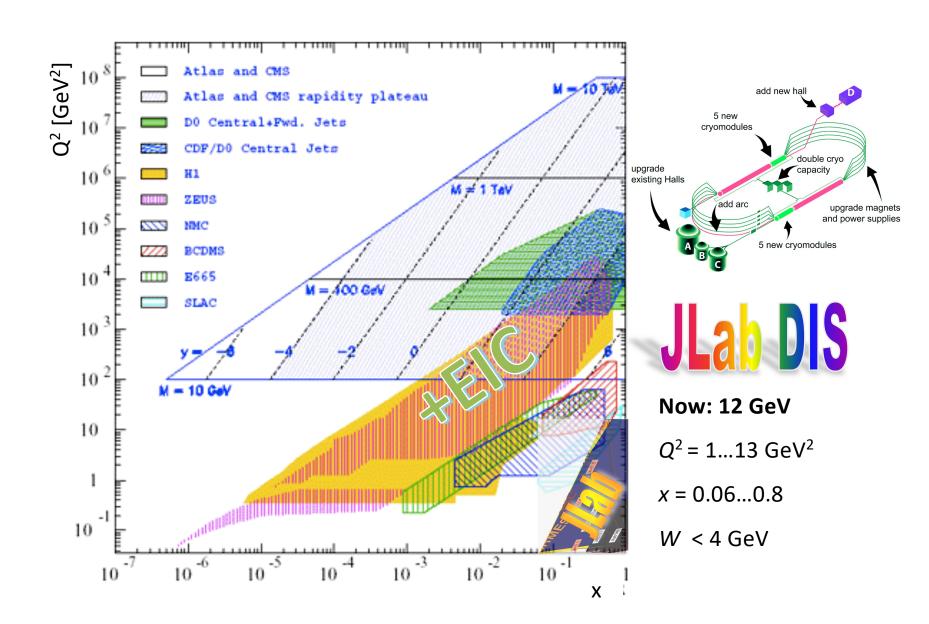
$$\vec{P}_{hT} = \left| \vec{P}_{hT} \right| (\sin \theta_h \cos \phi_h, \sin \theta_h \sin \phi_h)$$

$$x_F = \frac{\vec{P}_h^{c.m} \cdot \hat{q}}{\left| \vec{P}_h^{c.m} \right| (\max)}$$

Rapidity
$$\operatorname{artanh} \frac{|\mathbf{p}|c}{E} = \frac{1}{2} \ln \frac{E + |\mathbf{p}|c}{E - |\mathbf{p}|c}$$

Pseudo-Rapidity
$$\eta = -\ln\left[an\left(rac{ heta}{2}
ight)
ight]$$

Jefferson Lab in Perspective



The future landscape of Nuclear Physics

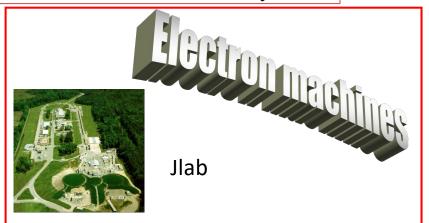
- 1. Study how nucleons are made up from quarks ("flavor", \mathbf{p} , \mathbf{L} , $\mathbf{S} \rightarrow 3D$ tomography)
- 2. Study how hadronic quark structure is influenced by the nuclear environment
- 3. Understand nuclear structure and dynamics in terms of quark degrees of freedom
- 4. Study extreme forms of nuclear matter: high energy (Quark-Gluon plasma), high density (short range correlations, n stars, "color glass condensates",...), non-zero strangeness (hypernuclei, strangelets, ...), large n/p imbalance (radioactive beams)...
- 5. Study fundamental symmetries, neutrinos, nuclei in the universe
- 6. Develop new applications in medicine, energy, materials, homeland security, ...

Hadron Machines

J-PARC

FAIR

LHC



Electronlon-Collider (2025?)

