
Elementary Particle Physics

• Everything (matter, waves,…) is ultimately 
composed of smallest units - particles!

• Have already encountered some particles: 
Protons, neutrons, electrons, positrons, neutrinos, 
photons,…

• First 2 are not fundamental - they are made from 
quarks which are truly point-like (as far as we 
know)

• Study particles at huge accelerators using big 
detectors; compare with fundamental theory
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Matter Particles
• Make up visible matter
• Pointlike (<10-18 m), 

Fundamental *)

• Have mass (from < ½ eV to 
178,000,000,000 eV = 178 GeV)

• Distinct from their antiparticles *)
• Fermions (Spin ½) Þ 

they “defend” their space (Pauli 
Principle) and can only be 
created in particle-antiparticle 
pairs 

• Can be “virtual”, but make up 
matter being (nearly) “real”

• “stable” (against strong decays; 
lifetimes from ∞ to 10-24 s)

*) Until further notice

x2 for R, x2 for antiparticles

3 “colors” = 3 
different charges: 
red, green, blue



Forces and Force Carriers

• Mediate Interactions 
(Forces) - form “Waves”

• Pointlike, Fundamental
• Massless *)

• Some are their own 
antiparticles 
(photon, Z0, graviton)

• Spin 1, 2 -> Bosons 
(tend to cluster together, 
can be produced in 
arbitrary numbers)

• Can be real, but carry forces 
as virtual particles

• Some are absolutely stable 
(g, gluons, gravitons)

*) See next slide

Note: gluons come in 8 possible 
combinations of color/anticolor  
(9th is “sterile” – doesn’t exist)



Higgs Field
• Create “Drag” on Particles (“Molasses”)
• Origin of Mass

Makes some gauge bosons very heavy (W’s, Z’s) 
and therefore short-range (“Weak” interaction)

• Origin of electroweak symmetry breaking
• Pointlike, Fundamental
• Bosons (Spin 0)
• Three massless (“swallowed up” by W’s, Z’s); one 

very massive (>100 GeV)
• Discovered at the Large Hadron Collider (LHC) at 

CERN on July 4, 2012





Fundamental Problem of Nuclear and 
Hadronic Physics

• Nearly all well-known (“visible”) mass in the universe is due to 
hadronic matter

• Fundamental theory of hadronic matter exists since the 1960’s: 
Quantum Chromo Dynamics

– “Colored” quarks (u,d,c,s,t,b) and gluons; Lagrangian
• BUT: knowing the ingredients doesn’t mean we 

know how to build hadrons and nuclei from them!
– akin to the question: 

“Given bricks and mortar, how do you build a house?”
• Four related puzzles:

– What is the “quark-gluon wave function” of known hadrons?
– How are hadrons (nucleons) bound into nuclei? 

Does their quark-gluon wave function change inside a nucleus?
– How do fast quarks and gluons propagate inside hadronic matter?
– How do fast quarks and gluons turn back into observable hadrons?
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are compared with their measured values. The agreement
is encouraging.

Such calculations clearly demonstrate that confine-
ment and chiral-symmetry breaking are consequences of
solving the equations of QCD. The calculations show us no
massless gluons, nor any fractionally charged particles,
nor the enlarged multiplets that would indicate unbroken
chiral symmetry. Just the observed particles, with the
right properties—neither more nor less.

While these and other massive numerical calcula-
tions give impressive and useful results, they are not the
end of all desire. There are many physically interesting
questions about QCD for which the known numerical
techniques become impractical. Also, it is not entirely sat-
isfying to have our computers acting as oracles, delivering
answers without explanations.
! The second approach is to give up on solving QCD
itself, and to focus instead on models that are simpler to
deal with, but still bear some significant resemblance to
the real thing. Theorists have studied, for example, QCD-
like models in fewer dimensions, or models incorporating
supersymmetry or different gauge groups, and several
other simplified variants. Many edifying insights have
been obtained in this way. By their nature, however, such
modelistic insights are not suited to hard-nosed con-
frontation with physical reality.
! The third approach, which is the subject of the rest of
this article, is to consider physical circumstances in which
the equations somehow become simpler.

Extreme virtuality
The most fundamental simplification of QCD is illustrat-
ed in figure 3. There we see, on the left, the jet-like
appearance of  collision events in which strongly interact-
ing particles (hadrons) are produced in electron–positron
annihilations at high energy. One finds many particles in
the final state, but most of them are clearly organized into
a few collimated “jets” of particles that share a common

direction.6 In about 90% of these hardron-producing
events, there are just two jets, emerging in opposite direc-
tions. Occasionally—in about 9% of the hadronic final
states—one sees three jets.

Compare those multiparticle hadronic events to colli-
sions in which leptons, say muons, are produced. In that
case, about 99% of the time one observes simply a muon
and an antimuon, emerging in opposite directions. But
occasionally—in about 1% of the muonic final states—a
photon is emitted as well.

If history had happened in a different order, the
observation of jet-like hadronic final states would surely
have led physicists to propose that they manifest under-
lying phenomena like those displayed on the right-hand
side of figure 3. Their resemblance to leptonic scattering
and QED would be too striking to ignore.

Eventually, by studying the details of how energy was
apportioned among the jets, and the relative probabilities
of different angles between them, the physicists would
have deduced directly from experimental data that there
are light spin-1/2 and massless spin-1 objects lurking
beneath the appearances, and how these covert objects
couple to one another. By studying the rare 4-jet events,
they could even have learned about the coupling of the
spin-1 particles to each other. So all the basic couplings we
know in QCD might have been inferred, more or less
directly, from experiment. But there would still be one big
puzzle: Why are there jets, rather than simply particles?

The answer is profound, and rich in consequences. It
is that the strength with which gluons couple depends
radically on their energy and momentum. “Hard’’ gluons,
which carry a lot of energy and momentum, couple weak-
ly; whereas the less energetic “soft’’ gluons, couple strong-
ly. Thus, only rarely will a fast-moving colored quark or
gluon emit “radiation” (a gluon) that significantly redi-
rects the flow of energy and momentum. That explains the
collimated flows one sees in jets. On the other hand, there
can be a great deal of soft radiation, which explains the

.

FIGURE 1. THE QCD LAGRANGIAN ⇒ displayed here is, in principle, a complete description of the strong interaction. But, in
practice, it leads to equations that are notoriously hard to solve. Here m

j
and q

j
are the mass and quantum field of the quark of jth

flavor, and A is the gluon field, with spacetime indices m and n and color indices a, b, c. The numerical coefficients f and t guaran-
tee SU(3) color symmetry. Aside from the quark masses, the one coupling constant g is the only free parameter of the theory.
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Quantum chromodynamics,
familiarly called QCD, is

the modern theory of the
strong interaction.1 Historic-
ally its roots are in nuclear
physics and the description of
ordinary matter—understand-
ing what protons and neu-
trons are and how they inter-
act. Nowadays QCD is used to
describe most of what goes on at high-energy accelerators.

Twenty or even fifteen years ago, this activity was
commonly called “testing QCD.” Such is the success of the
theory, that we now speak instead of “calculating QCD
backgrounds” for the investigation of more speculative
phenomena. For example, discovery of the heavy W and Z
bosons that mediate the weak interaction, or of the top
quark, would have been a much more difficult and uncer-
tain affair if one did not have a precise, reliable under-
standing of the more common processes governed by
QCD. With regard to things still to be found, search
strategies for the Higgs particle and for manifestations of
supersymmetry depend on detailed understanding of pro-
duction mechanisms and backgrounds calculated by
means of QCD.

Quantum chromodynamics is a precise and beautiful
theory. One reflection of this elegance is that the essence
of QCD can be portrayed, without severe distortion, in the
few simple pictures at the bottom of the box on the next
page. But first, for comparison, let me remind you that the
essence of quantum electrodynamics (QED), which is a
generation older than QCD, can be portrayed by the sin-
gle picture at the top of the box, which represents the
interaction vertex at which a photon responds to the pres-
ence or motion of electric charge.2 This is not just a
metaphor. Quite definite and precise algorithms for calcu-
lating physical processes are attached to the Feynman
graphs of QED, constructed by connecting just such inter-
action vertices.

In the same pictorial language, QCD appears as an
expanded version of QED. Whereas in QED there is just
one kind of charge, QCD has three different kinds of
charge, labeled by “color.” Avoiding chauvinism, we might
choose red, green, and blue. But, of course, the color
charges of QCD have nothing to do with physical colors.
Rather, they have properties analogous to electric charge.
In particular, the color charges are conserved in all phys-
ical processes, and there are photon-like massless parti-
cles, called color gluons, that respond in appropriate ways

to the presence or motion of
color charge, very similar to
the way photons respond to
electric charge.

Quarks and gluons
One class of particles that
carry color charge are the
quarks. We know of six differ-
ent kinds, or “flavors,” of

quarks—denoted u, d, s, c, b, and t, for:  up, down,
strange, charmed, bottom, and top. Of these, only u and d
quarks play a significant role in the structure of ordinary
matter. The other, much heavier quarks are all unstable.
A quark of any one of the six flavors can also carry a unit
of any of the three color charges. Although the different
quark flavors all have different masses, the theory is per-
fectly symmetrical with respect to the three colors. This
color symmetry is described by the Lie group SU(3). 

Quarks are spin-1/2 point particles, very much like
electrons. But instead of electric charge, they carry color
charge. To be more precise, quarks carry fractional elec-
tric charge (+ 2e/3 for the u, c, and t quarks, and – e/3 for
the d, s, and b quarks) in addition to their color charge.

For all their similarities, however, there are a few
crucial differences between QCD and QED. First of all,
the response of gluons to color charge, as measured by the
QCD coupling constant, is much more vigorous than the
response of photons to electric charge. Second, as shown
in the box, in addition to just responding to color charge,
gluons can also change one color charge into another. All
possible changes of this kind are allowed, and yet color
charge is conserved. So the gluons themselves must be
able to carry unbalanced color charges. For example, if
absorption of a gluon changes a blue quark into a red
quark, then the gluon itself must have carried one unit of
red charge and minus one unit of blue charge.

All this would seem to require 3 × 3 = 9 different
color gluons. But one particular combination of gluons—
the color-SU(3) singlet—which responds equally to all
charges, is different from the rest. We must remove it if
we are to have a perfectly color-symmetric theory. Then
we are left with only 8 physical gluon states (forming a
color-SU(3) octet). Fortunately, this conclusion is vindicat-
ed by experiment!

The third difference between QCD and QED, which is
the most profound, follows from the second. Because glu-
ons respond to the presence and motion of color charge
and they carry unbalanced color charge, it follows that
gluons, quite unlike photons, respond directly to one
another. Photons, of course, are electrically neutral.
Therefore the laser sword fights you’ve seen in Star Wars
wouldn’t work. But it’s a movie about the future, so maybe
they’re using color gluon lasers.

We can display QCD even more compactly, in terms of
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QCD MADE SIMPLE
Quantum chromodynamics is

conceptually simple. Its realization
in nature, however, is usually
very complex. But not always.
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How many quarks? From PDG



Running of the Strong Coupling Constant
αS µ( ) = 12π

(33− 2nf )ln(µ 2 / Λ2 )

ΛQCD ≈ 0.25 GeV



See also http://particleadventure.org



Hadronic Particle Zoo
- what can one build from quarks?


