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target, GE(Q2) = GM (Q2) ⌘ z. In the case of a finite size target, the electric
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! 0, since the wavelength of the ex-
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where ⌧ = ⌫2/Q2.
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can be clearly seen as peaks in the cross section (these correspond to the �+,
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G2
E(Q2)+⌧G2

M (Q2)
1+⌧ is replaced by the structure function W2(Q2, ⌫) and ⌧G2

M (Q2)
is replaced by a second structure function, W1(Q2, ⌫). From this substitution,
it is clear that W1(Q2, ⌫) parameterizes the transverse part of the electro-
magnetic transition matrix element |Mfi|

2, now taken between the target ini-
tial ground state i and an unbound (continuum) final state f . The structure
function W2, on the other hand, contains both transverse and longitudinal
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Figure 1: Cross section d�/d⌦dE0 in nb/sr/GeV for electron-proton scattering at 9.71 GeV
electron energy and 7 degree scattering angle. The large peak below W 2 = 1 GeV2 is the
elastic peak, which is smeared out due to resolution and radiative e↵ects included in this
calculation.

(“charge”) transition matrix elements. Alternatively, one often introduces a
longitudinal structure function WL(Q2, ⌫) in analogy with GE(Q2), so that
W2(Q2, ⌫) = WL(Q2,⌫)+W1(Q

2,⌫)
1+⌧ . The ratio R = WL(Q2, ⌫)/W1(Q2, ⌫) indi-

cates the relative importance of longitudinal and transverse transition strength.
Using these newly defined structure functions, one can write the inelastic

inclusive cross section as
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Q4E

(W2(Q2, ⌫) + 2 tan2(✓/2)W1(Q2, ⌫)), (10)

where we have replaced the kinematic bin �⌦�E0 with the kinematic bin
�Q2�⌫ = (EE0/⇡)�⌦�E0. Using our alternative set of structure functions,
Eq. 10 can also be written (after some lengthy but elementary algebra) as
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with ✏ = (1 + 2(1 + ⌧)tan2(✓/2))�1.
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call the probability to find a quark with momentum fraction x q(x), we can
incorporate this probability function in Eq. 8 to get the partial cross section
for deep inelastic scattering:

�� =
4⇡z2

q↵
2(h̄c)2E0cos2(✓/2)

Q4E
(q(x)�x+ 2⌫2/Q2tan2(✓/2)q(x)�x)�Q2.

(12)
We can use the relation �x = �Q2/(2M⌫2)�⌫ = �x�⌫/⌫ to rewrite this as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(
x

⌫
z2
qq(x) +

1
M

tan2(✓/2)z2
qq(x)). (13)

Finally, we have to include contributions from all di↵erent quark flavors
f , each with its own probability distribution f(x) and charge zf . If we define
new structure functions F1(x) = 1

2

P
f z

2
ff(x) and F2(x) = x

P
f z

2
ff(x), we

can write down the final form for the deep inelastic cross section as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(
1
⌫
F2(x) + 2 tan2(✓/2)

1
M

F1(x)). (14)

Comparison with Eq. 10 immediately shows that F1(x) = MW1(Q2, ⌫) and
F2(x) = ⌫W2(Q2, ⌫). This means that in this kinematic region, the structure
functions become functions of one variable alone (x), while the dependence on
Q2 vanishes — they “scale”. Furthermore, we expect the relationship F2(x) =
2xF1(x) to hold, which follows directly from our expressions for F1 and F2

above in terms of the quark distribution functions f(x).

4 Unpolarized Structure Functions F1 and F2

From our result in the previous section, it is clear that one can learn a lot
about the internal (quark-) structure of the nucleon by studying the structure
functions F1 and F2. The value of F1(x) at a given x can be directly interpreted
as (one–half of) the likelihood of finding a quark with longitudinal momentum
fraction x, summed over all quark flavors weighted with the corresponding
quark charges squared. While this interpretation is, strictly speaking, frame
dependent (the way we introduced it, it refers to the Breit frame), one can
see that in the limit Q2

! 1 but x fixed the Breit frame coincides with the
infinite momentum frame (IMF) in which the third component of the nucleon
momentum, P 3

Breit = �M⌫/Q = �Q/2x, approaches infinity, P 3
! �1. In

this (scaling) limit, x measures the momentum fraction of the quarks in the
IMF, which is independent of the other kinematic variables of the reaction.
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FIG. 30. Inclusive electron scattering cross sections determined from CLAS12 RG-A data. The statistical uncertainties on the CLAS12
data are shown but they are smaller than the data point size for the majority of the data points. The bin-by-bin systematic uncertainty is shown
by the filled area at the bottom of each plot.

contributions. The second resonance region maximum is cre-
ated by the N (1440)1/2+, N (1520)3/2−, and N (1535)1/2−.
The third resonance region maximum comprises several nu-
cleon excited states as shown in Fig. 32, with the biggest
contribution from the new N ′(1720)3/2+ baryon state that
was discovered from the combined studies of π+π− p photo-
and electroproduction data measured in the experiments of
6-GeV era with CLAS [68]. The resonant cross sections show
a pronounced evolution with Q2 in the first, second, and third
resonance regions, although they show a stronger Q2 fall-off
in the third resonance regions compared to the second. This
suggests that the different excited nucleon states display dis-
tinctively different structural features in the Q2 evolution of

FIG. 31. Inclusive electron scattering cross sections from
CLAS12 data at a beam energy of 10.6 GeV as a function of W
for selected bins in Q2 as shown. The blue points represent the
computed resonant contributions from the experimental results on the
resonance electrocouplings from the studies of πN , ηN , and π+π− p
electroproduction off protons with CLAS [26,27]. The shaded areas
at the bottom of each plot show the systematic uncertainties for the
evaluation of the resonant contributions.

their electrocouplings. This underscores the necessary efforts
on the extraction of the N∗ electrocouplings of all prominent
resonances for Q2 > 4 GeV2 from the upcoming data from
CLAS12, bridging the efforts between analyses in the N∗ and
deep inelastic physics regimes [69,70].

Combined studies of the experimental results on the inclu-
sive cross sections and the evaluated resonant contributions
open new opportunities for gaining insight into the portion
of the inclusive cross sections that is defined by the PDFs
in the ground state of the nucleon. Methods to access this
component of the inclusive cross sections are currently under
development. The measured (e, e′X ) cross sections, together
with the evaluated resonant contributions, provide the critical
experimental input needed to extend our knowledge of PDFs
at larger x values within the resonance excitation region.

Our data on the inclusive p(e, e′)X cross section allow for
extraction of the inclusive F2 structure function in any given
bin of Q2 within the coverage over W from the pion threshold
up to 2.5 GeV. Consequently, the truncated moments of the
F2 structure function can be obtained by direct integration of
the data at each given Q2. The information on the evolution
of the truncated F2 structure function moments within the
resonance region over the broad range of Q2 covered in our
measurements will allow us for the first time to explore the
evolution of the partonic structure of the ground state of the
nucleon for large values of x within the resonance excitation
region in the range of distances where the transition from
strongly coupled to perturbative QCD regimes is expected
[25,69,71].

IX. SUMMARY AND CONCLUSIONS

In this paper we present results from the first absolute
cross-section measurements with the new large-acceptance
CLAS12 spectrometer in Hall B at Jefferson Lab. Inclusive
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• The 1D world of nucleon/nuclear collinear structure:
– Take a nucleon/nucleus
– Move it real fast along z
⇒ momentum Pz (>>M)

– Select a “parton” (quark, gluon) inside
– Measure its

pz (m≈0)
– ⇒ Momentum Fraction x = pz/Pz

– In DIS *): pz/Pz
≈ xBj = Q2/2Mn

– Probability: 

Parton Distribution Functions

In the following, will often write “qi(x)” for f1i(x)

54

*) DIS = “Deep Inelastic (Lepton) Scattering” -> very large Q2, n
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call the probability to find a quark with momentum fraction x q(x), we can
incorporate this probability function in Eq. 8 to get the partial cross section
for deep inelastic scattering:

�� =
4⇡z2

q↵
2(h̄c)2E0cos2(✓/2)

Q4E
(q(x)�x+ 2⌫2/Q2tan2(✓/2)q(x)�x)�Q2.

(12)
We can use the relation �x = �Q2/(2M⌫2)�⌫ = �x�⌫/⌫ to rewrite this as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(
x

⌫
z2
qq(x) +

1
M

tan2(✓/2)z2
qq(x)). (13)

Finally, we have to include contributions from all di↵erent quark flavors
f , each with its own probability distribution f(x) and charge zf . If we define
new structure functions F1(x) = 1

2

P
f z

2
ff(x) and F2(x) = x

P
f z

2
ff(x), we

can write down the final form for the deep inelastic cross section as
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new structure functions F1(x) = 1

2

P
f z

2
ff(x) and F2(x) = x

P
f z

2
ff(x), we

can write down the final form for the deep inelastic cross section as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(
1
⌫
F2(x) + 2 tan2(✓/2)

1
M

F1(x)). (14)

Comparison with Eq. 10 immediately shows that F1(x) = MW1(Q2, ⌫) and
F2(x) = ⌫W2(Q2, ⌫). This means that in this kinematic region, the structure
functions become functions of one variable alone (x), while the dependence on
Q2 vanishes — they “scale”. Furthermore, we expect the relationship F2(x) =
2xF1(x) to hold, which follows directly from our expressions for F1 and F2

above in terms of the quark distribution functions f(x).

4 Unpolarized Structure Functions F1 and F2

From our result in the previous section, it is clear that one can learn a lot
about the internal (quark-) structure of the nucleon by studying the structure
functions F1 and F2. The value of F1(x) at a given x can be directly interpreted
as (one–half of) the likelihood of finding a quark with longitudinal momentum
fraction x, summed over all quark flavors weighted with the corresponding
quark charges squared. While this interpretation is, strictly speaking, frame
dependent (the way we introduced it, it refers to the Breit frame), one can
see that in the limit Q2

! 1 but x fixed the Breit frame coincides with the
infinite momentum frame (IMF) in which the third component of the nucleon
momentum, P 3

Breit = �M⌫/Q = �Q/2x, approaches infinity, P 3
! �1. In

this (scaling) limit, x measures the momentum fraction of the quarks in the
IMF, which is independent of the other kinematic variables of the reaction.
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target, GE(Q2) = GM (Q2) ⌘ z. In the case of a finite size target, the electric
form factor GE(Q2) converges to z for Q2

! 0, since the wavelength of the ex-
changed photon becomes too large to resolve the inner structure of the target.
However, GM (Q2) does not necessarily have the same limit; if the target has
an anomalous magnetic moment (µ 6= µN ), GM (Q2) converges towards µ/µN
instead. The complete elastic cross section for targets with internal structure
becomes

��

�⌦
=

4↵2(h̄c)2E02cos2 ✓
2

Q4

E0

E

✓
G2
E(Q2) + ⌧G2

M (Q2)
1 + ⌧

+ 2⌧ tan2 ✓

2
G2
M (Q2)

◆
,

(9)
where ⌧ = ⌫2/Q2.

As an example, both the magnetic and electric form factor of the proton
have been found to follow approximately a so-called dipole form: GE(Q2) =
GM (Q2)/(µ/µN ) = (1 + Q2/0.71 GeV2)�2 which can be interpreted as the
Fourier transform of an exponentially falling charge distribution.

In the following, we want to discuss how the cross section Eq. 9 changes
in the case of inelastic scattering. For this purpose, it is useful to introduce
some more kinematic variables. Of great importance is the invariant mass of
the unobserved final state (the sum of all energies of the target fragments in
their center-of-mass system), W . Since in the target rest system, the final
state has four momentum P 0µ = (M + ⌫,q), we can calculate W 2 = P 0µP 0

µ =
M2+2M⌫+⌫2

�q2 = M2+2M⌫�Q2. In the case of elastic scattering, we must
have W 2 = M2 and therefore 2M⌫ = Q2, or x ⌘ 1 where x ⌘ xBj = Q2/2M⌫.
If we transfer more energy to the target, we can excite higher mass resonant
states, with W = Mres. At even higher energy transfer (deep inelastic region),
we can create a continuous spectrum of multi-particle final states. In these
cases, the cross section becomes a function of ✓ and E0. Figure 1 shows an
example for the cross section for electron scattering o↵ protons. The marks
indicate the positions of some well-known nucleon resonances, some of which
can be clearly seen as peaks in the cross section (these correspond to the �+,
S11 and D13, and F15 resonances discussed in Section 1.)

Clearly, we have to replace the form factors in Eq. 9 with functions of both
Q2 and ⌫ to describe the inelastic cross section. Specifically, the expression
G2
E(Q2)+⌧G2

M (Q2)
1+⌧ is replaced by the structure function W2(Q2, ⌫) and ⌧G2

M (Q2)
is replaced by a second structure function, W1(Q2, ⌫). From this substitution,
it is clear that W1(Q2, ⌫) parameterizes the transverse part of the electro-
magnetic transition matrix element |Mfi|

2, now taken between the target ini-
tial ground state i and an unbound (continuum) final state f . The structure
function W2, on the other hand, contains both transverse and longitudinal
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Reminder: Elastic scattering

Elastic scattering from quarks:

Reminder: IN-Elastic scattering

�   � � �   � �

One of the important results from early deep inelastic scattering (DIS)
experiments was the (approximate) confirmation of the Callan-Gross relation-
ship 17 F2(x) = 2xF1(x). g Our derivation of this relationship at the end
of the previous Section depends crucially on the assumption that the elastic
cross section on a single quark can be described by Eq. 8, i.e. the cross sec-
tion for a pointlike spin-1/2 (Dirac) particle. If quarks had no spin, we would
have F1(x) = 0 instead. The confirmation of scaling and the Callan-Gross
relationship therefore show that nucleons are indeed made of (nearly) mass-
less elementary spin-1/2 particles which become asymptotically free at large
momentum transfers.

More information can be obtained by writing down the quark decomposi-
tion of the structure functions explicitly:

F1(x) =
1
2

✓
4
9

[u(x) + ū(x)] +
1
9

⇥
d(x) + d̄(x) + s(x) + s̄(x)

⇤
+ ...

◆
, (15)

if we neglect the heavier c, b and t quarks. Measuring F1(x) over a wide range
of x should give us information on the quark distribution functions q(x). In
practice, one often measures F2(x) instead, since this quantity has no (typically
small) factor tan2(✓/2) in front of it. Either way, measuring one of these
structure functions alone will not be enough to unravel the contributions of all
di↵erent quark flavors (6 unknown functions of x in Eq. 15).

One possibility is to assume that the “sea” quarks s, ū, d̄, s̄ do not con-
tribute significantly, and that u(x) ⇡ 2d(x) in the proton. These assumptions
are in line with our naive CQM, and cannot be expected to be a realistic de-
scription of the current quark distributions. However, they hold approximately
“on average”, so that we can at least estimate the integral

Z 1

0
F2(x)dx =

Z 1

0
x

✓
4
9
u(x) +

1
9
d(x)

◆
dx =

Z 1

0
xd(x)dx. (16)

Using again our assumption, u(x) ⇡ 2d(x), one sees that this integral
should equal 1/3 of the overall quark momentum distribution, weighed by the
momentum fraction x. In other words, from this integral we can determine the
longitudinal momentum fraction carried by all quarks in the proton together,
as 3

R 1
0 F2(x)dx = xtotal. From our CQM, we would of course expect the

gOne can measure both F1 and F2 independently by using a method called “Rosenbluth
separation”. Basically, one varies the scattering angle ✓ while simultaneously changing the
beam energy to keep x and Q2 constant. Since F1 has an extra factor tan2(✓/2) in front of
it, it’s contribution will be di↵erent for these di↵erent kinematics and by a linear fit both F1

and F2 can be extracted.

15

⇒ No Q2!

NOTE:   ⇒
F2 = 2xF1
Callan-Gross
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Quark-Parton Structure of the Proton – 
with spin
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Structure Functions

Unpolarized:    F1(x,Q2) and F2(x, Q2)
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call the probability to find a quark with momentum fraction x q(x), we can
incorporate this probability function in Eq. 8 to get the partial cross section
for deep inelastic scattering:

�� =
4⇡z2

q↵
2(h̄c)2E0cos2(✓/2)

Q4E
(q(x)�x+ 2⌫2/Q2tan2(✓/2)q(x)�x)�Q2.

(12)
We can use the relation �x = �Q2/(2M⌫2)�⌫ = �x�⌫/⌫ to rewrite this as

��

�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(
x

⌫
z2
qq(x) +

1
M

tan2(✓/2)z2
qq(x)). (13)

Finally, we have to include contributions from all di↵erent quark flavors
f , each with its own probability distribution f(x) and charge zf . If we define
new structure functions F1(x) = 1

2

P
f z

2
ff(x) and F2(x) = x

P
f z

2
ff(x), we

can write down the final form for the deep inelastic cross section as
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�Q2�⌫
=

4⇡↵2(h̄c)2E0cos2(✓/2)
Q4E

(
1
⌫
F2(x) + 2 tan2(✓/2)

1
M

F1(x)). (14)

Comparison with Eq. 10 immediately shows that F1(x) = MW1(Q2, ⌫) and
F2(x) = ⌫W2(Q2, ⌫). This means that in this kinematic region, the structure
functions become functions of one variable alone (x), while the dependence on
Q2 vanishes — they “scale”. Furthermore, we expect the relationship F2(x) =
2xF1(x) to hold, which follows directly from our expressions for F1 and F2

above in terms of the quark distribution functions f(x).

4 Unpolarized Structure Functions F1 and F2

From our result in the previous section, it is clear that one can learn a lot
about the internal (quark-) structure of the nucleon by studying the structure
functions F1 and F2. The value of F1(x) at a given x can be directly interpreted
as (one–half of) the likelihood of finding a quark with longitudinal momentum
fraction x, summed over all quark flavors weighted with the corresponding
quark charges squared. While this interpretation is, strictly speaking, frame
dependent (the way we introduced it, it refers to the Breit frame), one can
see that in the limit Q2

! 1 but x fixed the Breit frame coincides with the
infinite momentum frame (IMF) in which the third component of the nucleon
momentum, P 3

Breit = �M⌫/Q = �Q/2x, approaches infinity, P 3
! �1. In

this (scaling) limit, x measures the momentum fraction of the quarks in the
IMF, which is independent of the other kinematic variables of the reaction.
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Parton Distribution Functions
and NLO pQCD

Two effects modify simple 
parton picture:

1) (Gluon) radiative 
corrections change 
elementary cross section

2) pQCD evolution makes 
PDFs Q2-dependent



Traditional “1-D” Parton 
Distributions (PDFs) 
(integrated over many 
variables) 
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At finite Q2: pQCD evolution (q(x,Q2), Dq(x,Q2) ⇒ 
DGLAP equations),  and gluon radiation

Jefferson Lab kinematics:                  ⇒ target mass effects,
higher twist contributions and resonance excitations

§ Non-zero

§ Further Q2-dependence (power series in      )
1
Qn

⇒ access to gluons.

SIDIS: Tag the flavor of the struck quark with the 
leading FS hadron ⇒ separate qi(x,Q2), Dqi(x,Q2)

Inclusive lepton scattering

Q2 ≈ M 2

R = F2
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Figure 7: HERMES data for F p
2 together with world data in the kinematic range 0.008 ≤ ⟨x⟩ ≤

0.679 and 0.02 GeV2 ≤ ⟨Q2⟩ ≤ 20 GeV2. The results are overlaid with the phenomenological
parameterization GD11-P (black solid central curve) and its uncertainty (outer curves) obtained as
described in Sect. 6.3. A bin-centering correction is applied to the data in order to match the central
values of the x bins. The values of F p

2 are scaled by powers of 1.6. Inner error bars are statistical
uncertainties, while outer error bars are total uncertainties calculated as the sum in quadrature of
all statistical and systematic uncertainties including normalization.
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The QCD picture of the nucleon

naive picture realistic picture

three non-relativistic quarks
QCD

 ����������!
factorization,evolution

indefinite number of relativistic
quarks and gluons

Emanuele R. Nocera (UNIGE) Nucleon and Nuclear PDFs March 2, 2015 5 / 42

…and what have we learned?

• Begun to map the 1D and even 3D motion of quarks and gluons inside nucleons
• Developed an approximate solution of QCD (Lattice QCD) that can predict masses, excited 

states etc.
• “Sorta” understand the size, magnetic moment and other properties of nucleons
• Begun to get a QCD-based picture of nuclei
• BUT: Much left to do – will you join us?

2

Alekhin et al.
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FIG. 1: Spin-dependent parton distributions for the �u+, �d+, �ū, �d̄ and �s̄ quark flavors and

the polarized gluon �g at a scale of Q2 = 1 GeV2. The reference JAM fit (red solid) is compared

with the recent AAC09 [9] (blue dashed), DSSV09 [6] (black short-dashed), BB10 [8] (green dotted)

and LSS10 [7] (brown dot-dashed) parametrizations.
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⇒ Our 1D View of the Nucleon
(depends on energy n and wave length of the virtual photon ∼ 1/Q2)

. .
 .

W = final state invariant mass = M 2 + 2Mν −Q2

• Elastic scattering
(Whole system recoils, x = 1, W = M)

• Resonances 
(x < 1, W < 2 GeV)

• Valence quarks
(x ≥ 0.3, W > 2 GeV)

• Sea quarks, gluons
(x < 0.3)

• “Wee Partons”
(x ® 0, Diffraction,
Pomerons)

63

x = energy fraction of hit object = Q2/2Mn



Kinematic Variables

θS

ν = E −E ' =

k −

k '

q =

k −

k ' ; qµ = (ν, q) = kµ − k 'µ

Q2 = − k − k '( )2 =
q2 −ν 2 ≈ 4EE 'sinθe

2

y =
qµPµ
k µPµ

=
ν
E
; x = Q2

2qµPµ
=

Q2

2Mν
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Lepton variables

Hadron variables

Electron Scattering
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Jefferson Lab in Perspective

Past: 6 GeV

Q2 = < 6 GeV2

x > 0.1…0.6

W = 0.9…3 GeV

Now: 12 GeV

Q2 = 1…13 GeV2

x = 0.06…0.8 

W  < 4 GeV

Q
2  [G
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The future landscape of Nuclear Physics
1. Study how nucleons are made up from quarks (“flavor”, p, L, S -> 3D tomography)
2. Study how hadronic quark structure is influenced by the nuclear environment
3. Understand nuclear structure and dynamics in terms of quark degrees of freedom
4. Study extreme forms of nuclear matter: high energy (Quark-Gluon plasma), high 

density (short range correlations, n stars, “color glass condensates”,…), non-zero 
strangeness (hypernuclei, strangelets, …), large n/p imbalance (radioactive beams)…

5. Study fundamental symmetries, neutrinos, nuclei in the universe
6. Develop new applications in medicine, energy, materials, homeland security, …

Jlab

Electron-
Ion-
Collider
(2025?)LHC

FAIR

J-PARC


