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ABSTRACT
Among the most challenging and heretofore unsolved prob-
lems in accelerator physics is accurate simulation of the col-
lective effects in electron beams. Electron beam dynamics is
crucial in understanding and the design of: (i) high-brightness
synchrotron light sources — powerful tools for cutting-edge
research in physics, biology, medicine and other fields, and
(ii) electron-ion particle colliders, which probe the nature of
matter at unprecedented depths. Serial, or even naively par-
allel, implementation of the electron beam’s self-interaction
is prohibitively costly in terms of efficiency and memory re-
quirements, necessitating simulation times on the order of
months or years. In this paper, we present an innovative,
high-performance, high-fidelity, scalable model for simula-
tion of collective effects in electron beams using state-of-
the-art multicore systems (GPUs, multicore CPUs, and hy-
brid CPU-GPU platform). Our parallel simulation algorithm
implemented on different multicore systems outperforms the
sequential simulation, achieving a performance gain of up to
7.7X and over 50X on the Intel Xeon E5630 CPU and GTX
480 GPU, respectively. It scales nearly linearly with the clus-
ter size. Our simulation code is the first scalable parallel im-
plementation on GPUs, multicore CPUs, and on hybrid CPU-
GPU platform for simulating the collective dynamical effects
of electron beams in accelerator physics.

Author Keywords
Electron Beam Dynamics, High Performance Numerical
Simulations, Parallel Simulation Models

1. INTRODUCTION
When electron bunches traveling at nearly the speed of light
are forced by accelerator magnets to traverse a curved tra-
jectory, they emit bright ultraviolet or x-ray radiation. If the
radiation wavelength is larger than the electron bunch itself,
coherent synchrotron radiation (CSR) is produced. CSR leads
to a host of deleterious effects, such as emittance degradation
and microbunching instability, thereby degrading or entirely
erasing the electron beam’s experimental usefulness.

There are two main settings in which CSR effects are cru-
cially important. First setting is the synchrotron light sources,
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a powerful tool for cutting edge research in physics, biol-
ogy, chemistry, material science, energy, medicine and other
fields. Second is the next-generation electron-ion colliders,
the future of nuclear physics, which are poised to study the
nature of matter at unprecedented depths.

One of the most critical needs for electron machines is to
develop efficient codes for simulating collective effects that
severely degrade beam quality, such as CSR and CSR-driven
microbunching instability [4,10,18–20]. The aim of this pro-
posal is to develop an innovative code for high-fidelity sim-
ulation of electron beams, which is the essential first step
in mitigating the damaging effects of CSR. However, with
present tools, such accurate modeling is not possible; it re-
quires new computational models. These new accurate and
high-resolution numerical models have to deal with vast com-
putational and memory requirements associated with storing
the beam history and computing the beam self-forces. They
also have to be robust and efficient in order to address the ac-
curacy and resolution problems, and have to be amenable to
massive parallelism.

In this paper, we propose a fundamentally new, high-fidelity,
and high-performance model for simulating CSR and other
collective effects in an electron beam using state-of-the-
art computing platforms. The proposed method is opti-
mized to run efficiently on different computing platforms
such as GPUs, multicore CPUs and on hybrid CPU-GPU.
Our implementation of the inherently parallelizable compu-
tation of beams self-interaction on a multicore platform leads
to orders-of-magnitude reduction in computational time,
thereby making the previously inaccessible physics tractable.
The paper is organized as follows. Section 2 presents an
overview of the related work. In Section 3, we present the
physical model, and in Section 4 its parallel implementation
on GPU, CPU and hybrid GPU-CPU platforms. Section 5
reports on the results of the comparison between the new par-
allel implementation and the original serial version. Finally,
in Section 6 we summarize our finding and conclude.

2. RELATED WORK
Present CSR simulation tools employ a number of approxi-
mation in the study of CSR effects. For example, the CSR cal-
culation in elegant [10] is based on the analysis of bunch self-
interaction for a rigid-line bunch. This code is widely used for
accelerator design and is the first to reveal CSR-induced mi-
crobunching in bunch compressors. However, in the regime



of extreme bunch compression when the bunch deflection is
appreciable, the 1D approximation used in elegant may not be
appropriate [14]. The earliest 2D CSR simulation is TraFiC4

[1]. Here electro-magnetic (EM) fields are generated from the
source particles moving along prescribed orbit, and CSR ef-
fects are calculated from the impact of these EM fields on the
dynamics of test particles. An early self-consistent CSR sim-
ulation was developed by [11,12]. This code calculates direct
interaction between microparticles, with the retarded poten-
tials obtained by integrating bunch distribution over retarded
times. However, the computation efficiency for this code is
severely limited by the direct particle-particle interaction em-
ployed in the model. Recently, Bassi et al. [7] have developed
a highly efficient, high-resolution 2D self-consistent code for
simulation of the CSR effects. This simulation has generated
interesting results on CSR-induced microbunching in bunch
compressors. Currently, the code assumes linear optics, so
the effects caused by nonlinear optics are not included. Self-
consistent CSR simulations based on finite element method
was pioneered by Agoh and Yokoya [17]. This method can
include boundary effect by chamber walls much easier than
the Greens function approach. More comprehensive review
of the status of CSR simulation can be found in the review
article by Bassi et al. [6].

3. PROPOSED MODEL FOR NUMERICAL SIMULATION
OF COHERENT SYNCHROTRON RADIATION

In this section, we provide an overview of the general equa-
tions that numerical CSR simulation model is solving. We
then briefly describe the particle tracking approach used in
our simulation and followed by a detailed outline of the sim-
ulation algorithm. Finally, we describe the crucial and by far
the most computationally intensive step of the simulation.

3.1 Physical Problem
The dynamics of electron beams is captured by the Lorentz
force [11]:

d

dt
(γmev) = e (E + β ×B) , (1)

with the relativistic β and γ, velocity v, electric field E and
magnetic fieldB specified as, respectively,

β ≡ v/c, γ =
1√

1 + β2
, v(p) =

p/me√
1 + p · p/(mec)2

, (2a)

E = −∇φ−
1

c
∂tA, B = ∇×A. (2b)

φ and A the retarded scalar and vector potentials, respec-
tively. They are obtained by integrating the charge distribu-
tion ρ and the charge current density J over the retarded time
t′ = t− |r − r′|/c:[

φ(r, t)
A(r, t)

]
=

∫ ∞
0

[
ρ(r′, t− r−r′

c
)

J(r′, t− r−r′

c
)

]
d2r′

|r− r′|
, (3a)

[
ρ(r, t)
J(r, t)

]
=

∫ ∞
0

[
1
v(p)

]
f(r,p, t)dp. (3b)

r and p are particle coordinates and momentum, respec-
tively, f(r,p, t) is the particle distribution function (DF) of
the beam in phase space, me electron mass, c the speed of
light. Both electric and magnetic fields are composed of two

components, one due to external fields and the other due to
self-fields: E = Eext + Eself , B = Bext + Bself . Eext

and Bext are external electromagnetic (EM) fields fixed by
the accelerator lattice, and Eself and Bself are the EM fields
from the beam self-interaction. The beam self-interaction de-
pends on the history of the beam charge distribution ρ and
current density J via the retarded potentials φ andA.

Computation of the retarded potentials requires integration
over the history of the charge distribution and current density,
as can be seen from Equation 3a. This is the main compu-
tational bottleneck of the CSR simulations. In particular, the
problems to overcome in a successful CSR simulation are: (i)
data storage for the time-dependent beam quantities (ρ and
J ); (ii) numerical treatment of retardation and singularity in
the integral equation for retarded potentials; and (iii) accurate
and efficient multidimensional integration in the equation for
retarded potentials.

Figure 1: Three coordinate systems along the beamline: Frenet frame (s, x),
lab frame (X,Y ), and grid frame (X̃, Ỹ ).

3.2 Frames of Reference
Different calculations in the simulation are best performed
in different coordinate frames, shown in Figure 1: beam dy-
namics (particle pushing) in Frenet frame (FF), computation
of retarded potentials in lab frame (LF), and gridding and in-
terpolation in grid frame (GF).

Frenet frame (x, s) is defined so that x ≡ r − r0 is the
horizontal offset from the designed orbit, and s ≡ r0θ is the
longitudinal coordinate:

s− sp = r0θ, x = r − r0, (4)

and corresponding momenta

ps =
γθ̇r

c
= γβs, px =

γṙ

c
= γβx, (5)

where sp is the position along the beam line at the end of the
previous lattice element, r and θ are polar coordinates of the
curved orbits, and r0 is the radial coordinate of the designed
orbit.

Lab frame (X,Y ) is defined as the Cartesian coordinates in
the plane of the beam lattice. The corresponding momenta
are defined as

pX =
γẊ

c
= γβX , pY =

γẎ

c
= γβY . (6)



Figure 2: Computational grid tightly envelops the particle distribution. Its
size is determined by the outliers of the distribution along the principal axes
(along the red line and perpendicular to it). Red line denotes the design orbit.

Grid frame (X̃, Ỹ ) is defined as the scaled and rotated LF:[
X̃
Ỹ

]
=

[ 1
LX

cosα 1
LX

sinα

− 1
LY

sinα 1
LY

cosα

] [
X −X0

Y − Y0

]
, (7)

where α is the angle between the design orbit and the com-
putational box, center of charge (X0, Y0) is the center of the
computational box, and LX and LY specify the size of com-
putational box (as in Figure 2).

3.3 Particle Tracking Approach
Equations in Section 3.1 can be solved either directly, by sam-
pling the entire phase space of the DF, either on a grid or in a
appropriate basis [5], or by using a particle tracking approach
which is most dominant in CSR simulations. Computational
requirements associated with sampling the entire phase space
limit the direct solvers to low dimensions (usually 1D). Track-
ing methods are less restrictive owing to the fact that the sam-
pling of the phase space is done only through simulation par-
ticles. This allows the study in higher-dimensional systems,
which gives them a clear advantage and makes them a pre-
ferred method for modeling CSR effects. We use Particle-
in-cell (PIC) tracking method to simulate the multiple par-
ticle systems, such as charged particle beams, galaxies, or
plasma [2,3,15]. PIC codes sample a particle DF with a large
number of point-particles, which do not interact directly with
each other, but only through a mean-field of the gridded rep-
resentation (Figure 2).

3.4 Outline of the Algorithm
At the top-most level, algorithm for simulation of CSR and
other collective effects in electron beams consist of four con-
secutive steps that are computed at each timestep:

1. Deposit the DF sampled by N particles onto the compu-
tational grid using the PIC deposition scheme [2, 3, 15],
thereby yielding the charge (ρ) and current density (J ) on
each grid point. This involves an inverse interpolation from
the particle position to the nearest grid points.

2. Compute retarded potentials on the grid via quadratures de-
fined in Equation 3a for all the grid points. This is the
crucial and by far the most computationally-intensive step.
The details are described in subsection 3.5.

Figure 3: Integration for the retarded potential quadrature in Eq. (8) for a
typical grid point. At different retarded times t′, the computational boxes
are shown in red, circles of causality in light grey and the intersection of the
two in black. The black lines represent the limits of integration in θ′. Each
continuous line represents a separate “cut”. Dark grey line denotes the limit
of radial integration Rmax.

3. Compute the self-forces from Equation 1 on a grid. Next,
for each simulation particle compute the self-forces acting
on it by interpolating from the grid. It is required that the
particle deposition onto the grid and interpolation from the
grid onto particles is done in the same manner, so as to
avoid “ghost forces”.

4. Advance particles by a small time step ∆t in time by solv-
ing the Lorentz equation (given in Equation 1) using a leap-
frog scheme [11]. The implementation is identical to that
in [11].

The steps 1-4 are repeated until the end of simulations. The
coordinates of the rectangular computational grid of resolu-
tion (NX , NY ) is first tilted through angle α from the design
orbit in the (X,Y ) plane, so as to account for the X-Y corre-
lations (Figure 2). Computational gridGt = {X̃i, Ỹj}i=1,NX

j=1,NY

at time t is constructed to envelope all particles such that the
outliers in the tilted plane are binned into the boundary cells.
Orienting the beam in such a way so as to occupy the smallest
volume while containing all the particles yields optimal spa-
tial resolution on a fixed-size, rectangular grid. Therefore, at
each timestep, the grid is uniquely described by its tilt angle
α, physical size of the grid in X- and Y - directions, LX and
LY respectively and the location of its center of charge point
(X0, Y0). In the description below, Pt represents the param-
eters that uniquely describe a grid at time t and P represents
the vector of unique parameters for all timesteps.
3.5 Computing the retarded potentials on the grid
The retarded potentials φ(Gtk , tk) and A(Gtk , tk) for all the
grids points on a grid Gtk at time tk are computed using the
quadrature defined in Equation 3a which uses general values
of ρ(Gt, t) and J(Gt, t) found by interpolation. In order to
avoid singularity at r′ = 0, the integration in Equation 3a is
performed in polar coordinates:[

φ(r, t)
A(r, t)

]
=

Mint∑
i=1

∫ Rmax

0
dR′

∫ θimax

θimin

[
ρ(R′, θ′, t− R′

c
)

J(R′, θ′, t− R′

c
)

]
dθ′, (8)

where Mint is the number of “cuts” (up to 4) of the grid by
the circle of causality t′ = t−R′/c. Rmax is computed from



Algorithm 1 COMPUTEPOTENTIAL(G, P, R, τ , to, Xo, Yo)

1: for all grid point i on grid Gto do
2: Xo ← Xo[i], Yo ← Yo[i]
3: (φi, AXi , AYi)← QUADRATURE(fout, [0, Ri], τ , to, Xo,
Yo, G, P)

4: end for

Algorithm 2 QUADRATURE(fout, [a, b], τ , to, Xo, Yo, G, P)

1: (φ′, A′X , A
′
Y , ε

′) ← QUADRULE(fout, [a, b], to, Xo, Yo, G,
P)

2: H ← ∅
3: PUSH(H, ([a, b], φ′, A′X , A

′
Y , ε

′))
4: while ε′ > τ |φ′| do
5: ([a, b], φ, AX , AY , ε)← POP(H)
6: m← (a+ b)/2.0
7: (φL, AXL, AY L, εL)← QUADRULE(fout, [a,m], to,Xo,
Yo, G, P)

8: (φR, AXR, AY R, εR) ← QUADRULE(fout, [m, b], to,
Xo, Yo, G, P)

9: φ′ ← φ′ − φ+ φL + φR
10: A′X ← A′X −AX +AXL +AXR
11: A′Y ← A′Y −AY +AY L +AY R
12: ε′ ← ε′ − ε+ εL + εR
13: PUSH(H, ([a,m], φL, AXL, AY L, εL))
14: PUSH(H, ([m, b], φR, AXR, AY R, εR))
15: end while
16: return (φ′, A′X , A

′
Y )

the circle of causality (Figure 3). We use the tuple (ρ, JX ,
JY ) to denote the integrand value for a given point (R, θ).

In Equation 8, the integrand is tabulated at discrete points
given in GF, and it is not available in a functional form. The
physical formulation of the problem requires using three dif-
ferent coordinate systems to evaluate the integrand value at
off-grid points. Also, the integrand along the outer dimen-
sion has regions of high variability as well as regions where
change is gradual. In contrast, the inner dimension features
only regions where change is gradual. The form of data and
the nature of integrand determines the approaches that can
be used to evaluate the integral. This necessitates the use of
adaptive integration methods to solve the integral along outer
dimension and Newton-Cotes rules along inner dimension.

In our description below, QUADRATURE procedure imple-
ments the adaptive integration method to solve the outer inte-
gral [16, p. 638]. The heart of the QUADRATURE algorithm
is the procedure QUADRULE(fout, [a, b], to, Xo, Yo, G,P)
which outputs a quadruplet (φ,AX , AY , ε), where φ, AX ,
and AY are the integral estimate representing the scalar and
vector potentials (A’s components AX and AY ) for an grid
point (to, Xo, Yo), ε is an error estimate, fout represents the
integrand along outer dimension in Equation 8 with the val-
ues of the integrand tabulated in a 3D array G, and [a, b] is
the domain of integration along the outer dimension.

We now give a high-level description of the COMPUTEPO-
TENTIAL algorithm (Algorithm 1). The algorithm input is
(G,P, R, τ , to, Xo, Yo), where R is a vector of radial inte-
gration limit Rmax corresponding to each grid point, τ is the
relative error tolerance, to is the timestep at which the double
integral is to be computed, Xo and Yo are the positions for
grids points along the X and Y direction of the grid Gto . The

number of grid points on the grid is NXNY , where NX and
NY denote the grid resolution along X- and Y -directions.
The algorithm executes the QUADRATURE routine to com-
pute the integral value for all the grid points on the grid Gto .
In the QUADRULE routine, the value of the integrand fout
for a given point R is computed by first finding the integra-
tion range θ in LF, and then evaluating the corresponding in-
ner quadrature in GF. The integration range in θ is computed
by finding the intersection between the circles of causality
and the computational box at the retarded time t′ = to−R/c
in LF. Finally, each of the inner quadratures are evaluated us-
ing the Newton-Cotes rule for tabulated data [16, p. 613] in
GF. The integrand values (gridded quantities ρ, JX and JY )
at point (t, x̃, ỹ) for the inner integrals are evaluated via 3D
interpolation of the integrand data recorded in GF at discrete
time steps.

3.6 Algorithm Complexity
Let N denote the number of particles used in the CSR simu-
lation, NX and NY denote the resolution of computational
grid along X- and Y -directions. The deposition of parti-
cle charge and density onto the grid requires Θ(N) opera-
tions. The retarded potentials are computed for all the grid
points, so the total time required to compute these potentials
is

∑
(x,y)∈G

g(x, y), where g(x, y) is the time taken to compute

the retarded potential for a point (x, y) on the grid G. The
function g(x, y) depends on the position of point (x, y) on
the grid, N , NX , NY and on the integration method used
to solve the double integral in Equation 8. Function g(x, y)
for a point (x, y) is a monotonically decreasing function of
N for a fixed value of NX and NY , which is experimentally
shown in Figure 9. The reason for this behavior is that in-
creasing the number of particles with a fixed grid resolution
reduces the numerical noise associated with the distribution
of the integrand values, thereby reducing the number of oper-
ations required to compute the integral to within a prescribed
accuracy. Numerical noise in PIC simulations is inversely
proportional to the square root of the number of particles per
cell in the simulation [3].

4. PARALLEL SIMULATION OF CSR
We propose a scalable two-phase parallel algorithm that uses
the multicores of underlying architecture to speed up the com-
putations of CSR simulation. The algorithm approximates the
integrals (retarded potentials) for each of the NXNY quadra-
tures by adaptively locating the subregions in parallel where
the error estimate is greater than some user-specified error
tolerance. It then calculates the integral and error estimates
on these subregions in parallel. The pseudocode for the al-
gorithm is provided below in the algorithms FIRSTPHASE
(Algorithm 3) and SECONDPHASE (Algorithm 4). In the de-
scription below, every subregion of a quadrature is identified
by the record ([a, b], k), where [a, b] denotes the integration
domain along the outer dimension and k represents an iden-
tifier that uniquely identifies the quadrature for the given grid
point. The proposed algorithm is an extension of our new and
improved multidimensional numerical integration algorithm
proposed in [8,9]. The details of the procedures FIRSTPHASE
and SECONDPHASE are provided in [8, 9].



Algorithm 3 FIRSTPHASE (G, P, R, to, Xo, Yo, τ , Lmax)

1: L← ∅
2: for i = 1 to |R| do
3: φ[i]← 0,AX [i]← 0,AY [i]← 0
4: INSERT(L, ([0, Ri], i))
5: end for
6: while (|L| < Lmax) and (|L| 6= 0) do
7: for all i in parallel do
8: ([ai, bi], ki)← L[i]
9: Xo ← Xo[ki], Yo ← Yo[ki]

10: (φi, AXi , AYi , εi) ← QUADRULE(fout, [ai, bi], to,
Xo, Yo, G, P)

11: INSERT(S, (L[i], φi, AXi , AYi , εi)))
12: end for
13: L← PARTITION(S,Lmax, τ)
14: (φ,AX ,AY )← UPDATE(S, τ,φ,AX ,AY )
15: end while
16: return (L,φ,AX ,AY )

Listing 1: Procedures in FIRSTPHASE

1: function PARTITION((S,Lmax, τ ))
2: for i = 1 to |S| do
3: Let ([ai, bi], ki, φi, AXi, AY i, εi) be the ith record in S
4: if εi ≥ τ then
5: insert ([ai, bi], ki) into L1

6: end if
7: end for
8: d← SPLIT-FACTOR(Lmax, |L1|)
9: for i = 1 to |L1| do

10: Let ([ai, bi], ki) be the ith record in L1

11: split [ai, bi] into d equal parts and insert all these subre-
gions into L2

12: end for
13: return L2

14: end function
15: function UPDATE(S, τ,φ,AX ,AY )
16: for i = 1 to |S| do
17: Let ([ai, bi], ki, φi, AXi, AY i, εi) be the ith record in

S
18: if εi < τ then
19: φ[ki]← φ[ki] + φi
20: AX [ki]← AX [ki] +AXi
21: AY [ki]← AY [ki] +AY i
22: end if
23: end for
24: return (φ,AX ,AY )
25: end function
26: function INITREGIONS(fout, [a, b], N , to, Xo, Yo, G, P)
27: H ← ∅
28: δ ← (b− a)/N
29: for i = 0 to N − 1 parallel do
30: ai ← i · δ
31: bi ← ai + δ
32: (φi, AXi, AY i, εi) ← QUADRULE(fout, [ai, bi], to,

Xo, Yo, G, P)
33: PUSH(H, ([ai, bi], φi, AXi, AY i, εi))
34: end for
35: return H
36: end function

4.1 Implementation on different architectures
In this section, we first describe the implementation of our
proposed parallel algorithm to simulate the electron beam
dynamics on GPU architectures. Next, we discuss the im-
plementation on multicore CPU architectures and then on a
hybrid CPU-GPU architecture which makes use of all the
cores of CPU and GPU of the underlying hardware platform.

Algorithm 4 SECONDPHASE (G, P, to, Xo, Yo, L, φ,AX ,AY )

1: for i = 1 to |L| parallel do
2: Let ([ai, bi], ki) be the ith record in L
3: Xo ← Xo[ki], Yo ← Yo[ki]
4: (φi, AXi , AYi) ← PARALLELQUADRATURE(fout,

[ai, bi], τ , to, Xo, Yo)
5: φ[ki]← φ[ki] + φi
6: AX [ki]← AX [ki] +AXi

7: AY [ki]← AY [ki] +AYi

8: end for
9: return (φ,AX ,AY )

Algorithm 5 PARALLELQUADRATURE(fout, [a, b], τ , to, Xo, Yo,
G, P)

1: S ← INITREGIONS(fout, [a, b], Nt, to, Xo, Yo, G, P)
2: while |S| 6= 0 do
3: L← PARALLELPOP(S,Nt)
4: for i = 0 to |L| parallel do
5: ([ai, bi], φ

′
i, A
′
Xi, A

′
Y i, ε

′
i)← L[i]

6: mi ← (ai + bi)/2.0
7: (φL, AXL, AY L, εL) ← QUADRULE(fout, [ai,mi],
to, Xo, Yo, G, P)

8: (φR, AXR, AY R, εR) ← QUADRULE(fout, [mi, bi],
to, Xo, Yo, G, P)

9: if ε′i > τ then
10: PUSH(S, ([ai,mi], φL, AXL, AY L, εL))
11: PUSH(S, ([mi, bi], φR, AXR, AY R, εR))
12: else
13: φk ← φk + φL + φR − εi
14: AXk ← AXk +AXL +AXR − εi
15: AY k ← AY k +AY L +AY R − εi
16: end if
17: end for
18: end while
19: return (φ,AX , AY )

Furthermore, for each of these implementations we extend
the implementation to a cluster of multicore systems with
CUDA-enabled GPUs.

Implementation on GPU Architecture
In the FIRSTPHASE, we divide the subregions list L evenly
into a block of subregions each of size B, where B is number
threads per block. The number of threads per block depends
on the target GPU architecture, shared memory requirement,
register utilization, and so on. For our experiments, we have
empirically determined the optimal value of B to be 128 for
the Fermi architecture. We then assign each block of subre-
gions of sizeB to a GPU thread block such that a thread from
the block operates on one of the subregions from the list L.
Each thread then computes the quadruple (φ,AX , AY , ε) by
evaluating the QUADRULE for an assigned subregion [a, b].
The quadruple value computed by each thread is stored in a
new global list S along with its subregion [a, b]. Likewise, the
subregions list L in SECONDPHASE procedure is also evenly
divided into blocks of subregions of sizeB. Each thread from
the kernel implementing the SECONDPHASE operates on one
of the subregions from the list L and evaluates the integral es-
timates based on the PARALLELQUADRATURE routine. The
PARALLELQUADRATURE is the extension of quadrature rou-
tine (Algorithm 2) designed to run efficiently on multicore
platforms. The kernel implementing the PARTITION proce-
dure is similar to the partition kernel described in [8].



The accumulation of integral values based on the unique
identifier in both the FIRSTPHASE and SECONDPHASE are
achieved through the atomic operations in GPU. Atomic up-
dates are considered to be slow in the current NVIDIA hard-
ware. However, it is not the atomic operations that limit the
execution speed of the GPU implementation. Instead, the en-
tire routine calculating the retarded potential takes most of
the execution time for a single timestep. In the current im-
plementation the tabulated integrand values (G) are stored in
double-precision floating-point format in global device mem-
ory. Shared memory is used during the update of the scalar
and vector potentials as storage for temporary values. Con-
stant memory is used for storing the vector of grid parameters
(P) and the vector of observation points (Xo,Yo) that do not
change during the course of algorithm execution.

For the cluster implementation, general idea is to extend the
above mentioned single GPU implementation across a cluster
of compute nodes with multiple GPU devices per node. The
computations performed under the while loop in Algorithm
3 is distributed equally among the available GPU devices on
every iteration. This involves dividing the subregions in list L
equally among the available GPU devices on every iteration
and implementing the QUADRULE kernel on each of these
devices along with the procedures PARTITION and UPDATE.
The list L is maintained in the CPU memory for a shared
access from the GPU devices. Communication between
GPU devices attached to a compute node are handled using
OpenMP, whereas the communication between the compute
nodes are handled using MPI programming. All the memory
transfers between GPU devices at a node are done using the
host (compute node) as an intermediary. The implementation
starts by creating an MPI process for each compute node in
the cluster. One of the MPI process (master) initializes and
distributes the constant data and the QUADRULE parameters
which do not change during the course of execution using
MPI routines. The master process initializes the subregions
list L required by the FIRSTPHASE, and partitions the list
equally among the available compute nodes. Each of these
partitions are distributed to the compute nodes using MPI
routines. The process running on every compute node in the
cluster receives a set of subregions from the master process.
These subregions are further partition among the available
GPU devices attached to the compute node. Using OpenMP
routines, each process at a compute node creates a thread
per GPU device attached to the node. A thread running on
a compute node initializes the assigned GPU device and
transfers the subregions list to the GPU device memory.
Next, all the GPU devices executes the FIRSTPHASE on
the assigned subregions in parallel. After the completion
of FIRSTPHASE, the results are transferred back to the
master process using MPI routines. The master process
further partitions and distributes the subregions returned
from FIRSTPHASE execution to all the compute nodes in the
cluster. The SECONDPHASE is initiated on all the compute
nodes by the master process in the same way as it did for
FIRSTPHASE. In our implementation, we use CUDA-based
THRUST library for common numerical operations such as
reduce and scan.

Implementation on Multicore CPU Architecture
For our multicore CPU implementation, we follow the same
two-phase approach to simulate the collective effects in elec-
tron beams as for GPUs and CPUs. We first implement on
a standalone multicore CPU and then extend it to a cluster
of multicore CPUs. Each node in the CPU cluster is a multi-
core system with many-core processors and each core of these
processor often supports one or more concurrent threads to be
executed in parallel. Efficient implementation for multicore
architecture requires the computation to be partitioned into
blocks such that multiple cores can work concurrently on dif-
ferent blocks and at the same time effectively utilize the mem-
ory hierarchy. In our proposed method, the main computation
of Algorithm 3 is done inside the while loop and for the Al-
gorithm 4 the main computation is done inside the for loop.
We use OpenMP directives to distribute these computations
across different cores.

In FIRSTPHASE, we use the work-sharing directive of
OpenMP to distribute the iterations of the for loop among
different cores. Likewise, the for loop in SECONDPHASE is
distributed equally among different cores using the OpenMP
loop directives. This involves dividing the subregions list
L equally among the active threads on every iteration. The
partitioned subregions are private to each thread. In FIRST-
PHASE, each thread essentially identifies the “good” and
“bad” subregions from the partition list of subregions by eval-
uating the QUADRULE on each of them. However, in SEC-
ONDPHASE each thread computes the value of integral for
each of the assigned subregion using the procedure PARAL-
LELQUADRATURE. The tabulated integrand values (G), vec-
tor of grid parameters (P) and the vector of observation points
(Xo,Yo) are shared among all threads using OpenMP shared
data scope clause.

The cluster implementation of the multicore CPU implemen-
tation follows the same approach as that of GPU cluster im-
plementation. The master process distributes the data evenly
among the compute nodes of the cluster using MPI routines.
Each compute node has a process running on them, which re-
ceives the partitioned data from the master process. Each pro-
cess at a compute node performs the FIRSTPHASE using the
above mentioned multicore CPU implementation on the as-
signed block of data. After the completion of FIRSTPHASE,
the results are transferred back to the master process using
MPI routines. The master process further partitions and dis-
tributes the subregions returned from FIRSTPHASE execution
to all the compute nodes in the cluster. Finally, process run-
ning on each compute node implements the SECONDPHASE
using the OpenMP directives. The results are accumulated by
the master process using the UPDATE routine.

Hybrid CPU-GPU Implementation
The hybrid implementation is designed for a system with
multicore CPU with one or more CUDA-enabled GPUs. The
implementation utilizes the computational power offered by
both multiple cores of the CPU and the GPUs of the under-
lying hardware to speed up the computation. This involves
distributing the computation between the CPU cores and the
GPU such that the computational load is evenly distributed
between them. In order to determine the amount of work to be
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Figure 4: Analytic versus computed effective longitudinal (left) and transverse (right) CSR forces for the LCSL bend [11]: N = 1024000 particles on a 64×64
grid, bend radius R0 = 25.13 m, θb = 11.4◦, longitudinal rms beam size σs = 50 µm, emittance ε = 1 nm, and total beam charge of Q = 1 nC.

shared between GPUs and CPU cores, we perform empirical
analysis of the GPU implementation and the multicore CPU
implementation. If for a given set of input parameters, K de-
notes the ratio of total execution time of CPU implementation
and GPU implementation, then the amount of work shared
between CPU cores and GPU to even the computational load
is 1 : K. This means, GPU performsK times more work than
the multicore CPU for a given amount of time. Once we de-
termine the amount of work to be shared between CPU cores
and GPUs, we use the above discussed multicore CPU imple-
mentation and the GPU implementation on their respective
share of data.

5. RESULTS

5.1 Model Validation
We validate our 2D model for simulation of CSR effects in
electron beams by comparing our simulation to the only spe-
cial case for which the exact analytical results are available
– that of a 1D monochromatic rigid bunch. Exact analytical
solutions for the longitudinal and transverse CSR force for a
1D rigid-line bunch study state model is given in [13,19]. We
benchmark our code against the analytical results described
in [13, 19] for the parameters of the LCLS bend [11]: bend
radius R0 = 25.13 m, θb = 11.4◦, longitudinal rms beam
size σs = 50 µm, emittance ε = 1 nm, total beam charge
Q = 1 nC. From Figure 4 it is evident that both longitudi-
nal and transverse CSR forces computed with our code agree
perfectly with the exact analytical solution.

5.2 Simulation Performance Analysis
Our numerical simulations were carried out using a cluster of
compute nodes with 4 NVIDIA GeForce GTX 480 GPU de-
vices per node. A compute node in the cluster is a multicore
system with two Quad-Cores Intel R© Xeon R© CPU E5630 2.53
GHz processors making a total of 8 cores per node. GeForce
GTX 480 is the 11th generation of NVIDIA’s GeForce GPU
units and is based on the Fermi architecture. Each of the GTX
480 device offers 1.5 GB of GDDR5 on-board memory and

14 Streaming Processors (SMs) with 32 CUDA cores each.
The interconnection between the host and the GPU device is
via a PCI-Express Gen2 interface. The algorithms described
above were first implemented sequentially in C and then the
parallel implementations (GPU and multicore CPU) were de-
veloped using CUDA 5.0 programming environment.

We use our new model to simulate the collective effects in
synchrotron light source and evaluate the performance of our
parallel implementations on GPUs, multicore CPUs, and hy-
brid CPU-GPU architectures with the results of the sequen-
tial execution (compiler-optimized) running on a standalone
desktop machine using one core. All of the results generated
here represent a single timestep of the entire simulation which
often runs for a few hundreds or thousands of timesteps. Ini-
tial conditions for the simulation are prepared by Monte Carlo
sampling of an initial DF of N particles with a total charge of
beam bunch Q = 1 nC.

Limitations of Sequential Simulation
In Figure 5 and Table 1, we show the limitations of sequential
CSR algorithm by comparing the execution time for different
stages of the algorithm outlined in subsection 3.4 for a single
timestep. The simulation was performed with N = 1024000
particles on various grid resolutions. The breakdown of ex-
ecution time shows that 95 − 99% of the execution time on
every timestep is spent in evaluating the double integral to
compute the retarded potentials. We observe that the com-
putational requirements associated with the evaluation of the
double integral limits the overall performance of the algo-
rithm in sequential implementation.

Comparative Analysis Across Architectures
In this section, we study the performance results of our multi-
core implementations on a standalone desktop machine with
two Quad-Core Intel R© Xeon R© CPU E5630 processors with
4 NVIDIA GeForce GTX 480 GPU devices connected to it
via a PCI-Express Gen2 interface. Table 2 presents our re-
sults of (a) the multicore CPU implementation running on the
standalone desktop machine using one core, (b) the multicore



CPU Execution time (sec.)
Grid Deposit Compute Compute Push

Resolution Particles Potential Forces Particles
32×32 0.70 58.04 0.35 2.10
64×64 0.70 573.87 0.31 2.10

128×128 0.70 7651.47 0.39 2.10

Table 1: Breakdown of CPU computation time for different stages of the
CSR simulation with N = 1024000 particles on various grid resolutions.
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Figure 5: Percentage of CPU execution time spent by different stages of the
CSR simulation with N = 1024000 particles on various grid resolutions.
(Note: y-axis is shown in log-scale).

CPU implementation using 8 cores, (c) the GPU implementa-
tion using one GTX 480 device, (d) the GPU implementation
using 4 GTX 480 device, and (e) the hybrid implementation
using all 8 CPU cores and the 4 GTX 480 devices for different
sets of input parameters. The speedup here is with reference
to the computer-optimized, auto parallelized code running on
a single CPU core of the desktop machine.

Multicore CPU Performance - On the Intel R© Xeon R© pro-
cessor with 8 cores, the CSR simulation using all the 8 CPU
cores is up to 7.7 times faster than the computer-optimized,
auto parallelized code running on a single core of the CPU.
Also, we observe that the implementation using multicore
CPU architectures achieves a linear speedup with the num-
ber of cores on the desktop machine.

GPU Performance - On a single GTX 480 GPU, the CSR
simulation archives a speedup of over 50. In terms of abso-
lute performance of multicore implementations, we find that
the GPU implementation of the CSR simulation outperforms
the multicore CPU implementation. We performed experi-
ments to see the impact on the speedup with the number of
GPU devices on a standalone desktop machine with 4 GTX
480 GPU devices. Figure 6 illustrates the speedup plot for the
GPU-based simulation with 1024000 particles and on a grid
resolution of 128 × 128 and 64 × 64. The results for differ-
ent set of input parameters are consistent with the behaviour
shown in Figure 6. We observe a linear speedup with the in-
crease in number of GPU devices. However, the number of
GPUs that can be used per node is limited by the hardware ca-
pability of the underlying compute node (or host). We choose
to use the cluster implementation to scale the performance
beyond 4 GPU devices.
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Figure 6: Impact on the speedup of GPU implementation with 1024000 par-
ticles with varying number GPU devices on a standalone desktop machine.
(speedup is with reference to the GPU implementation using one GPU)

Hybrid CPU-GPU Performance - The performance of hy-
brid CPU-GPU implementation is evaluated on a desktop ma-
chine using all 8 CPU cores and 4 GTX 480 GPU devices.
The results reported in Table 2 is computed analytically from
the performance of the GPU implementation and the multi-
core CPU implementation. We observe that the maximum
theoretical speedup that could be obtained using the hybrid
implementation is nearly same as that of GPU implemen-
tation using 4 GPU devices. The performance benefit ob-
tained by using hybrid CPU-GPU implementation is negli-
gible when compared against the GPU implementation. Thus
for further analysis we will not consider the hybrid imple-
mentation.

Analysis of Cluster Implementation
In this section, we study the performance of our CSR im-
plementation on a cluster of multicore CPU and GPU archi-
tectures. Both of the cluster implementations require every
node in the cluster to operate with maximum resource utiliza-
tion. For a multicore CPU cluster, this means we consider
each node of the cluster to utilize all the available 8 cores of
the underlying architecture. On the other hand, GPU cluster
implementation considers each host node to utilize all the 4
GTX 480 GPU devices connected to it.

We performed experiments to see the impact on the speedup
with the increase in cluster size. Figure 7 illustrates the
speedup plot for the simulation with 1024000 particles and
on a grid resolution of 128 × 128 and 64 × 64. The speedup
for GPU implementation is evaluated by computing the to-
tal execution time for the cluster implementation against the
time taken by the GPU implementation on a standalone desk-
top machine with 4 GPU nodes. Likewise, the speedup for
multicore CPU cluster implementation is with reference to
the multicore CPU implementation on a standalone desktop
machine using all the 8 CPU cores. The results for differ-
ent set of input parameters are consistent with the behavior
shown in Figure 7. In the cluster implementation, the overall
execution time is a combination of kernel computation time
(FIRSTPHASE and SECONDPHASE) and the computational
overheads. The overhead includes MPI communication be-
tween the compute nodes, device initialization for the GPU



Number of Multicore CPU implementation GPU implementation on a standalone system with Hybrid implementation on
Particles Grid Single Core 8 cores Single GPU 4 GPUs multicore CPU with 4 GPUs

(N ) Resolution Time(sec.) Time (sec.) Speedup Time (sec.) Speedup Time (sec.) Speedup Time (sec.) Speedup

102400
32× 32 73.5 11.1 6.6 1.5 49.0 0.7 105.0 0.7 105.0
64× 64 878.5 116.2 7.6 16.8 52.3 4.7 186.9 4.5 195.2

128× 128 13123.2 1695.3 7.7 246.8 53.2 68.4 191.9 65.8 199.4

1024000
32× 32 58.1 12.7 4.6 1.2 48.4 0.6 96.8 0.6 96.8
64× 64 573.9 83.9 6.8 11.1 51.7 3.2 179.3 3.1 185.1

128× 128 7651.5 1000.9 7.6 144.1 53.1 40.1 190.8 38.6 198.2

4096000
32× 32 57.8 11.9 4.9 1.3 44.5 0.6 96.3 0.6 96.3
64× 64 452.8 66.5 6.8 9.2 49.2 2.4 188.7 2.3 196.8

128× 128 5307.5 725.3 7.3 101.4 52.3 27.1 195.9 26.1 203.4

Table 2: Performance results of (a) the multicore CPU implementation running on a standalone desktop machine using one core, (b) the multicore CPU
implementation using 8 cores, (c) the GPU implementation using one GTX 480 device, (d) the GPU implementation using 4 GTX 480 device, and (e) the hybrid
implementation using all 8 CPU cores and the 4 GTX 480 devices for different sets of input parameters.
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implementation and so on. Figure 8 shows the split com-
putation time for the GPU implementation with increase in
cluster size for a simulation with 1024000 particles on a grid
resolution of 128× 128. The results for multicore CPU clus-
ter implementation is consistent with the behavior of GPU-
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Figure 9: Comparison of execution time for computing the retarded potential
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GPU implementation.
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Figure 10: Speedup results for the parallel implementation using multiple
GPU devices with 50 particles per grid with varying grid resolution using
GPU implementation.

implementation as shown in Figure 8. We observe a near-
linear scaling of kernel computation with the cluster size.
However, the overall performance deviates from the linear
scaling due to the increase in MPI communication overheads
with the number of nodes in cluster. Note that in general the
speedup scales near linearly with the increase in cluster size
until a threshold number of nodes beyond which the perfor-
mance would degrade due to additional overheads involved.



Effects of Simulation Resolution
In Figure 9 and Figure 10, we illustrate the relationship be-
tween the number of particles (N ) and the grid resolution
using the GPU-based implementation. Figure 9 compares
the execution time for the sequential implementation on CPU
and the parallel implementation on GPUs for a grid size of
128× 128 with varying number of particles per grid. We no-
tice that with the increase in particles to grid ratio the execu-
tion time (in both CPU and GPU) for computing the integral
decreases. The reason for this behavior is that increasing the
number of particles to grid ratio reduces the numerical noise
in the distribution of the integrand values (ρ(r, t) and J(r, t)
in Equation 3a), thereby reducing the computational load re-
quired for computing quadratures to within a prescribed ac-
curacy.

Figure 10 quantifies the performance of the parallel algorithm
using one or more GPU devices with fixed number of parti-
cles per grid with varying grid resolution. The simulation
here is performed with 50 particles per grid (in practice, the
number of particle per grid varies from 10-100). The results
for different particles per grid values are consistent with the
behavior shown in Figure 10. We notice that the increase in
grid resolution leads to a non-linear increase in the speedup.
The reason for this is that at higher grid resolutions the algo-
rithm generates larger number of subregions, thereby increas-
ing the GPU device occupancy. We also notice a near-linear
increase in speedup with number of GPUs for a fixed grid res-
olution. The behavior is expected because with the increase in
number of GPUs the computational load is distributed across
a larger set of parallel processors and the processors in each
GPU device works independently of the other GPU devices.

6. CONCLUSION
We presented an innovative, high-performance, high-fidelity
parallel model for simulation of collective effects, including
heretofore prohibitive CSR effects, in electron beams using
state-of-the-art multicore systems (GPUs, multicore CPUs,
and hybrid CPU-GPU platform). This pioneering imple-
mentation on different multicore system results in a orders-
of-magnitude speedup over its serial version, thereby bring-
ing the previously intractable physics within reach for the
first time. The parallel algorithm outperforms the compiler-
optimized sequential simulation and achieves a performance
gain of up to 7.7X and over 50X on the Intel Xeon E5630
CPU and GTX 480 GPU respectively. Furthermore we pro-
posed a technique to scale this algorithm on a cluster of mul-
ticore systems. The performance gain of the cluster imple-
mentation scales nearly linearly with the cluster size.

The development of this advanced new simulation tool will
enable unprecedented fidelity and precision in studying all
the relevant physics of synchrotron light sources. This will
facilitate a fundamental understanding of the adverse collec-
tive effects in these machines and their successful mitigation,
leading to their improved design and operations.

For the society in general, this research is a step forward in
developing ultra-bright light sources which are essential tools
for discoveries and innovations in physical, biological, energy
and medical sciences.
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M. Zubair. High Performance Computing (HiPC)
(2013).

10. M. Borland et al. Nucl. Instrum. Methods Phys. Res. A
483 (2002), 268.

11. R. Li. Nucl. Instrum. Methods Phys. Res. A 429 (1999),
310.

12. R. Li. Proceedings of the 2nd ICFA Advanced
Accelerator Workshop on the Physics of High Brightness
Beams (1999).

13. R. Li. Phys. Rev. ST Accel. Beams 11 (2008), 024401.

14. R. Li, R. Legg, B. Terzić, J.J. Bisognano, and R.A.
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