
Elementary Particle Physics

- Everything (matter, waves,...) is ultimately composed of smallest units particles!
- Have already encountered some particles: Protons, neutrons, electrons, positrons, neutrinos, photons,...
- First 2 are not fundamental they are made from quarks which are truly point-like (as far as we know)
- Study particles at huge accelerators using big detectors; compare with fundamental theory

Matter Particles

- Make up visible matter
- Pointlike (<10⁻¹⁸ m), Fundamental *)
- Have mass (from < ½ eV to 178,000,000,000 eV = 178 GeV)
- Distinct from their antiparticles *)
- Fermions (Spin ½) ⇒
 they "defend" their space (Pauli
 Principle) and can only be
 created in particle-antiparticle
 pairs
- Can be "virtual", but make up matter being (nearly) "real"
- "stable" (against strong decays; lifetimes from ∞ to 10⁻²⁴ s)

x2 for R, x2 for antiparticles

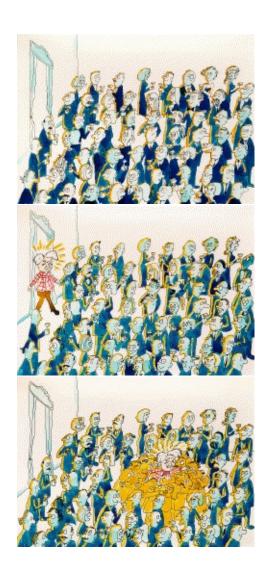
^{*)} Until further notice

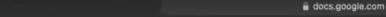
Forces and Force Carriers

- Mediate Interactions (Forces) - form "Waves"
- Pointlike, Fundamental
- Massless *)
- Some are their own antiparticles (photon, Z⁰, graviton)
- Spin 1, 2 -> Bosons (tend to cluster together, can be produced in arbitrary numbers)
- Can be real, but carry forces as virtual particles
- Some are absolutely stable $(\gamma, gluons, gravitons)$

BOSONS force carriers spin = 0, 1, 2,							
Unified Electroweak spin = 1				Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge	
γ photon	0	0		g gluon	0	0	
W ⁻	80.4	-1		Gravitation spin = 2			
W ⁺ Z ⁰	80.4 91.187	+1 0		Name	Mass GeV/c ²	Electric charge	
				g graviton	0	0	

Note: gluons come in 8 possible combinations of color/anticolor (9th is "sterile" – doesn't exist)




^{*)} See next slide

Higgs Field

- Create "Drag" on Particles ("Molasses")
- Origin of Mass
 Makes some gauge bosons very heavy (W's, Z's) and therefore short-range ("Weak" interaction)
- Origin of electroweak symmetry breaking
- Pointlike, Fundamental
- Bosons (Spin 0)
- Three massless ("swallowed up" by W's, Z's); one very massive (>100 GeV)
- Discovered at the Large Hadron Collider (LHC) at CERN on July 4, 2012

REYES 2021 - DAY7 - Exploring the world of quarks and gluons with nuclear femtography

$$-\frac{1}{2} \partial_{\nu} g_{0}^{a} \partial_{\nu} g_{\mu}^{a} - g_{s} f^{abc} \partial_{\mu} g_{s}^{a} g_{b}^{c} - \frac{1}{4} g_{s}^{2} f^{abc} f^{abc} g_{b}^{a} g_{s}^{c} g_{s}^{d} g_{b}^{c} + \frac{1}{2} i g_{s}^{2} (q_{s}^{c} \gamma^{\mu} g_{s}^{c}) g_{h}^{c} - G^{a} G^{a} G^{b} g_{\mu}^{c} - G^{a} g_{\mu$$

Theory of strong interactions, aka QCD

2 + ## 1 ☆ 1

• • • - >

OCD MADE SIMPLE

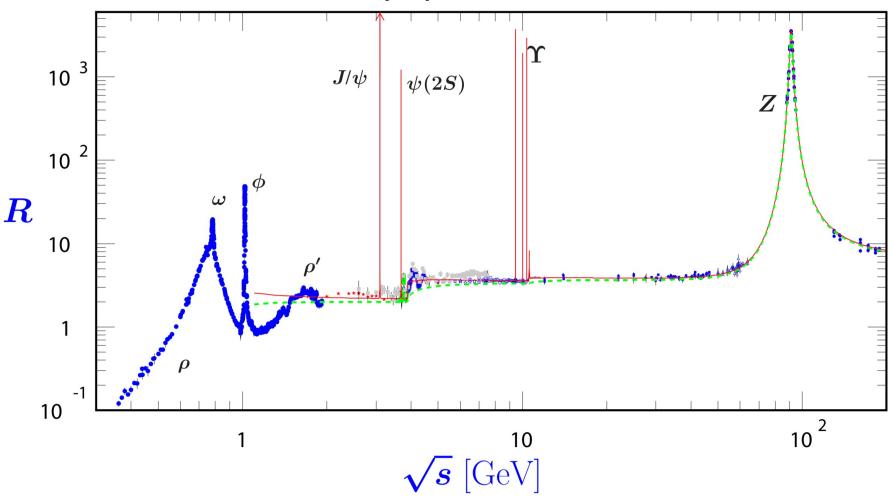
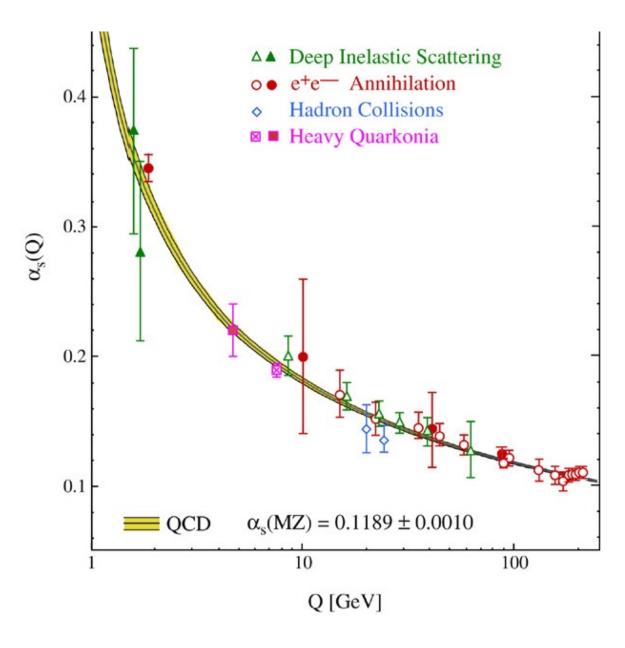
Frank Wilczek 22 August 2000 Physics Today

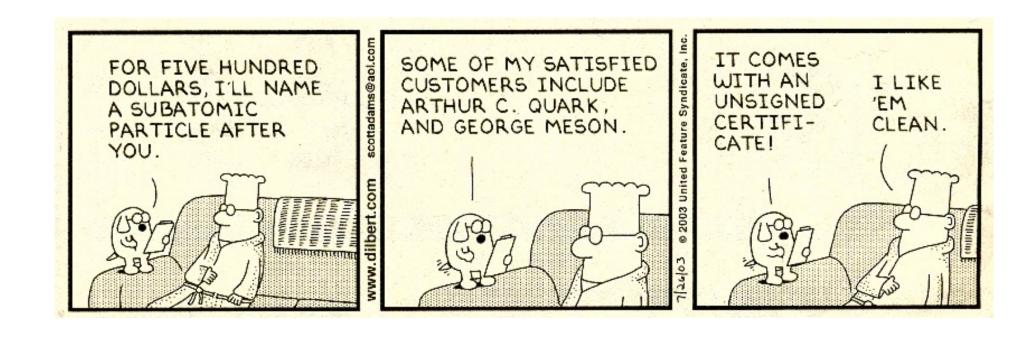
$$\mathcal{J} = \frac{1}{4g^2} G_{\mu\nu} G_{\mu\nu} + \sum_{j} \overline{g}_{j} (i \partial^{\mu} D_{\mu} + m_{j}) g_{j}.$$
where $G_{\mu\nu} = \partial_{\mu} A_{\nu}^{\alpha} - \partial_{\nu} A_{\mu}^{\alpha} + i f_{b\alpha}^{\alpha} A_{\mu} A_{\nu}^{\alpha}$
and $D_{\mu} = \partial_{\mu} + i t^{\alpha} A_{\mu}^{\alpha}$

$$That's it!$$

FIGURE 1. THE QCD LAGRANGIAN \mathcal{L} displayed here is, in principle, a complete description of the strong interaction. But, in practice, it leads to equations that are notoriously hard to solve. Here m_j and q_j are the mass and quantum field of the quark of jth flavor, and A is the gluon field, with spacetime indices μ and ν and color indices a, b, c. The numerical coefficients f and t guarantee SU(3) color symmetry. Aside from the quark masses, the one coupling constant g is the only free parameter of the theory.

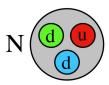
How many quarks? From PDG


Figure 51.2: World data on the total cross section of $e^+e^- \to hadrons$ and the ratio $R(s) = \sigma(e^+e^- \to hadrons, s)/\sigma(e^+e^- \to \mu^+\mu^-, s)$. $\sigma(e^+e^- \to hadrons, s)$ is the experimental cross section corrected for initial state radiation and electron-positron vertex loops, $\sigma(e^+e^- \to \mu^+\mu^-, s) = 4\pi\alpha^2(s)/3s$. Data errors are total below 2 GeV and statistical above 2 GeV. The curves are an educative guide: the broken one (green) is a naive quark-parton model prediction, and the solid one (red) is 3-loop pQCD prediction (see "Quantum Chromodynamics" section of this *Review*, Eq. (9.7) or, for more details, K. G. Chetyrkin *et al.*, Nucl. Phys. **B586**, 56 (2000) (Erratum *ibid.* **B634**, 413 (2002)). Breit-Wigner parameterizations of J/ψ , $\psi(2S)$, and $\Upsilon(nS)$, n = 1, 2, 3, 4 are also shown. The full list of references to the original data and the details of the R ratio extraction from them can be found in [arXiv:hep-ph/0312114]. Corresponding computer-readable data files are available at http://pdg.lbl.gov/current/xsect/. (Courtesy of the COMPAS (Protvino) and HEPDATA (Durham) Groups, August 2017. Corrections by P. Janot (CERN) and M. Schmitt (Northwestern U.))

Running of the Strong Coupling Constant

$$\alpha_{S}(\mu) = \frac{12\pi}{(33 - 2n_{f})\ln(\mu^{2}/\Lambda^{2})}$$


$$\Lambda_{QCD} \approx 0.25 \text{ GeV}$$

See also http://particleadventure.org

Hadronic Particle Zoo

P du

- what can one build from quarks?

Family Name	Particle Name	Particle Symbol	Antiparticle Symbol	Composition	Mass	Electric Charge	Lifetime in Seconds
paryon	proton	p or p+	p.	uud	1,836	+1	stable
	neutron	u ot us	11	udd	1,839	0	887
	lambda	Λ^{0}	Λ̄ ⁰ Λ̄ ⁻ ₋ Λ̄ ⁰ _h Σ̄ ⁺	uds	2,183	0	2.6×10^{-11}
	lambda-c	Λ^+_{ϵ}	$\Lambda_{_{\mathcal{I}}}$	udc	4,471	+1	2.1 × 10 ⁻¹¹
	lambda-b	Σ^+	$\Lambda^{\nu}_{\rm h}$	udb	11,000	0	1.1 × 10 ⁻¹²
	sigma			UUS	2,328	+1	0.8×10^{-11}
		Σ^0	Σ^0	(ud±du)s	2,334	0	7.4×10^{-21}
		5-	<u>\$</u> +	√2 dds	2,343	-1	1.5 × 10 ⁻¹¹
	xi	<u>=</u> 0	Ē1	uss	2,573	0	2.9×10^{-11}
		<u> </u>	=+	dss	2,585	-1	1.6 × 10 ⁻¹¹
	xi-c	量0.	壹0.	dsc	4,834	0	9.8 × 10 ⁻¹⁴
	N. C.	量彩	Ē.	USC	4,826	+1	3.5×10^{-13}
	omega	Ω	Ω^{+}	555	3,272	-1	0.8 × 10 ⁻¹¹
	omega-c	Σ- Ξ- Ξ- Ξ- Ξ- Ξ- Ω ¹ Ω ²	Σ' H' H' Ω' Ω' Ω''	SSC	5,292	0	6.4 × 10 ⁻¹⁴
meson	pion	w+	π*	_ bu	273	+1	2.6 × 10 ⁻⁸
	70	ж0	π^0	$\frac{(u\bar{u}-d\bar{d})}{\sqrt{2}}$	264	0	8.4×10^{-17}
	kaon*	K+	K-	uš	966	+1	1.2×10^{-8}
		K ₀	Ki.	dš	974	0	8.9×10^{-11}
	2012						5.2 × 10-8
	1/psi	J or W	1 or Ψ	(7)	6,060	0	1.0×10^{-25}
	omega	60	60	$\frac{(u\bar{u}+d\bar{d})}{\sqrt{2}}$	1,532	0	6.6 × 10-11
	eta	71	η	$\frac{(u\bar{u}+d\bar{d})}{\sqrt{2}}$	1,071	0	3.5 × 10 ⁻⁷⁷
	eta-c	ης	ηc	(7)	5,832	0	3.1×10^{-22}
	В	B ₃	BI	dБ	10,331	0	1.6×10^{-13}
		B+	B-	d₽ n₽	10,331	+1	1.6×10^{-12}
	B-s	B1 s	9c Bi B- Bi D ₀	sb	10,507	0	1.6×10^{-17}
	D	D ₀	D _u	CII	3,649	0	4.2 × 10 ⁻¹³
		D+	D.	cŭ cđ cš	3,658	+1	1.1×10^{-12}
	D-s	D+,	D-1	C3	3,852	+1	4.7×10^{-13}
	chi	X ⁰ c	X ⁰ c	CČ	6,687	0	3.0 × 10 ⁻¹²
	psi	D+5 X ⁰ c Ψ ⁰ c Y	\mathbf{Y}^{0_c} \mathbf{Y}^{0_c}	cc bb	7,213	0 0	1.5 × 10 ⁻³⁰
	upsilon	Y	Y	pp	18,513	0	8.0 × 10 ⁻³¹

^{*}The neutral kaon is composed of two particles; the average lifetime of each particle is given.