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ABSTRACT

Mining 3He from lunar regolith has attracted significant interest in recent years due to the scarcity of 3He on Earth and its diverse applica-
tions, from cryogenics and medical imaging, to nuclear physics and future nuclear fusion. Given the stringent technical and economic chal-
lenges of mining lunar 3He, precise prospecting is essential. Here, we propose a prospecting methodology based on a radio-frequency
atomic magnetometer, which can detect the dipolar magnetic field of thermally polarized 3He spins. With a 200 g regolith sample and an rf
magnetometer with sensitivity 1 f T=

ffiffiffiffiffiffi
Hz

p
, we can detect 3He with abundance 5 ppb within a measurement time of just 5 min. The associ-

ated apparatus is lightweight and significantly more cost-effective than alternative measurement techniques. The proposed prospecting
method is readily deployable and could substantially improve the technical and economic feasibility of mining lunar 3He.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0283570

I. INTRODUCTION

The Moon is not only a stepping stone for space exploration,1

but also the home of valuable extraterrestrial resources.2 Mining
lunar 3He has attracted considerable interest, on the one hand
because of its limited availability on Earth, and on the other
because of its potential use in nuclear fusion.3 Unlike conventional
D-T fusion, D-3He reactions produce minimal neutron radiation,
enhancing power production efficiency while minimizing long-
term radioactive waste.4 With its nuclear fuel potential aside, 3He is
already used for low temperature physics and cryogenics,5–9

increasingly applied to emerging quantum technologies,10,11 for
magnetic resonance imaging,12 and nuclear physics.13,14

Lunar regolith blankets moon’s surface and contains measur-
able quantities of 3He, at the level of 1–30 ppb,15–17 implanted by
the solar wind,18,19 and measured by analyzing samples returned
by the Apollo20 and later missions.21,22 Over time, exposure to
solar wind has led to the gradual accumulation of 3He, particularly
in titanium-rich minerals, such as ilmenite,23 with an estimated
quantity around 106 tons.3

Extraction of 3He proceeds by heating regolith to temperatures
around 1000K24,25 and separating, e.g., cryogenically, the released
gases.26 The low abundance of 3He requires processing of large reg-
olith mass; hence, the extraction process would have to be per-
formed on moon’s surface. Given the extraction’s non-trivial
technical demands,27 it is crucial to precisely prospect for 3He and
identify areas with the highest abundance.

Here, we propose a direct measurement to detect regolith-
implanted 3He by use of an atomic magnetometer, in particular, a
radio-frequency magnetometer. The proposed method is able to
detect lunar 3He from a 200 g regolith sample at the level of 5 ppb
within a measurement time of 5 min, while consuming minimal
power, and being light-weight. Thus, the proposed detection tech-
nique is readily deployable in the lunar environment. The cost of
the relevant apparatus is negligible compared to mission costs
and significantly less than alternative prospecting methodologies.
Hence, from the economic perspective, the proposed technique
enables swift prospecting campaigns with a compact device, poten-
tially saving on mission duration, complexity, and cost.
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For completeness, we note that several authors28–31 have ques-
tioned the combined technical/economic viability of proposals for
mining lunar 3He, further claiming that other earth-based sources
could come online, such as 3He-breeding reactors. While such
arguments are indeed sound, we note that there are intricate and
many times surprising links between economy and technology. For
example, the outlook of economic viability could change abruptly if
the same infrastructure could be used for mining additional
resources. In any case, we here opt to remain agnostic regarding
the business case for mining lunar 3He and merely delve into the
technical exercise of prospecting for this gas.

The structure of the paper is as follows. In Sec. II, we briefly
discuss existing methodologies for detecting lunar 3He. In Sec. III,
we present the possibility of using a radio-frequency (rf ) atomic
magnetometer. We conclude in Sec. IV.

II. EXISTING TECHNIQUES FOR QUANTIFYING LUNAR
3He

Indirect measurements are primarily based on remote
sensing32–37 from lunar orbiters, most of which probe for titanium,
which shows strong correlation with 3He abundance. While remote
sensing methods provide valuable first-order estimates for identify-
ing promising regions containing 3He, they are inherently limited
in precision and reliability as they rely on correlations rather than
direct measurements. Factors, such as regolith depth, surface expo-
sure history, and the efficiency of solar wind implantation, intro-
duce significant variability difficult to resolve. Thus, direct in situ
measurements remain critical for any mission aiming to mine 3He
at economically viable scales.

So far, such measurements rely mostly on mass
spectrometers,38–45 with several variants, such as quadrupole mass
spectrometry, resonance ionization mass spectrometry, or
time-of-flight mass spectrometry. Such techniques ionize atoms or
molecules with different ionization schemes and then use electro-
magnetic fields to separate the resulting ions based on their
mass-to-charge ratios. While they require very small sample mass
and provide for highly sensitive 3He detection, at the level of 1 ppb,
the necessary equipment is rather bulky, massive, and costly. For
example, the mass spectrometer reported in Ref. 41 has weight over
10 kg and volume over 40 l. A miniaturized time-of-flight mass
spectrometer for lunar water detection has a volume of 7 l.46 For
comparison (see Sec. IV), the device proposed herein has an esti-
mated volume of less than 1 l. In any case, we here wish to propose
an alternative prospecting methodology. The particular methodol-
ogy, or even a hybrid arrangement of several methodologies that
shall be optimal, will be decided when designing a space mission
taking into account numerous engineering constraints beyond mass
or volume of the prospecting device (see Sec. IV).

III. MEASUREMENT WITH AN ATOMIC
MAGNETOMETER

Atomic magnetometers47–55 detect magnetic fields by optically
probing a spin-polarized alkali-metal vapor. The quantum state of
the atoms in the vapor is influenced by the optical pumping and
probing light, atomic collisions, internal atomic hyperfine interac-
tions, and last but not least, by the magnetic field to be measured.

Spin-exchange-relaxation-free-magnetometers56,57 have dem-
onstrated sub-fT magnetic sensitivity at a zero background mag-
netic field. On the other hand, rf magnetometers58–66 are tuned to
work at a specific non-zero bias magnetic field and detect a weak
ac magnetic field at the respective Larmor frequency. Such magne-
tometers utilize the fact that large spin polarization also suppresses
spin-exchange relaxation, and additionally, working at high fre-
quencies alleviates technical noise, such as magnetic noise pro-
duced by the material used to magnetically shield the former
devices.

The general idea of the proposed measurement is the follow-
ing. Lunar 3He shall be extracted from regolith, spin-polarized, and
captured in a small measurement cell. A free-induction decay will
then be induced.67 The precessing spins of the magnetized 3He
vapor will produce a dipolar magnetic field oscillating at the preces-
sion frequency. The rf magnetometer will detect this ac field, as in
atomic-magnetometer-detected nuclear magnetic resonance.68–71 The
envisioned measurement setup is shown in Fig. 1. Parenthetically,
performing a similar measurement in the solid regolith sample
would lead to rather prohibitive spin relaxation times for 3He, and
this is why we need to have 3He be released from regolith and mea-
sured in the gas phase.

A. Number of 3He atoms captured in the
measurement cell

In more detail, lunar 3He shall be extracted by heating a small
regolith sample at Th ¼ 1000K.72 Some of the released gases, such
as H2O, SO2, or H2S, will be captured by a cold trap at a tempera-
ture, e.g., Tp ¼ 100K. The rest of the gases not liquifying will
diffuse toward the measurement volume. Such gases include 4He,
H2, CO, CO2, and N2. For this prospecting measurement, there is
no need to separate them from 3He, as they are nonmagnetic and
their effect on 3He spin-relaxation time is negligible at the low
pressure of this measurement.

Now, we consider the measurement cell of volume
VHe ¼ 1 cm3, also being at temperature Tp. Within the temperature
gradient defined by the heating temperature Th and the
measurement cell temperature Tp, the capture efficiency C of 3He
atoms by the measurement cell should approach73

C ¼ (VHe=Vp)
ffiffiffiffiffiffiffiffiffiffiffiffi
Th=Tp

p
=(Vh=Vp þ

ffiffiffiffiffiffiffiffiffiffiffiffi
Th=Tp

p
), where Vh and Vp are

the gas volumes at temperatures Th and Tp, respectively. Noting
that Vp ¼ Vgh þ VHe, where Vgh is the volume of the gas-handling
system (also at temperature Tp) other than the measurement cell,
and assuming Vgh ¼ VHe and Vp ¼ Vh, it follows that C � 38%.

Given a regolith sample of mass ms ¼ 200 g and density
1:5 g=cm3, and denoting by ~m (with unit ppb) the 3He mass abun-
dance, the resulting 3He atom number in the measurement cell will
be

NHe � 2� 1016
h C
38%

ih ~m
1 ppb

ih ms

200 g

i
: (1)

B. Thermal spin polarization of 3He

Before entering the measurement cell, 3He shall be pre-
polarized inside a polarizing magnetic field Bp ¼ 1T and at
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temperature Tp. Such magnetic field can be readily established with
small permanent magnets in a Halbach design.74,75 In this step,
3He spins will be thermally polarized, attaining polarization
PHe � μBp=kBTp, where μ ¼ 1:07� 10�26 J=T is the nuclear mag-
netic moment of 3He and kB ¼ 1:38� 10�23 J=K is Boltzmann’s
constant. It follows that

PHe � 8� 10�6 [Bp=1 T]

[Tp=100K]
: (2)

During this pre-polarization step, 3He will be diffusing through a
porous material,76 which serves to slow down the diffusion of 3He
atoms and, thus, increase the time they spend in the polarizing
magnetic field. The transit time through this material should be
larger than the longitudinal relaxation time T1. This can be accom-
modated by materials such as aerogels.77 For example, consider the
sol-gel used to coat spin-polarized 3He glass cells.78 In one
example, for a 2 atm cell having 2.5 cm diameter, the longitudinal
relaxation time was T1 � 300 h. The 3He self-diffusion coefficient
at this pressure and at room temperature is about79 1 cm2=s; thus,
3He atoms collide with the cell walls about 106 times within the
time T1. For a porous cylinder of length L ¼ 1mm and diameter
1mm, made of the same material and having pores of diameter
2a ¼ 100 nm, 3He atoms will collide with the material about 108

times before exiting; thus, there is enough time for the 3He spin
polarization to equilibrate at the value PHe.

Indeed, in the idealized case of straight cylindrical pores and
diffuse wall scattering, the Knudsen diffusion coefficient is
DK ¼ 2

3 a�v, where �v ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8kBTp=πm

p � 103 m=s. Thus,
DK � 3� 10�5 m2=s. The nominal transit time across the length L
is t0 � L2=2DK � 20ms, and the wall-hit frequency is
νwall � �v=a � 2� 1010 s�1, so the number of collisions with the
sol-gel is νwall t0 � 4� 108, as stated in the previous paragraph.

In a realistic porous medium of porosity (void fraction) p � 1
and tortuosity (squared ratio of actual path length to straight
length) τ � 1, the effective diffusion constant becomes
Deff ¼ (p=τ)DK , and the transit time and collision count change
accordingly. For example, for p ¼ 0:5 and τ ¼ 3, the time t0
becomes 100ms and the number of collisions 20� 108. In any
case, the transit time is negligible compared to the magnetometric
measurement time to be discussed later. Finally, the relaxation due
to collisions with the glass wall containing the porous material is
negligible when the porous material tightly fits the glass cylinder
and in any case would reduce the relaxation time, which would
further ensure the thermal equilibrium spin polarization of 3He.

The measurement cell resides in a holding magnetic field
Bh , Bp, e.g., Bh ¼ 10G. This is because it is less straightforward
to create a strong magnetic field for volumes large enough to
accommodate the measurement cell. Thus, we opt to pre-polarize
3He in the “large” polarizing field Bp. Then, the measurement can
proceed in a lower, albeit homogeneous holding magnetic field Bh.
The rf magnetometer resides in a smaller magnetic field, chosen so
that the Larmor resonance of the employed alkali-metal atom coin-
cides with the precession frequency of the 3He spins. This does not

FIG. 1. Schematic (not drawn to scale) apparatus for measuring the abundance of 3He in regolith. A regolith sample of mass ms ¼ 200 g is heated, and the extracted
gases flow through a cold trap at Tp ¼ 100 K. Then, follows a polarizing magnetic field Bp ¼ 1 T, where 3He is thermally spin-polarized by flowing through a porous mate-
rial designed to match diffusion time with longitudinal spin-relaxation time. Finally, the gas enters the measurement cell inside a smaller and homogeneous holding mag-
netic field Bh ¼ 10G. A free-induction decay is induced, and the resulting oscillating magnetic dipolar field produced by 3He spins is detected by the radio-frequency
magnetometer.
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seem to present any practical problem, because the magnetic field
of, e.g., a Helmholtz coil or a solenoid enclosing the 3He measure-
ment volume, drops off as distance�3 along the off-axis direction.
For the cm-scale 3He cell and a similar size coil, this provides
ample space for the magnetometer to reside in the proper magnetic
field.

C. Measurement of the 3He dipolar magnetic field
with an rf magnetometer

With a π=2-pulse, the 3He spins can be tipped to a direction
orthogonal to the holding magnetic field and will precess about it
with frequency ω ¼ γBh, where γ ¼ 2π � 3:24 kHz=G. Let z be the
unit vector along the common direction of the polarizing magnetic
field, the holding magnetic field, and the initial magnetization of
3He. After the π=2-pulse, 3He spins will precess in the x–y plane
(see Fig. 1), and their total magnetic moment will be
m ¼ M(x cosωt þ y sinωt)e�t=T2 , where M ¼ μNHePHe, with NHe

and PHe given by Eqs. (1) and (2), respectively, and T2 being the
transverse spin-relaxation time.

Assuming a spherical measurement cell, the dipolar magnetic
field produced by a magnetized 3He gas at a distance R away from
the measurement cell’s center along the x-axis will be
BHee�t=T2 cosωt, where the magnitude BHe ¼ μ0M=2πR3, with
μ0 ¼ 4π � 10�7 Tm=A being vacuum’s magnetic permeability. This
magnetic field is to be sensed by the rf magnetometer. Given that
the magnetometer sensor cell is not point-like, we assume an
average distance between the center of the sensor cell and the
center of the measurement cell R � 3 cm. Then,

BHe ¼ (12 aT)
[Bp=1 T]

[Tp=100K]

h C
38%

ih ~m
1 ppb

ih ms

200 g

i
: (3)

The 3He partial pressure in the measurement cell is about 0.2 Torr.
We assume that the rest of the gases being released from heating
the regolith sample have a mass abundance similar to 3He; thus, we
consider a total pressure of 1 Torr in the measurement cell. At such
low pressures and for a realistic homogeneity of the holding mag-
netic field, with gradient at the level of j∇Bhj � 1mG=cm, the
transverse spin-relaxation time of 3He is of the order of 1 h.80

Indeed, at such temperature (100 K) and pressure (1 Torr), the 3He
self-diffusion coefficient is79 D � 300 cm2=s. The transverse spin-
relaxation time is81 T2 � 175D=16γ2r4j∇Bhj2, where r � 0:6 cm is
the measurement cell radius for a measurement cell volume
VHe ¼ 1 cm3. Thus, T2 � 2400 s.

Currently, rf magnetometers have sensitivities around
δB ¼ 1:0 fT=

ffiffiffiffiffiffi
Hz

p
.61,63 Thus, for a measurement time τ ¼ 300 s,

one can detect a magnetic field BHe at the level of
δB=

ffiffiffi
τ

p ¼ 0:06 fT, which translates to measuring the abundance of
regolith-implanted 3He with sensitivity 5 ppb. In other words, the
sensitivity, δ ~m, of the proposed measurement can be expressed as a
function of all parameters as

δ ~m
5 ppb

¼
h
δB=1:0 fTffiffiffiffi

Hz
p

i

(12 aT)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[τ=300 s]

q [Tp=100K]

[Bp=1T]

1

[ms=200 g][C=38%]
: (4)

As a consistency check, the parameter dependence of δ ~m makes
intuitive sense: δ ~m is reduced by reducing δB (increasing the mag-
netometer sensitivity), increasing measurement time τ, increasing
the sample mass ms (more 3He atoms extracted), reducing the tem-
perature or increasing the polarizing magnetic field (larger 3He
spin polarization), and increasing the capture efficiency (more 3He
atoms).

We note that the numerical values of the relevant parameters
entering Eq. (4) are what we think reasonable and indicative for the
workings of this measurement. In an actual realization, several
technical design limitations might require different choices for
those parameter values. The way the final result is expressed in
Eq. (4) can readily accommodate other choices of the parameters
and easily lead to the corresponding value for δ ~m by inspection.
Additionally, the sensitivity expressed in (4) is fundamentally
defined by the demand that signal-to-noise ratio (SNR)¼ 1,
although higher values of SNR are practically required for detec-
tion. This can be accommodated by choosing different parameter
values, such as the measurement time, in order to achieve the
desired sensitivity.

IV. DISCUSSION

Here, we wish to discuss the deployability of the proposed
measurement in the lunar environment. Regarding apparatus
volume, we note that there is steady progress toward developing
compact atomic magnetometers;82–85 thus, the magnetic sensor,
including the associated electronics, should not contribute signifi-
cantly to the volume of the apparatus of Fig. 1. The most volumi-
nous component should be the regolith sample of volume
somewhat larger than 100 cm3. The measurement cell of diameter
r � 0:6 cm can be enclosed by a solenoid of similar volume; hence,
the holding magnetic field does not significantly contribute to the
volume, which can overall be significantly smaller than 1 l.

Regarding mass, solenoid wire, electronics, heating, and
gas-handling systems could contribute 1–2 kg.

Regarding power requirements, there are three major loads.
The heating of the atomic magnetometer requires on the order of
100W, and the electronics associated with the sensor around
100W (both numbers are exaggerated on the high side). More sub-
stantial is the power requirement for the heating of the regolith
material. To heat ms ¼ 200 g of lunar regolith to 1000K, given the
specific heat capacity c � 1 kJ=kg=K, and the temperature change
from 100 K of the lunar night to 1000 K, i.e., ΔT ¼ 900K, the
thermal energy required is Q ¼ mcΔT � 180 kJ. Over 300 s, this
translates to 600W. We neglect the power needed to cool the parts
of the apparatus required to be at low temperature since the
ambient temperature during the lunar night is as low. In total,
given an available power of the order of 1 kW, a single prospecting
measurement, including the heating phase and the magnetometry
phase, takes about 10 min and consumes energy of the order of
100Wh. The duration could be reduced if more power is available.
Equivalently, one could increase the measurement time, thus reduc-
ing further the required sample volume according to Eq. (4). This
point reiterates our previous comment that the specific parameter
values entering Eq. (4) will eventually relate to other mission
design parameters, e.g., the available power.
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Regarding cost, it is not straightforward to estimate the cost
incurred by designing and implementing space-grade hardware
realizing the scheme of Fig. 1, but the required equipment alto-
gether should cost significantly less than $0.5 M if it were to be
used in a laboratory.

In Table I, we summarize the aforementioned performance
metrics, again, not within the precision of a technical design report
for a space mission, but within reasonable estimates based on
current laboratory-grade technology.

In summary, the proposed methodology can fit a compact and
low-cost design taking advantage of the robust and
simple-to-operate modern atomic magnetometers. Thus, such pros-
pecting equipment could be readily mounted on a small lunar
rover accompanying the mining infrastructure. One could imagine
that such a rover would in short time sample and prospect regolith
material from several regions. The actual mining machine would
then retrieve regolith material from those regions having the
highest abundance of 3He, for example, larger than 20 ppb.
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