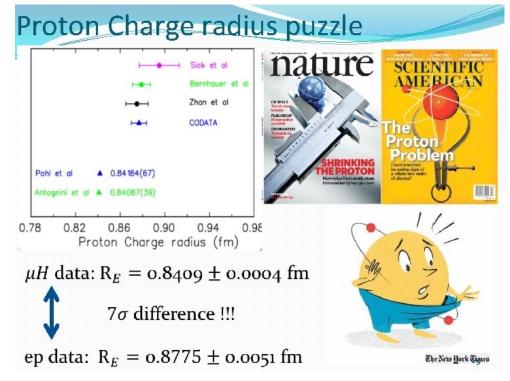
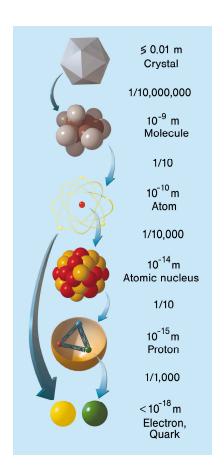
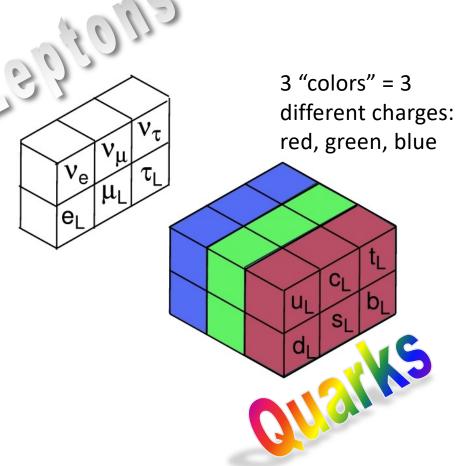

Quarks and Hadron Structure

The Structure of Matter




The Structure of Matter

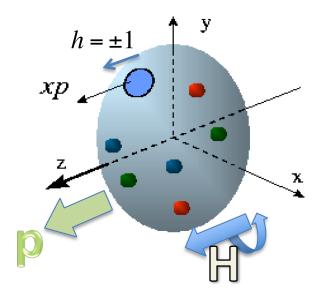
The NucleON (and other hadronic matter)


Elementary Particle Physics

- Everything (matter, waves,...) is ultimately composed of smallest units particles!
- Have already encountered some particles: Protons, neutrons, electrons, positrons, neutrinos, photons,...
- First 2 are not fundamental they are made from quarks which are truly point-like (as far as we know)
- Study particles at huge accelerators using big detectors; compare with fundamental theory

Matter Particles

- Make up visible matter
- Pointlike (<10⁻¹⁸ m), Fundamental *)
- Have mass (from < ½ eV to 178,000,000,000 eV = 178 GeV)
- Distinct from their antiparticles *)
- Fermions (Spin ½) ⇒
 they "defend" their space (Pauli Principle) and can only be created in particle-antiparticle pairs
- Can be "virtual", but make up matter being (nearly) "real"
- "stable" (against strong decays; lifetimes from ∞ to 10⁻²⁴ s)



x2 for R, x2 for antiparticles

^{*)} Until further notice

Inclusive lepton scattering

Parton model: DIS can access

$$q(x;Q^2), \langle h \cdot H \rangle q(x;Q^2)$$

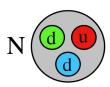
Traditional "1-D" Parton Distributions (PDFs) (integrated over many variables)

$$F_1(x) = \frac{1}{2} \sum_{i} e_i^2 q_i(x) \text{ (and } F_2(x) \approx 2x F_1(x) \text{)}$$
 Wandzura-
Wilczek
$$g_1(x) = \frac{1}{2} \sum_{i} e_i^2 \Delta q_i(x) \text{ (and } g_2(x) \approx -g_1(x) + \int_x^1 \frac{g_1(y)}{y} dy \text{)}$$

At finite Q²: pQCD evolution $(q(x,Q^2), \Delta q(x,Q^2)) \Rightarrow$ DGLAP equations), and gluon radiation

$$g_1(x,Q^2)_{pQCD} = \frac{1}{2} \sum_{q}^{N_f} e_q^2 \left[(\Delta q + \Delta q) \otimes \left(1 + \frac{\alpha_s(Q^2)}{2\pi} \delta C_q \right) + \frac{\alpha_s(Q^2)}{2\pi} \Delta G \otimes \frac{\delta C_G}{N_f} \right]$$

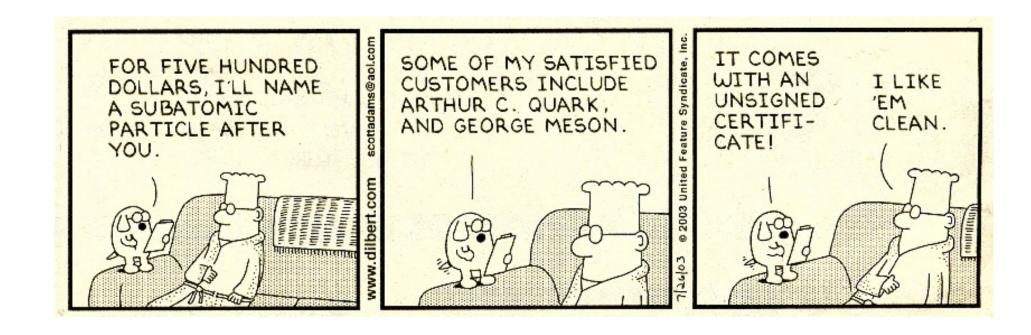
 \Rightarrow access to gluons. δC_a , δC_G – Wilson coefficient functions


SIDIS: Tag the flavor of the struck guark with the leading FS hadron \Rightarrow separate $q_i(x, Q^2)$, $\Delta q_i(x, Q^2)$

Jefferson Lab kinematics: $Q^2 \approx M^2 \Rightarrow$ target mass effects, higher twist contributions and resonance excitations

Non-zero
$$R = \frac{F_2}{2xF_1} \left(\frac{4M^2x^2}{Q^2} + 1 \right) - 1$$
, $g_2^{HT}(x) = g_2(x) - g_2^{WW}(x)$
Further Q^2 -dependence (power series in $\frac{1}{Q^n}$)

Hadronic Particle Zoo


P du

- what can one build from quarks?

Family Name	Particle Name	Particle Symbol	Antiparticle Symbol	Composition	Mass	Electric Charge	Lifetime in Seconds
baryon	proton	p or p+	p.	uud	1,836	+1	stable
	neutron	n or nº		udd	1,839	0	887
	lambda	Λ^{v}	$\frac{n}{\Lambda}$	uds	2,183	0	2.6×10^{-11}
	lambda-c	Λ_c^+	Λ_{τ}	udc	4,471	+1	2.1 × 10 ⁻¹³
	lambda-b	$\Lambda^0_{\rm h}$	$\Lambda^0_{\rm h}$	udb	11,000	0	1.1 × 10 ⁻¹⁷
	sigma	$\frac{\Lambda_{h}^{0}}{\Sigma_{+}}$	$\Lambda^{\Gamma_E}_{h}$ Σ^+	UUS	2,328	+1	0.8×10^{-11}
		Σ^0	Σ^0	(ud±du)s	2,334	0	7.4×10^{-25}
			-	√2			
		Σ	Σ^+	dds	2,343	-1	1.5 × 10 ⁻¹¹
	χÚ	王0	三	USS	2,573	0	2.9×10^{-11}
		五	Ξ'	dss	2,585	-1	1.6×10^{-11}
	xi-c	宝"。	Ξ',	dsc	4,834	0	9.8×10^{-14}
		五を	五、	USC	4,826	+1	3.5×10^{-13}
	omega	Ω	Ω^+	555	3,272	-1 0	0.8×10^{-11}
	omega-c		Σ' H' H' Ω' Ω' Ω'	SSC	5,292	0	6.4 × 10 ⁻¹⁴
meson	pion	w+	π-	ud _	273	+1	2.6 × 10 ⁻⁹
		и 0	π^{0}	$\frac{(u\bar{u}-d\bar{d})}{\sqrt{2}}$	264	0	8.4×10^{-17}
	kaon*	K+	K-	uš	966	+1	1.2 × 10 ⁻⁸
		K ₀	K ₁	dš	974	0	8.9 × 10 ⁻¹¹ 5.2 × 10 ⁻⁸
	1/psi	J or Ψ	1 or Ψ	(7)	6,060	0	1.0×10^{-25}
	omega	100	w	$\frac{(u\bar{u}+d\bar{d})}{\sqrt{2}}$	1,532	0	6.6 × 10-™
	eta	71	η	$\frac{(u\bar{u}+d\bar{d})}{\sqrt{2}}$	1,071	0	3.5 × 10 ⁻⁷⁷
	eta-c	ης	ηc	55	5,832	0	3.1×10^{-22}
	В	η _c B ¹	nc B	qp CC	10,331	0	1.6×10^{-13}
		8+	B-	uБ	10,331	+1	1.6×10^{-12}
	B-s	B ¹ _s	81,	sb	10,507	0	1.6×10^{-17}
	D	D ₀	8- 81, D ₀	CII	3,649	0	4.2 × 10-13
	100	D ₊		cŭ cđ cs	3,658	+1	1.1×10^{-12}
	D-5	D+,	D-	CŠ	3,852	+1 0	4.7×10^{-13}
	chi	X ⁰ c	X ⁰ c	CČ	6,687	0	3.0×10^{-12}
	psi	D+3 X ⁰ c Ψ ⁰ c Y	\mathbf{Y}^{0_c} \mathbf{Y}^{0_c}	cč cč bb	7,213	0	1.5 × 10 ⁻³¹
	upsilon	Y	Y	bb	18,513	0	8.0 × 10-31

^{*}The neutral kaon is composed of two particles; the average lifetime of each particle is given.

See also http://particleadventure.org